# FCS <br> Math: Functions Exercises 

Massimo Caboara

March $18^{\text {th }}, 2021$

Exercise 1. Solve the following equations, if possibile. If not, determine as much information you can about the solutions. In every case, determine the $x$ 's for which the equation makes sense (the "existence field" for the equation).

1. $3^{x}=3[x=1]$
2. $2^{x}=2^{2}[x=2]$
3. $5^{x}=5^{2 x}[x=0]$
4. $5^{x^{2}}=5^{2 x} \quad[x=0,2]$
5. $\log _{3}(x-1)=3[\mathrm{EF}=(1,+\infty), x=28]$
6. $\log _{3}(x-1)=x$ [EF $=(1,+\infty)$, there are no solutions]

GNU01

7. $3^{x}=x^{2}-4$ [One solution]

GNU02

8. $|x|=3[x= \pm 3]$
9. $|x|=x[$ Solutions $x \in[0,+\infty)]$
10. $|x|=x^{2}[x=0, \pm 1]$
11. $\sin x=\cos (x)$, if $x \in[0,2 \pi)\left[x=\frac{\pi}{4}, \frac{5 \pi}{4}\right]$
12. $\sin x=\cos (x)$, if $x \in \mathbb{R}\left[x=\frac{\pi}{4}+k \pi, k \in \mathbb{Z}\right]$
13. $\tan \left(x^{2}\right)=\tan (x)$, if $x \in(-\pi / 2, \pi / 2)[x=0,1]$
14. $\left.\sqrt{x^{2}}=\sqrt{x} / \mathrm{EF}=[0,+\infty), x=0,1\right]$

15. $\tan x=1$, if $x \in[0,2 \pi) / \mathrm{EF}=[0,2 \pi)-\{\pi / 2,3 \pi / 2\}, x=\pi / 4,5 \pi / 4]$

16. $\sin x=5 / 7$, if $x \in[0,2 \pi)$ [Two solutions]

## GNU05


17. $\tan x=3$, if $x \in(-\pi / 2, \pi / 2)[x=\arctan (3)]$

Exercise 2. Are to following functions invertible? If the answer is yes, find the inverse if possibile

1. if ODD is the set of the odd positive numbers $\begin{array}{cccc}F: \begin{array}{c}\mathbb{N}\end{array} & \longrightarrow & \mathrm{ODD} \\ n & \mapsto & 2 n+1\end{array}$

Function is invertible. Inverse is

$$
\begin{array}{cccc}
F^{-1}: & \mathrm{ODD} & \longrightarrow & \mathbb{N} \\
n & \mapsto & \frac{n-1}{2}
\end{array}
$$

2. $F: \mathbb{R} \longrightarrow \mathbb{R}$
$x \quad \mapsto \quad-3 x+4$
Function is invertible. Inverse is

$$
\begin{array}{cccc}
F^{-1}: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \frac{4-y}{3}
\end{array}
$$

$$
\text { 3. } \begin{array}{ccc}
F: & {[-1,+\infty)} & \longrightarrow \\
x & \mapsto & \mathbb{R} \\
& & \sqrt{x+1}
\end{array}
$$

Function is clearly injective by the horizontal line rule. It is not invertible because the line $y=-0.5$ does not intersects its graph.

4. $\begin{array}{cccc}F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \mapsto & |2 x-1|\end{array}$ Function is not invertible by the horizontal line rule.


Exercise 3. Are to following functions invertible? If the answer is no, determine a restriction of the domain and/or codomain that produces an invertible function with the same formula

1. $F: \mathbb{R} \longrightarrow \quad \mathbb{R}$

$$
x \quad \mapsto \quad x^{2}-4
$$

Not invertible. The function $\begin{array}{ccccc}F: & \mathbb{R}_{0}^{+} & \longrightarrow & {[-4,+\infty)} \\ x & \mapsto & x^{2}-4\end{array}$ is invertible, as is the function $\begin{array}{cccc}F: & \mathbb{R}_{0}^{-} & \longrightarrow & {[-4,+\infty)} \\ & x & \mapsto & x^{2}-4\end{array}$
2.

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & x^{2}+x
\end{array}
$$

Not invertible. The function $\begin{gathered}F:(-\infty,-1 / 2] \\ x\end{gathered} \underset{\mapsto}{\longrightarrow} \begin{gathered}{[3 / 4,+\infty)} \\ x^{2}+x\end{gathered}$ is invertible, as is the function $\begin{gathered}F: \begin{array}{ccc}{[-1 / 2,+\infty)} \\ x\end{array} \\ \longrightarrow\end{gathered} \begin{gathered}{[3 / 4,+\infty)} \\ x^{2}+x\end{gathered}$ $x \quad \mapsto \quad x^{2}+x$
3. $\begin{array}{ccccc}F: & {[-1,+\infty)} & \longrightarrow & \mathbb{R} & \\ & x & \mapsto & \sqrt{x+1} & \text { Invertible. }\end{array}$
4. $\begin{array}{cccc}F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \mapsto & \sin (x)\end{array} \quad$ [Difficult-think about that] $\begin{array}{cccc}F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \mapsto & \cos (x)\end{array}$ [Difficult - think about that]

Exercise 4. Is it possibile to find a one-to-one correspondence between the sets $A=\{n \in \mathbb{N} \mid n$ is multiple of 3\} and $B=\{n \in \mathbb{N} \mid n$ is multiple of 4 $\}$ ? [YES]

Exercise 5. Is it possibile to find a one-to-one correspondence between the sets $A=\{2 n+2 \mid n \in \mathbb{N}\}$ and $B=\left\{n^{2} \mid n \in \mathbb{N}\right\}$. [YES]

Exercise 6. Is the function $F: \mathbb{R} \longrightarrow \mathbb{R}$ whose graph in shown below invertible? If not, find some restrictions of the domanin/codomain that produces and invertible function
GNUA 1

Some restrictions that give invertible functions are

Exercise 7. The sets $\mathbb{N}, \mathbb{Z}$ have the same cardinality? [YES]
Exercise 8. The sets $\mathbb{N}, \mathbb{Q}$ have the same cardinality? [Very difficult, we will speak about that]

Exercise 9. The sets $\mathbb{N}, \mathbb{R}$ have the same cardinality? [Very difficult, we will speak about that]

Exercise 10. The sets $\mathbb{N}, \mathbb{N}^{2}$ have the same cardinality? [Very difficult, we will speak about that]
Exercise 11. The sets $\mathbb{N}, \mathbb{N}^{3}$ have the same cardinality? [Very difficult, we will speak about that]

Exercise 12 (Hilbert hotel). We have an hotel with infinite rooms, all occupied. If a new customer comes, can we find a free room for him? [YES]

Exercise 13. Do the subsets $A, B$ in $\mathbb{R}^{2}$ have the same cardinality?

[YES - project one graph onto the other]

