FCS
 Math: Functions
 Exercises

Massimo Caboara

March $25^{\text {th }}, 2021$

Remark 1. If we have an invertible function $f: A \longrightarrow B$, it is immediate that $\left(f^{-1}\right)^{-1}=f$, since, by definition, if f^{-1} is the inverse of f, then f is the inverse of f^{-1}.

Remark 2. Let us consider the invertible functions $F: A \longrightarrow B$ and $G: B \longrightarrow C$ and the function

$$
\begin{array}{cccc}
G \circ F: & A & \longrightarrow & C \\
& a & \mapsto & G \circ F(a)=G(F(a))
\end{array}
$$

It is easy to see that $G \circ F$ is invertible and the function

$$
\begin{array}{cccc}
H: & C & \longrightarrow & A \\
& c & \mapsto & \left(F^{-1} \circ G^{-1}\right)(c)=F^{-1}\left(G^{-1}(c)\right)
\end{array}
$$

is its inverse.
Since $F: A \longrightarrow B$ is invertible, the function $F^{-1}: B \longrightarrow A$ exists and $F^{-1} \circ F \equiv \operatorname{id}_{A}, F \circ F^{-1} \equiv \operatorname{id}_{B}$.

Since $G: B \longrightarrow C$ is invertible, the function $G^{-1}: C \longrightarrow B$ exists and $G \circ G^{-1} \equiv \mathrm{id}_{C}, G^{-1} \circ G \equiv \operatorname{id}_{B}$.

Hence, for all $a \in A$,
$\left(F^{-1} \circ G^{-1}\right) \circ(G \circ F)(a)=\left(F^{-1} \circ G^{-1} \circ G \circ F\right)(a)=\left(F^{-1} \circ \mathrm{id}_{C} \circ F\right)(a)=\left(F^{-1} \circ F\right)(a)=\operatorname{id}_{A}(a)=a$ so $\left(F^{-1} \circ G^{-1}\right) \circ(G \circ F) \equiv \operatorname{id}_{A}$.

For all $c \in C$,
$(G \circ F) \circ\left(F^{-1} \circ G^{-1}\right)(c)=\left(G \circ F \circ F^{-1} \circ G^{-1}\right)(c)=\left(G \circ \mathrm{id}_{A} \circ G^{-1}\right)(c)=\left(G \circ G^{-1}\right)(c)=c$
so $(G \circ F) \circ\left(F^{-1} \circ G^{-1}\right) \equiv \operatorname{id}_{C}$.

Exercise 1. Solve the equation $\log _{3}(x-1)=3$.
The existence field of $\log _{3}(x-1)$ is $(1,+\infty)$, as we can easily see from the graph of

$$
\begin{array}{cccc}
\log _{3}(\cdot): & \mathbb{R}^{+} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \log _{3}(x)
\end{array}
$$

We draw the graphs of the functions

$$
\begin{array}{cccccccc}
F: & (1,+\infty) & \longrightarrow & \mathbb{R} \\
x & \mapsto & \log _{3}(x-1)
\end{array} \text { and } \begin{array}{cc}
G: & (1,+\infty) \\
& \longrightarrow \\
& \longmapsto
\end{array}
$$

It is easy to see that there is one intersection. To solve the equation, and to determine this intersection, we find convenient to apply to both sides the function

$$
\begin{array}{llll}
3^{(\cdot)}: & \mathbb{R} & \longrightarrow & \mathbb{R}^{+} \\
& x & \mapsto & 3^{x}
\end{array}
$$

the inverse of $\log _{3}(\cdot)$. Since the domain of $3^{(\cdot)}$ is \mathbb{R} there is no problem with application. Since the function $3^{(\cdot)}$ is injective, the equation's solutions don't
change and we have that

$$
\log _{3}(x-1)=3 \Longleftrightarrow 3^{\log _{3}(x-1)}=3^{3}
$$

and, since $3^{(\cdot)}$ and $\log _{3}(\cdot)$ are inverses,

$$
3^{\log _{3}(x-1)}=3^{3} \Longleftrightarrow x-1=3^{3} \Longleftrightarrow x=28
$$

Hence, the solution of $\log _{3}(x-1)=3$ is $x=28$.

