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Remark 1. If we have an invertible function f : A −→ B, it is immediate

that
(
f−1

)−1
= f , since, by definition, if f−1 is the inverse of f , then f is the

inverse of f−1.

Remark 2. Let us consider the invertible functions F : A −→ B and
G : B −→ C and the function

G ◦ F : A −→ C
a 7→ G ◦ F (a) = G(F (a))

It is easy to see that G ◦ F is invertible and the function

H : C −→ A
c 7→ (F−1 ◦G−1)(c) = F−1(G−1(c))

is its inverse.

Since F : A −→ B is invertible, the function F−1 : B −→ A exists and
F−1 ◦ F ≡ idA, F ◦ F−1 ≡ idB.

Since G : B −→ C is invertible, the function G−1 : C −→ B exists and
G ◦G−1 ≡ idC , G−1 ◦G ≡ idB.

Hence, for all a ∈ A,

(F−1◦G−1)◦(G◦F )(a) = (F−1◦G−1◦G◦F )(a) = (F−1◦idC◦F )(a) = (F−1◦F )(a) = idA(a) = a

so (F−1 ◦G−1) ◦ (G ◦ F ) ≡ idA.

For all c ∈ C,

(G◦F )◦(F−1◦G−1)(c) = (G◦F◦F−1◦G−1)(c) = (G◦idA◦G−1)(c) = (G◦G−1)(c) = c

so (G ◦ F ) ◦ (F−1 ◦G−1) ≡ idC .
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Exercise 1. Solve the equation log3(x− 1) = 3.

The existence field of log3(x − 1) is (1,+∞), as we can easily see from the
graph of

log3(·) : R+ −→ R
x 7→ log3(x)
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We draw the graphs of the functions

F : (1,+∞) −→ R
x 7→ log3(x− 1)

and
G : (1,+∞) −→ R

x 7→ 3
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It is easy to see that there is one intersection. To solve the equation, and
to determine this intersection, we find convenient to apply to both sides the
function

3(·) : R −→ R+

x 7→ 3x
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the inverse of log3(·). Since the domain of 3(·) is R there is no problem with
application. Since the function 3(·) is injective, the equation’s solutions don’t
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change and we have that

log3(x− 1) = 3⇐⇒ 3log3(x−1) = 33

and, since 3(·) and log3(·) are inverses,

3log3(x−1) = 33 ⇐⇒ x− 1 = 33 ⇐⇒ x = 28

Hence, the solution of log3(x− 1) = 3 is x = 28.
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Exercise 2. Solve the equation | x |= x. We draw the graphs of

| · |: R −→ R+
0

x 7→ | x |

and
idR : R −→ R

x 7→ x

−1

−0.5

0

0.5

1

1.5

2

−1 −0.5 0 0.5 1

y =| x |

y = x

−1

−0.5

0

0.5

1

1.5

2

−1 −0.5 0 0.5 1

y =| x |

y = x

GNU04GNU04

From the graphs it is immediate that x’s such that | x |= x are x ∈ [0,+∞).
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Exercise 3. Solve the equation sinx = cos(x), if x ∈ [0, 2π).
We draw the graph of

sin(·) : [0, 2π) −→ [−1, 1]
x 7→ sin(x)

and
cos(·) : [0, 2π) −→ [−1, 1]

x 7→ cos(x)
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We see that there are two intersections.
Using the goniometric circle we get that the only two angles x for which

sin(x) = cos(x) are x = π
4 and x = 5π

4 .
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There is also the standard algebraic method, e.g. dividing by cos(x) when
possibile.

We have sin(x) = cos(x). Let us draw the graph of cos(x) to get its zeroes
in [0, 2π) (we know the main points of this graph)
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• If cos(x) = 0⇐⇒ x = π/2, 3π/2, then the equation is

sin(x) = 0 with solutionsx = 0, π

Since {x = π/2, 3π/2} ∩ {0, π} = ∅, there are no solutions if cos(x) = 0.

• If cos(x) 6= 0 ⇐⇒ x 6= π/2, 3π/2 we can divide both sides of the equation
by cos(x)

sin(x) = cos(x)⇐⇒ sin(x)

cos(x)
=

cos(x)

cos(x)
⇐⇒ tan(x) = 1

looking at the graph
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we see that there is one solution for x = π/4 (we know the main intersting
points of the graph of the tangent). Since the tangent is periodc with
PERIOD π, we know that there is another solution for x = π/4+π = 5π/4
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Exercise 4. Let us consider the function.

F : [−1,+∞) −→ R
x 7→

√
x+ 1

whose graph is
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It is clearly injective by the horizontal line rule. It is not invertible because
the line y = −0.5 does not intersects its graph.

If we restrict the codomain and we consider the function

F ′ : [−1,+∞) −→ [0,+∞)
x 7→

√
x+ 1

whose graph is
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The function is clearly invertible by the horizontal line rule. We thus know
that there is a function

G : [0,+∞) −→ [−1,+∞)
x 7→ G(x)

that is the inverse of F . (Note that the domain of G is the codomain of F and
the codomain of G is the domain of F ). We want the formula of G.

