FCS
 Math: Functions
 Lesson

Massimo Caboara

February 25, 2021

Definition 1. Given A, B sets,

- $A \subseteq B \Longleftrightarrow$ for all $a \in A$ we have $a \in B$.
- $A=B \Longleftrightarrow A \subseteq B$ and $A \supseteq B$.

It is easy to see that

- $A \nsubseteq B \Longleftrightarrow$ there is $a \in A, a \notin B$.
- $A \neq B \Longleftrightarrow($ there is $a \in A, a \notin B)$ or (there is $b \in B, a \notin A)$.

The previous definition using \forall for "for all" and \exists for "there is":
Definition 2. Given A, B sets,

- $A \subseteq B \Longleftrightarrow \forall a \in A$ we have $a \in B$.
- $A=B \Longleftrightarrow A \subseteq B$ and $A \supseteq B$.

It is easy to see that

- $A \nsubseteq B \Longleftrightarrow \exists a \in A, a \notin B$.
- $A \neq B \Longleftrightarrow(\exists a \in A, a \notin B)$ or $(\exists b \in B, a \notin A)$.

Definition 3. Given A, B subsets of a set U we have that

- $A \cup B=\{c \in U \mid c \in A$ or $c \in B\}$
- $A \cap B=\{c \in U \quad \mid \quad c \in A$ and $c \in B\}$
- $A-B=\{c \in U \quad \mid \quad c \in A$ and $c \notin B\}$

Definition 4. Given A, B sets $A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$ is the cartesian product of A, B.

Definition 5. For a function

$$
\begin{array}{cccc}
F: & A & \longrightarrow & B \\
a & \mapsto & F(a)
\end{array},
$$

we say that A is the domain of F, B is the codomain of F and $F(a)$ is the formula of F.

Definition 6. Given the functions

$$
\left.\begin{array}{cccc}
F: & A & \longrightarrow & B \\
& a & \mapsto & F(a)
\end{array}, \quad G: \quad C \quad l \begin{array}{ccc}
& & \\
c & & \mapsto
\end{array}\right) G(c)
$$

we have

$$
F \equiv G
$$

if and only if

$$
A=C, B=D, \quad \forall a \in A, F(a)=G(a)
$$

we say that F, G are equal as functions.
Definition 7. Given a function

$$
\begin{array}{rl}
F: A & \longrightarrow \\
a & B \\
a & \mapsto(a) \\
G R(f)=\{(a, F(a)) & \mid a \in A\} \subset A \times B
\end{array}
$$

is the graph of F