Exercise 2. Solve the equation $|x|=x$. We draw the graphs of

$$
\begin{array}{rlll}
|\cdot|: & \mathbb{R} & \longrightarrow & \mathbb{R}_{0}^{+} \\
& x & \mapsto & |x|
\end{array}
$$

and

$$
\begin{array}{rlll}
i d_{\mathbb{R}}: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & x
\end{array}
$$

From the graphs it is immediate that x 's such that $|x|=x$ are $x \in[0,+\infty)$.

Exercise 3. Solve the equation $\sin x=\cos (x)$, if $x \in[0,2 \pi)$.
We draw the graph of

$$
\begin{array}{cccc}
\sin (\cdot): & {[0,2 \pi)} & \longrightarrow & {[-1,1]} \\
x & \mapsto & \sin (x)
\end{array}
$$

and

$$
\begin{array}{cccc}
\cos (\cdot): & {[0,2 \pi)} & \longrightarrow & {[-1,1]} \\
x & \mapsto & \cos (x)
\end{array}
$$

GNU05

We see that there are two intersections.
Using the goniometric circle we get that the only two angles x for which $\sin (x)=\cos (x)$ are $x=\frac{\pi}{4}$ and $x=\frac{5 \pi}{4}$.

There is also the standard algebraic method, e.g. dividing by $\cos (x)$ when possibile.

We have $\sin (x)=\cos (x)$. Let us draw the graph of $\cos (x)$ to get its zeroes in $[0,2 \pi)$ (we know the main points of this graph)

$$
y=\cos (x)
$$

$$
G N U 7
$$

- If $\cos (x)=0 \Longleftrightarrow x=\pi / 2,3 \pi / 2$, then the equation is

$$
\sin (x)=0 \text { with solutions } x=0, \pi
$$

Since $\{x=\pi / 2,3 \pi / 2\} \cap\{0, \pi\}=\emptyset$, there are no solutions if $\cos (x)=0$.

- If $\cos (x) \neq 0 \Longleftrightarrow x \neq \pi / 2,3 \pi / 2$ we can divide both sides of the equation by $\cos (x)$

$$
\sin (x)=\cos (x) \Longleftrightarrow \frac{\sin (x)}{\cos (x)}=\frac{\cos (x)}{\cos (x)} \Longleftrightarrow \tan (x)=1
$$

looking at the graph
GNU8

we see that there is one solution for $x=\pi / 4$ (we know the main intersting points of the graph of the tangent). Since the tangent is periodc with PERIOD π, we know that there is another solution for $x=\pi / 4+\pi=5 \pi / 4$

Exercise 4. Let us consider the function.

$$
F: \begin{array}{ccc}
{[-1,+\infty)} & \longrightarrow & \mathbb{R} \\
x & \mapsto & \sqrt{x+1}
\end{array} \quad \text { whose graph is }
$$

It is clearly injective by the horizontal line rule. It is not invertible because the line $y=-0.5$ does not intersects its graph.

If we restrict the codomain and we consider the function

$$
\begin{array}{ccc}
F^{\prime}:[-1,+\infty) & \longrightarrow & {[0,+\infty)} \\
x & \mapsto & \sqrt{x+1}
\end{array} \quad \text { whose graph is }
$$

The function is clearly invertible by the horizontal line rule. We thus know that there is a function

$$
\begin{aligned}
& G:[0,+\infty) \longrightarrow[-1,+\infty) \\
& x \quad \mapsto \quad G(x)
\end{aligned}
$$

that is the inverse of F. (Note that the domain of G is the codomain of F and the codomain of G is the domain of $F)$. We want the formula of G.

We remember the algebraic definition of invertibility:
a function $F: A \longrightarrow B$ is invertible if and only if the equation $F(x)=b$ has exactly one solution for the unknown $x \in A$ for any parameter $b \in B$.

We are looking to solve the equation

$$
F(x)=b \Longleftrightarrow \sqrt{x+1}=b
$$

for the unknown $x \in[-1,+\infty)$ for any parameter $b \in[0,+\infty)$.
We would like to apply to both sides of the equation the function

$$
\begin{array}{rlll}
(\cdot)^{2}: & \mathbb{R}_{0}^{+} & \longrightarrow & \mathbb{R}_{0}^{+} \\
x & \mapsto & x^{2}
\end{array}
$$

the inverse of the function

$$
\begin{array}{cclc}
\sqrt{\cdot}: & \mathbb{R}_{0}^{+} & \longrightarrow & \mathbb{R}_{0}^{+} \\
& x & \mapsto & \sqrt{x}
\end{array}
$$

we can apply $(\cdot)^{2}$ to both sides of the equation because both sides belong to the domain of $(\cdot)^{2}$ (both $\sqrt{x+1}$ and b are positive). We thus obtain the equivalent equation

$$
(\sqrt{x+1})^{2}=b^{2} \Longleftrightarrow x+1=b^{2} \Longleftrightarrow x=b^{2}-1
$$

