FCS
 Math: Functions Exercises

Massimo Caboara

March $25^{\text {th }}, 2021$

Exercise 1. Solve the following equations

1. $\sqrt{2 x-1}=\frac{1}{2} x .\left[x=\frac{4 \pm 2 \sqrt{3}}{2}\right]$
2. $\sqrt{x^{2}+1}=x+1$. $[x=0]$
3. $\sqrt{x^{4}-x}=x^{2} .[x=0]$
4. $2^{x+1}+4^{x}=8 \cdot[x=1]$
5. $3^{\sqrt{2^{x}}}=1$. [\neq solution]

Exercise 2. Are the following functions invertible? If not, restrict the domain/codomain to build an invertible function. Give the explicit formula for the inverse.

1. $\begin{array}{rllc}F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \mapsto & 3^{x+2}\end{array}$ Not invertible. Restriction and inverse

$$
\begin{array}{rccccccc}
F^{\prime}: & \mathbb{R} & \longrightarrow & \mathbb{R}^{+} & F^{\prime-1}: & \mathbb{R}^{+} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & 3^{x+2} & & x & \mapsto & \log _{3}(x)-2
\end{array}
$$

2. $\begin{array}{ccccc}F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \mapsto & 3^{2 x-1}\end{array}$ Not invertible. Restriction and inverse

$$
\begin{array}{cccccccc}
F^{\prime}: & \mathbb{R} & \longrightarrow & \mathbb{R}^{+} & F^{\prime-1}: & \mathbb{R}^{+} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & 3^{x+2} & & x & \mapsto & \frac{\log _{3}(x)-1}{2}
\end{array}
$$

3. $\begin{array}{cccc}F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \mapsto & \log _{5}(|x|)\end{array}$ This is not really a function, but a quasi function. The associated function is

$$
\begin{array}{cccc}
F^{\prime}: & \mathbb{R}-\{0\} & \longrightarrow & \mathbb{R} \\
x & \mapsto & \log _{5}(|x|)
\end{array}
$$

This is not invertible. Restriction and inverse:

$$
\begin{array}{cccccccc}
F^{\prime}: & \mathbb{R}^{+} & \longrightarrow & \mathbb{R} & F^{\prime-1}: & \mathbb{R} & \longrightarrow & \mathbb{R}^{+} \\
x & \mapsto & \log _{5}(x) & & x & \mapsto & 5^{x}
\end{array}
$$

4. $\begin{array}{cccc}F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \mapsto & \arctan (x)\end{array}$ This is not invertible. Restriction and inverse:

$$
\begin{array}{cccccccc}
F^{\prime}: & \mathbb{R} & \longrightarrow & (-\pi / 2, \pi / 2) & F^{\prime-1}: & (-\pi / 2, \pi / 2) & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \arctan (x) & x & \mapsto & \tan (x)
\end{array}
$$

5. $\begin{array}{ccccccc} & F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \mapsto & \arctan \left(x^{2}\right)\end{array} \quad$ This is not invertible. Restriction and inverse:

$$
\begin{array}{cccccccc}
F^{\prime}: & \mathbb{R}_{0}^{+} & \longrightarrow & {[0, \pi / 2)} & F^{\prime-1}: & {[0, \pi / 2)} & \longrightarrow & \mathbb{R}_{0}^{+} \\
x & \mapsto & \arctan \left(x^{2}\right) & & x & \mapsto & \sqrt{\tan (x)}
\end{array}
$$

6. $\begin{array}{ccccc}F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \mapsto & \arctan (x-2)+1\end{array} \quad$ This is not invertible. Restriction and inverse:

$$
\begin{aligned}
& F^{\prime}: \mathbb{R} \longrightarrow\left(\frac{2-\pi}{2}, \frac{2+\pi}{2}\right) \quad F^{\prime-1}:\left(\frac{2-\pi}{2}, \frac{2+\pi}{2}\right) \quad \longrightarrow \quad \mathbb{R} \\
& x \quad \mapsto \quad \arctan (x-2)+1 \quad x \quad \mapsto \quad \tan (x-1)+2
\end{aligned}
$$

7. $\begin{array}{cccc}F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \mapsto & \arctan \left(3^{x}\right)\end{array}$ This is not invertible. Restriction and inverse:

$$
\left.\begin{array}{ccccccc}
F^{\prime}: & \mathbb{R} & \longrightarrow & (0, \pi / 2) & F^{\prime-1}: & (0, \pi / 2) & \longrightarrow
\end{array}\right) \mathbb{R}
$$

$F: \quad \mathbb{R} \longrightarrow \quad \mathbb{R}$
$x \quad \mapsto \quad \arctan (\sqrt{x})$
This is not really a function, but a quasi function. The associated function is

$$
\begin{array}{cccc}
F^{\prime}: & \mathbb{R}_{0}^{+} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \arctan (\sqrt{x})
\end{array}
$$

This is not invertible. Restriction and inverse:

$$
\begin{array}{cccccccc}
F^{\prime}: & \mathbb{R}_{0}^{+} & \longrightarrow & {[0, \pi / 2)} & F^{\prime-1}: & {[0, \pi / 2)} & \longrightarrow & \mathbb{R}_{0}^{+} \\
x & \mapsto & \arctan (\sqrt{x}) & & x & \mapsto & \tan (x)^{2}
\end{array}
$$

Exercise 3. Is there an invertible function between the following sets? If the answer is affermative, give the explicit function, by formula or an explict description.

1. $A=\{5 n-2 \mid n \in \mathbb{N}\}, B=\{k-4 \mid k \in \mathbb{N}\} \cdot[Y E S]$
2. $A=\left\{n^{2} \mid n \in \mathbb{N}\right\}, B=\left\{k^{3} \mid k \in \mathbb{N}\right\}$.[YES]
3. $A=\left\{n^{2} \mid n \in \mathbb{N}\right\}, B=\left\{k^{3} \mid k \in \mathbb{Z}\right\} \cdot[Y E S]$
4. $A=\left\{n^{2} \mid n \in \mathbb{Z}\right\}, B=\left\{k^{3} \mid k \in \mathbb{Z}\right\} \cdot[Y E S]$
5. $A=\left\{(x, y) \in \mathbb{R}^{2} \quad \mid \quad x^{2}+y^{2}=1\right\}, B=\left\{(x, y) \in \mathbb{R}^{2} \quad \mid \quad x^{2}+y^{2}=4\right\}$. [YES]

Exercise 4. Do the subsets A, B in \mathbb{R}^{2} have the same cardinality? [YES] GNU15

Exercise 5. Do the subsets $A=(0,1) \times\{1\}, B=\mathbb{R} \times\{2\}$ in \mathbb{R}^{2} have the same cardinality? [YES]

Remark that $A=\left\{(t, 1) \in \mathbb{R}^{2} \mid t \in(0,1)\right\}$ and $B=\left\{(t, 2) \in \mathbb{R}^{2} \mid t \in \mathbb{R}\right\}$. Graphically,

