# FCS <br> Math: Functions <br> Definitions 

Massimo Caboara

March $18^{\text {th }}, 2021$

Definition 1. Given the function

$$
\begin{array}{cccc}
F: & A & \longrightarrow & B \\
& a & \mapsto & F(a)
\end{array}
$$

and $C \subset A$, the function

$$
\begin{array}{cccc}
G: & C & \longrightarrow & B \\
& a & \mapsto & F(a)
\end{array}
$$

is called the restriction of $F$ to $C$ and is written $F_{\mid C}$
Remark 1. The graph of $\operatorname{id}_{A}$ is $\{(a, a) \mid a \in A\} \subset A \times A$
Definition 2. The function

$$
\begin{array}{lclc}
F: & A & \longrightarrow & A \\
& a & \mapsto & a
\end{array}
$$

is called the identity of $A$ and we write $F \equiv \mathrm{id}_{A}$
Remark 2. The graph of $\operatorname{id}_{A}$ is $\{(a, a) \mid a \in A\} \subset A \times A$
Definition 3. Given a function

$$
\begin{array}{cccc}
F: & A & \longrightarrow & B \\
& a & \mapsto & F(a)
\end{array}
$$

if there is a function

$$
\begin{array}{cccc}
G: & B & \longrightarrow & A \\
& b & \mapsto & G(b)
\end{array}
$$

such that

$$
F \circ G \equiv \operatorname{id}_{B} \text { and } G \circ F \equiv i d_{A}
$$

we say that $F$ is invertible, $G$ is the inverse of $G$ and we write $G \equiv F^{-1}$

Proposition 1. A function

$$
\begin{array}{cccc}
F: & A & \longrightarrow & B \\
& a & \mapsto & F(a)
\end{array}
$$

is invertible if and only if

$$
\forall b \in B \exists!a \in A \text { suche that } F(a)=b
$$

or, rephrased, for every $b \in B$ the equation $F(a)=b$ has exactly one solution in $A$.

Proposition 2. A function

$$
\begin{array}{cccc}
F: & A & \longrightarrow & B \\
& a & \mapsto & F(a)
\end{array}
$$

for which the graph $G R(F)$ is known is invertible if and only if for every horizontal line $y=b, b \in B$ there is exactly one intersection between the line and $G R(F)$.

Proposition 3. A function

$$
\begin{array}{cccc}
F: & A & \longrightarrow & B \\
& a & \mapsto & F(a)
\end{array}
$$

is invertible if and only if $F$ is a one-to-one (biunivocal) correspondence between the sets $A$ and $B$.

Definition 4. We have the functions

$$
\begin{array}{cccccccc}
f: & A & \longrightarrow & B & g: & A & \longrightarrow & B \\
& a & \mapsto & f(a) & & a^{\prime} & \mapsto & g\left(a^{\prime}\right)
\end{array}
$$

and, for $x \in A$ the equations

$$
f(x)=0 \text { and } g(x)=0
$$

The equation

$$
f(x)=0
$$

is equivalent to the equation

$$
g(x)=0
$$

if and only if they have the same solutions

$$
\{a \in A \mid f(a)=0\}=\{a \in A \mid g(a)=0\}
$$

Proposition 4. We have the functions

$$
\begin{array}{cccccccc}
F: & A & \longrightarrow & B & G: & A & \longrightarrow & B \\
& a & \mapsto & f(a)
\end{array} \begin{array}{llll}
a^{\prime} & \mapsto & g\left(a^{\prime}\right)
\end{array}
$$

and, for $x \in A$ the equation

$$
F(x)=G(x) \quad(\text { or } F(x)-G(x)=0)
$$

If the function

$$
\begin{array}{cccc}
H: & B & \longrightarrow & C \\
& b & \mapsto & F(b)
\end{array}
$$

is injective, then the equation

$$
H \circ F(x)=H \circ G(x)
$$

is equivalent to the equation

$$
F(x)=G(x)
$$

Proposition 5. Let $A, B$ be sets. We say that $A$ has the same cardinalty of $B$ if and only if there is a one-to-one correspondence between $A$ and $B$. We write $|A|=|B|$.

Example 1. The sets $\mathbb{N}=\{0,1,2,3,4, \ldots, n, \ldots\}$, $E V E N=\{0,2,4,6,8, \ldots, 2 n, \ldots\}_{n \in \mathbb{N}}$ have the same cardinality, because the function

$$
\begin{array}{cccc}
F: & \mathbb{N} & \longrightarrow & \text { EVEN } \\
& n & \mapsto & 2 n
\end{array}
$$

is invertible (and hence a one-to-one correspondence), since the function

$$
\begin{array}{cccc}
G: & \text { EVEN } & \longrightarrow & \mathbb{N} \\
& n & \mapsto & n / 2
\end{array}
$$

is its inverse, as we can see from

$$
\forall n \in \mathbb{N} G \circ F(n)=G(F(n))=G(2 n)=\frac{1}{2} 2 n=n \Longleftrightarrow G \circ F \equiv \operatorname{id}_{\mathbb{N}}
$$

and

$$
\forall n \in \operatorname{EVEN} F \circ G(n)=F(G(n))=F\left(\frac{n}{2}\right)=2 \frac{n}{2}=n \Longleftrightarrow F \circ G \equiv \operatorname{id}_{\mathrm{EVEN}}
$$

Example 2 (The salary paradox). we have two employees, Joe and Jane. Each get 1000 euros a month.

- Joe every month puts one euro on a pile on his desk and spends the others 999. He never draw any money from his pile.
- Jane every month puts 1000 euros on top of a pile of money on his desk and draws 500 euro from the bottom og the pile.

I argue that "at infinity", Joe has an infinite amount of money, and Jane has nothing, because every single euro that she puts on the pile is, at some moment, spent.

