FCS Math: Functions Lesson

Massimo Caboara

February 25, 2021

Definition 1. Given A, B sets,

- $A \subseteq B \iff$ for all $a \in A$ we have $a \in B$.
- $A = B \iff A \subseteq B$ and $A \supseteq B$.

It is easy to see that

- $A \not\subseteq B \iff$ there is $a \in A, a \notin B$.
- $A \neq B \iff (\text{ there is } a \in A, a \notin B) \text{ or } (\text{ there is } b \in B, a \notin A).$

The previous definition using \forall for "for all" and \exists for "there is":

Definition 2. Given A, B sets,

- $A \subseteq B \iff \forall a \in A we have a \in B$.
- $A = B \iff A \subseteq B$ and $A \supseteq B$.

It is easy to see that

- $A \not\subseteq B \iff \exists a \in A, a \notin B.$
- $A \neq B \iff (\exists a \in A, a \notin B) \text{ or } (\exists b \in B, a \notin A).$

Definition 3. Given A, B subsets of a set U we have that

- $A \cup B = \{c \in U \mid c \in A \text{ or } c \in B\}$
- $A \cap B = \{c \in U \mid c \in A \text{ and } c \in B\}$
- $A B = \{c \in U \mid c \in A \text{ and } c \notin B\}$

Definition 4. Given A, B sets $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$ is the cartesian product of A, B.

Definition 5. For a function

$$\begin{array}{cccc} F: & A & \longrightarrow & B \\ & a & \mapsto & F(a) \end{array},$$

we say that A is the domain of F, B is the codomain of F and F(a) is the formula of F.

Definition 6. Given the functions

we have

$$F \equiv G$$

if and only if

$$A = C, B = D, \forall a \in A, F(a) = G(a)$$

we say that F, G are equal as functions.

Definition 7. Given a function

$$\begin{array}{cccc} F: & A & \longrightarrow & B \\ & a & \mapsto & F(a) \end{array}$$

$$GR(f) = \{(a, F(a)) \mid a \in A\} \subset A \times B$$

is the graph of F