The first equivalence holds because the two functions $(\cdot)^{2}$ and $\sqrt{ }$. are inverses [Remark: they are inverses when condidered with their specific domains and codomains]. That means that the solution for x is $b^{2}-1$ and so b goes to $b^{2}-1$ and the function we are looking for, the inverse of F, is

$$
\begin{array}{ccc}
G:[0,+\infty) & \longrightarrow & {[-1,+\infty)} \\
b & \mapsto & b^{2}-1
\end{array}
$$

or if we prefer

$$
G:\left[\begin{array}{ccc}
{[0,+\infty)} & \longrightarrow & {[-1,+\infty)} \\
x & \mapsto & x^{2}-1
\end{array}\right.
$$

We can check

$$
G \circ F(x)=G(F(x))=G(\sqrt{x+1})=(\sqrt{x+1})^{2}-1=x
$$

and

$$
F \circ G(x)=F(G(x))=G\left(x^{2}-1\right)=\sqrt{\left(x^{2}-1\right)+1}=\sqrt{x^{2}}=x \text { since } x \geq 0
$$

Exercise 5. Is the function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & x^{2}-4
\end{array}
$$

invertible? If the answer is no, determine a restriction of the domain and/or codomain that produces an invertible function with the same formula.

Let us draw the graph of F
GNU11

We see that F is not invertible using the horizontal line rule, since there are lines, like the line $y=-5$ that don't intersect the graph of F, while there are other lines, like the line $y=0$, that itersect it twice.

We try to restrict the codomain to avoid the first problem, and the domain to avoid the second.

The function

$$
\begin{array}{rccc}
F: & \mathbb{R}_{0}^{+} & \longrightarrow & {[-4,+\infty)} \\
x & \mapsto & x^{2}-4
\end{array}
$$

is invertible by the horizontal line rule

> GNU12

We want to determine the explicit formula for the inverse of F, $F^{-1}:[-4,+\infty) \longrightarrow \mathbb{R}_{0}^{+}$. Notice again that the domain/codomain of F^{-1} are the codomain/domain of F.

As we did in the exercise aboce, we solve the equation

$$
F(x)=b \Longleftrightarrow x^{2}-4=b \Longleftrightarrow x^{2}=b+4
$$

for unnknown $x \in \mathbb{R}_{0}^{+}$and parameter $b \in[-4,+\infty)$. Since $b \in[-4,+\infty)$, we have always $b+4 \geq 0$, and we can apply to both sides of the equation the function

$$
\begin{array}{cclc}
\sqrt{\cdot}: & \mathbb{R}_{0}^{+} & \longrightarrow & \mathbb{R}_{0}^{+} \\
& x & \mapsto & \sqrt{x}
\end{array}
$$

inverse of

$$
\begin{array}{rccc}
(\cdot)^{2}: \quad \mathbb{R}_{0}^{+} & \longrightarrow & \mathbb{R}_{0}^{+} \\
x & \mapsto & x^{2}
\end{array}
$$

we get

$$
x^{2}=b+4 \Longleftrightarrow \sqrt{x^{2}}=\sqrt{b+4} \Longleftrightarrow x=\sqrt{b+4}
$$

and the second implication holds because $(\cdot)^{2}, \sqrt{ } \cdot$ are inverses. The inverse is then

$$
\begin{array}{cccc}
F^{-1}: & {[-4,+\infty)} & \longrightarrow & \mathbb{R}_{0}^{+} \\
x & \mapsto & \sqrt{x+4}
\end{array}
$$

As an exercise, restrict the domain to the negatives and find the explicit formula for the inverse.

Exercise 6. Solve the equation

$$
\sqrt{x-1}=x-2
$$

First, we determine the existence fields: for the left side it is $[1,+\infty)$, for the second side \mathbb{R}. The existence field for the equation in hence $[1,+\infty)$, the intersection.
the we draw the graphs of
that we get easily from the graphs of \sqrt{x}, shifted right by 1 , and of $y=x$, shifted right by 2 .