We remember the algebraic definition of invertibility:

a function F : A −→ B is invertible if and only if the equation F (x) = b has
exactly one solution for the unknown x ∈ A for any parameter b ∈ B.

We are looking to solve the equation

F (x) = b⇐⇒
√
x+ 1 = b

for the unknown x ∈ [−1,+∞) for any parameter b ∈ [0,+∞).
We would like to apply to both sides of the equation the function

(·)2 : R+
0 −→ R+

0

x 7→ x2

the inverse of the function
√
· : R+

0 −→ R+
0

x 7→
√
x

we can apply (·)2 to both sides of the equation because both sides belong to the
domain of (·)2 (both

√
x+ 1 and b are positive). We thus obtain the equivalent

equation
(
√
x+ 1)2 = b2 ⇐⇒ x+ 1 = b2 ⇐⇒ x = b2 − 1
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The first equivalence holds because the two functions (·)2 and
√
· are inverses

[Remark: they are inverses when condidered with their specific domains and
codomains]. That means that the solution for x is b2− 1 and so b goes to b2− 1
and the function we are looking for, the inverse of F , is

G : [0,+∞) −→ [−1,+∞)
b 7→ b2 − 1

or if we prefer
G : [0,+∞) −→ [−1,+∞)

x 7→ x2 − 1

We can check

G ◦ F (x) = G(F (x)) = G(
√
x+ 1) = (

√
x+ 1)2 − 1 = x

and

F ◦G(x) = F (G(x)) = G(x2 − 1) =
√

(x2 − 1) + 1 =
√
x2 = x since x ≥ 0

Exercise 5. Is the function

F : R −→ R
x 7→ x2 − 4

invertible? If the answer is no, determine a restriction of the domain and/or
codomain that produces an invertible function with the same formula.

Let us draw the graph of F
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We see that F is not invertible using the horizontal line rule, since there are
lines, like the line y = −5 that don’t intersect the graph of F , while there are
other lines, like the line y = 0, that itersect it twice.
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We try to restrict the codomain to avoid the first problem, and the domain
to avoid the second.

The function
F : R+

0 −→ [−4,+∞)
x 7→ x2 − 4

is invertible by the horizontal line rule
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We want to determine the explicit formula for the inverse of F ,
F−1 : [−4,+∞) −→ R+

0 . Notice again that the domain/codomain of F−1 are
the codomain/domain of F .

As we did in the exercise aboce, we solve the equation

F (x) = b⇐⇒ x2 − 4 = b⇐⇒ x2 = b+ 4

for unnknown x ∈ R+
0 and parameter b ∈ [−4,+∞). Since b ∈ [−4,+∞), we

have always b+4 ≥ 0, and we can apply to both sides of the equation the function

√
· : R+

0 −→ R+
0

x 7→
√
x
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inverse of
(·)2 : R+

0 −→ R+
0

x 7→ x2

we get
x2 = b+ 4⇐⇒

√
x2 =

√
b+ 4⇐⇒ x =

√
b+ 4

and the second implication holds because (·)2,
√
· are inverses. The inverse is

then
F−1 : [−4,+∞) −→ R+

0

x 7→
√
x+ 4

As an exercise, restrict the domain to the negatives and find the explicit
formula for the inverse.
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Exercise 6. Solve the equation
√
x− 1 = x− 2

First, we determine the existence fields: for the left side it is [1,+∞), for
the second side R. The existence field for the equation in hence [1,+∞), the
intersection.

the we draw the graphs of

F : [1,+∞) −→ R
x 7→

√
x− 1

and
G : [1,+∞) −→ R

x 7→ x− 2

that we get easily from the graphs of
√
x, shifted right by 1, and of y = x, shifted

right by 2.

−2

−1

0

1

2

3

4

1 2 3 4 5 6

y =
√
x− 1

y = x− 2

−2

−1

0

1

2

3

4

1 2 3 4 5 6

y =
√
x− 1

y = x− 2

GNU14GNU14

there is an intersection between 3 and 4. The determine it, we have to solve
the equation √

x− 1 = x− 2

we want to apply the function

(·)2 : R+
0 −→ R+

0

x 7→ x2

inverse of √
· : R+

0 −→ R+
0

x 7→
√
x

To do that we have to be sure that, for all x ∈ [1,+∞), both sides of the
equations are positive. The first side is always positive, being a square root. The
second is positive only if x ≥ 2. So we have to consider both cases and to join
the solutions.
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• If 1 ≤ x < 2, the first side is positive and the second is striclty negative.
The equality never holds.

