FCS
 Math: Functions
 Definitions

Massimo Caboara

March $4^{\text {th }}, 2021$

Definition 1. Given A, B sets, the set $D \subset A \times B$ is the set of a function

$$
F_{D}: A \longrightarrow B
$$

if and only if

$$
\forall a \in A \exists!b \in B \quad \text { s.t. }(a, b) \in D
$$

And the associated function is

$$
\begin{array}{cccc}
F_{D}: & A & \longrightarrow & B \\
& a & \mapsto & F_{D}(a)=b
\end{array}
$$

Corollary 1. For a subsets $D \subset \mathbb{R}^{2}$ to be the graph of a function $f: \mathbb{R} \longrightarrow \mathbb{R}$, a vertical line has to intersect D once and only once.

Corollary 2. For a subsets $D \subset \mathbb{R}^{2}$ to be the graph of a function $f: A \longrightarrow \mathbb{R}$, $A \subseteq \mathbb{R}$ a vertical line has to intersect D at most once.

Definition 2. Given a "quasi function"

$$
\begin{array}{cccc}
\mathcal{F}: & A & \longrightarrow & B \\
& a & \mapsto & \mathcal{F}(a)
\end{array}
$$

the existence field of \mathcal{F}, or $E F(\mathcal{F})$ is the set

$$
a \in A \text { s.t. the formula } \mathcal{F}(a) \text { is meaningful. }
$$

The associated function to \mathcal{F} is

$$
\begin{array}{cccc}
F_{\mathcal{F}}: & E F(\mathcal{F}) & \longrightarrow & B \\
a & \mapsto & \mathcal{F}(a)
\end{array}
$$

Definition 3. Given a function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & F(x)
\end{array}
$$

- A period of F is an $p \in \mathbb{R}^{+}$s.t.

$$
\forall x \in \mathbb{R} f(x+p)=f(x)
$$

if any such p exists. N.B. A period is always strictly positive.

- THE period of F is the minumum of all the periods, if such minumum exists.

$$
\operatorname{Period}(F)=\min \{p \in \mathbb{R} \mid p \text { is a period of } F\}
$$

