FCS
 Math: Functions
 Definitions

Massimo Caboara

March $11^{\text {th }}, 2021$

Definition 1. Given the sets A, B, the function

$$
\begin{array}{cccc}
F: & A & \longrightarrow & B \\
& a & \mapsto & F(a)
\end{array}
$$

is injective if and only if

$$
\forall b \in B \text { the equation } F(a)=b \text { has at most } 1 \text { solution in } A
$$

Corollary 1. A function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & F(x)
\end{array}
$$

is injective if and only if every horizontal line $y=a$ intersects the graph of F once or not at all.

Remark 1. Consider the function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & F(x)
\end{array}
$$

which graph is known, the elements $A, B, C, D \in \mathbb{R}$, of which only one is different from 0 and the function

$$
\begin{array}{cccc}
F^{\prime}: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & A F(B x+C)+D
\end{array}
$$

1. The graph of F^{\prime} is the graph of F shifted up or down by D. Up if $D>0$, down otherwise.
2. The graph of F^{\prime} is the graph of F shifted left or right by C. Left if $D>0$, right otherwise.
3. The graph of F^{\prime} is the graph of F amplified by C.
4. If F is periodic of period p, F^{\prime} is periodic of period $B \cdot p$.

Definition 2. Given a function

$$
\begin{array}{cccc}
F: & A & \longrightarrow & B \\
& a & \mapsto & F(a)
\end{array}
$$

the set

$$
\operatorname{Im}(F)=\{F(a) \mid a \in A\}=\{b \in B \mid \exists a \in A \text { such that } b=F(a)\} \subseteq B
$$

is the image of F.
Definition 3. Given two functions

$$
\begin{aligned}
& F: A \longrightarrow B: D \quad \longrightarrow \quad C \\
& a \quad \mapsto \quad F(a), \quad d \quad \mapsto \quad G(d)
\end{aligned}
$$

such that $D \subseteq \operatorname{Im}(F)$ the function

$$
\begin{array}{cccc}
G \circ F: & A & \longrightarrow & C \\
& a & \mapsto & G(F(a))
\end{array}
$$

is the composition of G, F.
Proposition 1. If we have the two functions

$$
\begin{array}{cccc}
F: & A & \longrightarrow & A \\
& a & \mapsto & F(a)
\end{array}, \quad G: \begin{array}{cccc}
& & & \longrightarrow \\
& a & \mapsto & G(a)
\end{array}
$$

it may happen that $F \circ G \not \equiv G \circ F$. Consider for example

$$
\begin{array}{rccccccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} & G: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & F(x)=5 x-2, & & x & \mapsto & G(x)=x^{2}-1
\end{array}
$$

It is easy to verify that for most $x \in \mathbb{R}$

$$
F \circ G(x)=F(G(x)) \neq G(F(x))=G \circ F(x)
$$

and hence $F \circ G(x) \not \equiv G \circ F(x)$
Definition 4. The function

$$
\begin{array}{lllc}
i d_{A}: & A & \longrightarrow & A \\
& a & \mapsto & i d_{A}(a)=a
\end{array}
$$

is called the identity of A.