GNU14

there is an intersection between 3 and 4. The determine it, we have to solve the equation

$$
\sqrt{x-1}=x-2
$$

we want to apply the function

$$
\begin{array}{rlll}
(\cdot)^{2}: & \mathbb{R}_{0}^{+} & \longrightarrow & \mathbb{R}_{0}^{+} \\
x & \mapsto & x^{2}
\end{array}
$$

inverse of

$$
\begin{array}{cccc}
\sqrt{\cdot}: & \mathbb{R}_{0}^{+} & \longrightarrow & \mathbb{R}_{0}^{+} \\
& x & \mapsto & \sqrt{x}
\end{array}
$$

To do that we have to be sure that, for all $x \in[1,+\infty)$, both sides of the equations are positive. The first side is always positive, being a square root. The second is positive only if $x \geq 2$. So we have to consider both cases and to join the solutions.

- If $1 \leq x<2$, the first side is positive and the second is striclty negative. The equality never holds.
- If $x \geq 2$, we can apply $(\cdot)^{2}$ to both sides,
$\sqrt{x-1}=x-2 \Longleftrightarrow(\sqrt{x-1})^{2}=(x-2)^{2} \Longleftrightarrow x-1=x^{2}-4 x+4 \Longleftrightarrow x^{2}-5 x+5=0$
where the first implication holds because $(\cdot)^{2}$ is injective, and the second because $\sqrt{\cdot},(\cdot)^{2}$ are inverses. We have

$$
x^{2}-5 x+6=0 \Longleftrightarrow x=\frac{5 \pm \sqrt{25-20}}{2}=x=\frac{5 \pm \sqrt{5}}{2}
$$

but

$$
\frac{5+\sqrt{5}}{2}>2 \text { and } \frac{5-\sqrt{5}}{2}<2
$$

hence only the first solution is acceptable. The solution of $\sqrt{x-1}=x-2$ is thus $x=\frac{5+\sqrt{5}}{2}$.

Exercise 7. Is it possibile to find a one-to-one correspondence between the sets $A=\{n \in \mathbb{N} \mid n$ is multiple of 3$\}$ and $B=\{n \in \mathbb{N} \mid n$ is multiple of 4\}?

We consider the function

$$
\begin{array}{cccc}
F: & A & \longrightarrow & B \\
& n & \mapsto & \frac{4}{3} n
\end{array}
$$

that is well defined because $n \in A$ and hence 3 is a multiple of n, and $n / 3 \in \mathbb{N}$.
The function

$$
\begin{array}{rllc}
G: & B & \longrightarrow & A \\
& n & \mapsto & \frac{3}{4} n
\end{array}
$$

is well defined because $n \in B$ and hence 4 is a multiple od n, and $n / 4 \in \mathbb{N}$.
The function G is clearly the inverse of F, since
$G \circ F(n)=G\left(\frac{4}{3} n\right)=\frac{3}{4}\left(\frac{4}{3} n\right)=n$ and $F \circ G(n)=F\left(\frac{3}{4} n\right)=\frac{4}{3}\left(\frac{3}{4} n\right)=n$
and so F is invertible, a one-to-one correspondence and $|A|=|B|$.

Exercise 8. Is it possibile to find a one-to-one correspondence between the sets $A=\{2 n+2 \mid n \in \mathbb{N}\}$ and $B=\left\{n^{2} \mid n \in \mathbb{N}\right\}$.

We have $|A|=|\mathbb{N}|$ and $|B|=|\mathbb{N}|$, so our guess is that $|A|=|B|$ and thus there is a one-to-one correspondence between A and B, but we are not sure that the rules for equality apply to the cardinality, so we need to find an explicit invertible function between A and B. This could be difficult, we know the one-to-one correspondences (invertible functions)

$$
\begin{array}{cccc}
F: & \mathbb{N} & \longrightarrow & A \\
& n & \mapsto & 2 n+2
\end{array} \quad \text { and } \begin{array}{ccccc}
G: & \mathbb{N} & \longrightarrow & B \\
& n & \mapsto & n^{2}
\end{array}
$$

we find the inverses solving the equations

$$
2 n+2=a \text { and } n^{2}=b
$$

for $n \in \mathbb{N}$, $a \in$ and $b \in B$. We get

$$
n=\frac{a-2}{2} \text { and } n=\sqrt{b}
$$

The inverses are

$$
\begin{array}{rllc}
F^{-1}: & A & \longrightarrow & \mathbb{N} \\
n & \mapsto & \frac{n-2}{2}
\end{array} \quad \text { and } \begin{array}{lllll}
G^{-1}: & B & \longrightarrow & \mathbb{N} \\
& n & \mapsto & \sqrt{n}
\end{array}
$$

well defined because in the first case, since $n \in A$ we have $\frac{n-2}{2} \in \mathbb{N}$ and in the second case, since $b \in B, b$ is a perfect square and $\sqrt{b} \in \mathbb{N}$.

