FCS Math: Functions Exercises

Massimo Caboara

March 18^{th} , 2021

Exercise 1. Solve the following equations, if possibile. If not, determine as much information you can about the solutions. In every case, determine the x for which the equation makes sense.

1. $3^x = 3$
2. $2^x = 2^2$
3. $5^x = 5^{2x}$
4. $5^{x^2} = 5^{2x}$
5. $\log_3(x-1) = 3$
6. $\log_3(x-1) = x$
7. $3^x = x^2 - 4$
8. $3^x = x^2 - 4$
9. $ x = 3$
10. $ x = x$
11. $ x = x^2$
12. $\sin x = \cos(x)$, if $x \in [0, 2\pi)$
13. $\sin x = \cos(x)$, if $x \in \mathbb{R}$
14. $\tan(x^2) = \tan(x)$, if $x \in (-\pi/2, \pi/2)$
15. $\sqrt{x^2} = \sqrt{x}$
16. $\tan x = 1$, if $x \in [0, 2\pi)$
17. $\sin x = 5/7$, if $x \in [0, 2\pi)$

18. $\tan x = 3$, if $x \in (-\pi/2, \pi/2)$

Exercise 2. Are to following functions invertible? If the answer is yes, find the inverse if possibile

1. if ODD is the set of the odd positive numbers $\begin{array}{ccc} F: \mathbb{N} & \longrightarrow & \text{ODD} \\ n & \mapsto & 2n+1 \end{array}$

2. $F: \mathbb{R} \longrightarrow \mathbb{R}$ $x \mapsto -3x+4$ 3. $F: [-1, +\infty) \longrightarrow \mathbb{R}$ $x \mapsto \sqrt{x+1}$ 4. $F: \mathbb{R} \longrightarrow \mathbb{R}$ $x \mapsto |2x-1|$

Exercise 3. Are to following functions invertible? If the answer is no, determine a restriction of the domain and/or codomain that produces and invertible function with the same formula

1.
$$F: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \mapsto x^{2} - 4$$

2.
$$F: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \mapsto x^{2} + x$$

3.
$$F: [-1, +\infty) \longrightarrow \mathbb{R}$$
$$x \mapsto \sqrt{x+1}$$

4.
$$F: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \mapsto \sin(x) \quad [Difficult]$$

5.
$$F: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \mapsto \cos(x) \quad [Difficult]$$

Exercise 4. Is it possibile to find a one-to-one correspondence between the sets $A = \{n \in \mathbb{N} \mid n \text{ is multiple of } 3\}$ and $B = \{n \in \mathbb{N} \mid n \text{ is multiple of } 4\}$

Exercise 5. Is it possibile to find a one-to-one correspondence between the sets $A = \{2n+2 \mid n \in \mathbb{N}\}$ and $B = \{n^2 \mid n \in \mathbb{N}\}$

Exercise 6. Is the function $F : \mathbb{R} \longrightarrow \mathbb{R}$ whose graph in shown below invertible? If not, find some restrictions of

Exercise 7. The sets \mathbb{N}, \mathbb{Z} have the same cardinality?

Exercise 8. The sets \mathbb{N}, \mathbb{Q} have the same cardinality? [Very difficult]

Exercise 9. The sets \mathbb{N} , \mathbb{R} have the same cardinality? [Very difficult]

Exercise 10. The sets \mathbb{N}, \mathbb{N}^2 have the same cardinality? [Very difficult]

Exercise 11. The sets \mathbb{N}, \mathbb{N}^3 have the same cardinality? [Very difficult]

Exercise 12 (Hilbert hotel). We have an hotel with infinite rooms, all occupied. If a new customes comes, can we find a free room for him?

Exercise 13. Do the subsets A, B in \mathbb{R}^2 have the same cardinality?