• If x ≥ 2, we can apply (·)2 to both sides,

√
x− 1 = x−2⇐⇒ (

√
x− 1)2 = (x−2)2 ⇐⇒ x−1 = x2−4x+4⇐⇒ x2−5x+5 = 0

where the first implication holds because (·)2 is injective, and the second
because

√
·, (·)2 are inverses. We have

x2 − 5x+ 6 = 0⇐⇒ x =
5±
√
25− 20

2
= x =

5±
√
5

2

but
5 +
√
5

2
> 2 and

5−
√
5

2
< 2

hence only the first solution is acceptable. The solution of
√
x− 1 = x− 2

is thus x = 5+
√
5

2 .
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Exercise 7. Is it possibile to find a one-to-one correspondence between the sets
A = {n ∈ N | n is multiple of 3} and B = {n ∈ N | n is multiple of 4}?

We consider the function

F : A −→ B
n 7→ 4

3n

that is well defined because n ∈ A and hence 3 is a multiple of n, and n/3 ∈ N.

The function
G : B −→ A

n 7→ 3
4n

is well defined because n ∈ B and hence 4 is a multiple od n, and n/4 ∈ N.

The function G is clearly the inverse of F , since

G ◦ F (n) = G

(
4

3
n

)
=

3

4

(
4

3
n

)
= n and F ◦G(n) = F

(
3

4
n

)
=

4

3

(
3

4
n

)
= n

and so F is invertible, a one-to-one correspondence and | A |=| B |.
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Exercise 8. Is it possibile to find a one-to-one correspondence between the sets
A = {2n+ 2 | n ∈ N} and B = {n2 | n ∈ N}.

We have | A |=| N | and | B |=| N |, so our guess is that | A |=| B |
and thus there is a one-to-one correspondence between A and B, but we are not
sure that the rules for equality apply to the cardinality, so we need to find an
explicit invertible function between A and B. This could be difficult, we know
the one-to-one correspondences (invertible functions)

F : N −→ A
n 7→ 2n+ 2

and
G : N −→ B

n 7→ n2

we find the inverses solving the equations

2n+ 2 = a and n2 = b

for n ∈ N, a ∈ and b ∈ B. We get

n =
a− 2

2
and n =

√
b

The inverses are

F−1 : A −→ N
n 7→ n−2

2

and
G−1 : B −→ N

n 7→
√
n

well defined because in the first case, since n ∈ A we have n−2
2 ∈ N and in the

second case, since b ∈ B, b is a perfect square and
√
b ∈ N.

So we need an invertible function

A
H−→ B

while we have

N
F

�
F−1

A and N
G

�
G−1

B

The idea is to build the function A
H−→ B using the functions we have

A
F−1

−→ N G−→ B

so H ≡ F−1 ◦G and so for any n ∈ A

F−1 ◦G(n) = F−1(G(n)) = F−1(n2) =
n2 − 2

2

and
H : A −→ B

n 7→ n2−2
2

is invertible because composition if invertible functions. If we want its explicit
inverse,

H−1 : A −→ B
n 7→ G−1 ◦ F (n) =

√
2n+ 2

since
H ≡ F−1 ◦G =⇒ H−1 ≡ (F−1 ◦G)−1 ≡ G−1 ◦ F

17



Exercise 9. Do the sets N,Z have the same cardinality?

The question is, by definition, equivalent to : there is an invertible function
(one-to-one correspondence) between A and B? We build one such function.

If we rearrange the elements of N setting the even numbers before 0 and the
odd numbers after 0 like that N = {· · · , 6, 4, 2, 0, 1, 3, 5, · · · , }, it is natural to
define a function like

...
...

...
6 7→ −3
4 7→ −2
2 7→ −1
0 7→ 0
1 7→ 1
3 7→ 2
5 7→ 3
...

...
...

If we write down the formula for this function we have

F : N −→ Z

n 7→

{
−n2 if n is even
n+1
2 if n is odd

that is well defined and invertible. It is well defined because if n is even, −n2 ∈ Z
and if n is odd, n+1

2 ∈ Z, so in any case n goes to an integer number. It is
invertibe because the function

G : Z −→ N

n 7→

{
−2n if n ≥ 0

2n− 1 if n < 0

is its inverse, as we can check. For all n ∈ N

G◦F (n) = G

({
−n2 if n is even
n+1
2 if n is odd

)
=

{
−2(−n2 ) if n ≥ 0

2(n+1
2 )− 1 if n < 0

=

{
n if n ≥ 0

n if n < 0
= n

The check ∀ n ∈ Z F ◦G(n) = n is left as an exercise to the reader.
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Exercise 10. Do the subsets A, B in R2 have the same cardinality?
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Yes, because the function F : A −→ B detailed below (the projection of A
ounto B) is a one-to-one correspondence (is invertible).
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Exercise 11. Do the subsets A, B in R2 have the same cardinality?

0

0.5

1

1.5

2

2.5

3

3.5

4

−3 −2 −1 0 1 2 3

A • •

B • •

0

0.5

1

1.5

2

2.5

3

3.5

4

−3 −2 −1 0 1 2 3

A • •

B • •

GNU17GNU17

Yes, because the function F : A −→ B detailed
below is a one-to-one correspondence (is invertible).
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