FCS
 Math: Functions Exercises

Massimo Caboara

March $18^{\text {th }}, 2021$

Exercise 1. Solve the following equations, if possibile. If not, determine as much information you can about the solutions. In every case, determine the x for which the equation makes sense.

1. $3^{x}=3$
2. $2^{x}=2^{2}$
3. $5^{x}=5^{2 x}$
4. $5^{x^{2}}=5^{2 x}$
5. $\log _{3}(x-1)=3$
6. $\log _{3}(x-1)=x$
7. $3^{x}=x^{2}-4$
8. $3^{x}=x^{2}-4$
9. $|x|=3$
10. $|x|=x$
11. $|x|=x^{2}$
12. $\sin x=\cos (x)$, if $x \in[0,2 \pi)$
13. $\sin x=\cos (x)$, if $x \in \mathbb{R}$
14. $\tan \left(x^{2}\right)=\tan (x)$, if $x \in(-\pi / 2, \pi / 2)$
15. $\sqrt{x^{2}}=\sqrt{x}$
16. $\tan x=1$, if $x \in[0,2 \pi)$
17. $\sin x=5 / 7$, if $x \in[0,2 \pi)$
18. $\tan x=3$, if $x \in(-\pi / 2, \pi / 2)$

Exercise 2. Are to following functions invertible? If the answer is yes, find the inverse if possibile

1. if ODD is the set of the odd positive numbers $F: \mathbb{N} \longrightarrow$ ODD
$n \quad \mapsto \quad 2 n+1$
2. $F: \mathbb{R} \longrightarrow \quad \mathbb{R}$
$x \quad \mapsto \quad-3 x+4$
3. $\begin{array}{cccc}F: & {[-1,+\infty)} & \longrightarrow & \mathbb{R} \\ x & \mapsto & \sqrt{x+1}\end{array}$
4. $F: \mathbb{R} \longrightarrow \quad \mathbb{R}$
$x \quad \mapsto \quad|2 x-1|$
Exercise 3. Are to following functions invertible? If the answer is no, determine a restriction of the domain and/or codomain that produces and invertible function with the same formula
5.

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & x^{2}-4
\end{array}
$$

$$
F: \quad \mathbb{R} \quad \longrightarrow \quad \mathbb{R}
$$

$$
x \quad \mapsto \quad x^{2}+x
$$

$$
\text { 3. } \quad F: \begin{array}{ccc}
{[-1,+\infty)} & \longrightarrow & \mathbb{R} \\
x & \mapsto & \sqrt{x+1}
\end{array}
$$

$$
\text { 4. } \begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \sin (x)
\end{array} \quad \text { [Difficult] }
$$

$$
\text { 5. } \begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \cos (x)
\end{array} \quad \text { [Difficult] }
$$

Exercise 4. Is it possibile to find a one-to-one correspondence between the sets $A=\{n \in \mathbb{N} \mid n$ is multiple of 3$\}$ and $B=\{n \in \mathbb{N} \mid n$ is multiple of 4$\}$

Exercise 5. Is it possibile to find a one-to-one correspondence between the sets $A=\{2 n+2 \mid n \in \mathbb{N}\}$ and $B=\left\{n^{2} \mid n \in \mathbb{N}\right\}$

Exercise 6. Is the function $F: \mathbb{R} \longrightarrow \mathbb{R}$ whose graph in shown below invertible? If not, find some restrictions of

Exercise 7. The sets \mathbb{N}, \mathbb{Z} have the same cardinality?
Exercise 8. The sets \mathbb{N}, \mathbb{Q} have the same cardinality? [Very difficult]
Exercise 9. The sets \mathbb{N}, \mathbb{R} have the same cardinality? [Very difficult]
Exercise 10. The sets $\mathbb{N}, \mathbb{N}^{2}$ have the same cardinality? [Very difficult]
Exercise 11. The sets $\mathbb{N}, \mathbb{N}^{3}$ have the same cardinality? [Very difficult]
Exercise 12 (Hilbert hotel). We have an hotel with infinite rooms, all occupied. If a new customes comes, can we find a free room for him?

Exercise 13. Do the subsets A, B in \mathbb{R}^{2} have the same cardinality?