So we need an invertible function

$$
A \xrightarrow{H} B
$$

while we have

$$
\mathbb{N} \underset{F^{-1}}{\stackrel{F}{\rightleftarrows}} A \quad \text { and } \quad \mathbb{N} \underset{G^{-1}}{\stackrel{G}{\rightleftarrows}} B
$$

The idea is to build the function $A \xrightarrow{H} B$ using the functions we have

$$
A \xrightarrow{F^{-1}} \mathbb{N} \xrightarrow{G} B
$$

so $H \equiv F^{-1} \circ G$ and so for any $n \in A$

$$
F^{-1} \circ G(n)=F^{-1}(G(n))=F^{-1}\left(n^{2}\right)=\frac{n^{2}-2}{2}
$$

and

$$
\begin{array}{cccc}
H: & A & \longrightarrow & B \\
& n & \mapsto & \frac{n^{2}-2}{2}
\end{array}
$$

is invertible because composition if invertible functions. If we want its explicit inverse,

$$
\begin{array}{lllc}
H^{-1}: & A & \longrightarrow & B \\
& n & \mapsto & G^{-1} \circ F(n)=\sqrt{2 n+2}
\end{array}
$$

since

$$
H \equiv F^{-1} \circ G \Longrightarrow H^{-1} \equiv\left(F^{-1} \circ G\right)^{-1} \equiv G^{-1} \circ F
$$

Exercise 9. Do the sets \mathbb{N}, \mathbb{Z} have the same cardinality?
The question is, by definition, equivalent to : there is an invertible function (one-to-one correspondence) between A and B ? We build one such function.

If we rearrange the elements of \mathbb{N} setting the even numbers before 0 and the odd numbers after 0 like that $\mathbb{N}=\{\cdots, 6,4,2,0,1,3,5, \cdots$,$\} , it is natural to$ define a function like

$$
\begin{array}{ccc}
\vdots & \vdots & \vdots \\
6 & \mapsto & -3 \\
4 & \mapsto & -2 \\
2 & \mapsto & -1 \\
0 & \mapsto & 0 \\
1 & \mapsto & 1 \\
3 & \mapsto & 2 \\
5 & \mapsto & 3 \\
\vdots & \vdots & \vdots
\end{array}
$$

If we write down the formula for this function we have

$$
\begin{aligned}
F: \mathbb{N} & \longrightarrow \\
n & \mapsto \begin{cases}-\frac{n}{2} & \text { if } n \text { is even } \\
\frac{n+1}{2} & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

that is well defined and invertible. It is well defined because if n is even, $-\frac{n}{2} \in \mathbb{Z}$ and if n is odd, $\frac{n+1}{2} \in \mathbb{Z}$, so in any case n goes to an integer number. It is invertibe because the function

$$
\begin{aligned}
G: \mathbb{Z} & \longrightarrow \\
n & \mapsto \begin{cases}-2 n & \text { if } n \geq 0 \\
2 n-1 & \text { if } n<0\end{cases}
\end{aligned}
$$

is its inverse, as we can check. For all $n \in \mathbb{N}$
$G \circ F(n)=G\left(\left\{\begin{array}{ll}-\frac{n}{2} & \text { if } n \text { is even } \\ \frac{n+1}{2} & \text { if } n \text { is odd }\end{array}\right)=\left\{\begin{array}{ll}-2\left(-\frac{n}{2}\right) & \text { if } n \geq 0 \\ 2\left(\frac{n+1}{2}\right)-1 & \text { if } n<0\end{array}=\left\{\begin{array}{ll}n & \text { if } n \geq 0 \\ n & \text { if } n<0\end{array}=n\right.\right.\right.$
The check $\forall n \in \mathbb{Z} F \circ G(n)=n$ is left as an exercise to the reader.

Exercise 10. Do the subsets A, B in \mathbb{R}^{2} have the same cardinality?

Yes, because the function $F: A \longrightarrow B$ detailed below (the projection of A ounto B) is a one-to-one correspondence (is invertible).

Exercise 11. Do the subsets A, B in \mathbb{R}^{2} have the same cardinality?

