FCS Math: Functions Definitions

Massimo Caboara

March 4^{th} , 2021

Definition 1. Given A, B sets, the set $D \subset A \times B$ is the set of a function

 $F_D: A \longrightarrow B$

if and only if

 $\forall a \in A \exists ! b \in B s.t. (a, b) \in D$

And the associated function is

$$F_D: A \longrightarrow B$$
$$a \mapsto F_D(a) = b$$

Corollary 1. For a subsets $D \subset \mathbb{R}^2$ to be the graph of a function $f : \mathbb{R} \longrightarrow \mathbb{R}$, a vertical line has to intersect D once and only once.

Corollary 2. For a subsets $D \subset \mathbb{R}^2$ to be the graph of a function $f : A \longrightarrow \mathbb{R}$, $A \subseteq \mathbb{R}$ a vertical line has to intersect D at most once.

Definition 2. Given a "quasi function"

$$\begin{array}{ccccc} \mathcal{F}: & A & \longrightarrow & B \\ & a & \mapsto & \mathcal{F}(a) \end{array}$$

the existence field of \mathcal{F} , or $EF(\mathcal{F})$ is the set

 $a \in A$ s.t. the formula $\mathcal{F}(a)$ is meaningful.

The associated function to \mathcal{F} is

$$\begin{array}{cccc} F_{\mathcal{F}} : & EF(\mathcal{F}) & \longrightarrow & B \\ & a & \mapsto & \mathcal{F}(a) \end{array}$$

Definition 3. Given a function

$$\begin{array}{cccc} F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \mapsto & F(x) \end{array}$$

• A period of F is an $p \in \mathbb{R}^+$ s.t.

$$\forall x \in \mathbb{R} \ f(x+p) = f(x)$$

if any such p exists. N.B. A period is always strictly positive.

• THE period of F is the minumum of all the periods, if such minumum exists.

 $Period(F) = \min\{p \in \mathbb{R} \mid p \text{ is a period of } F\}$