FCS Math: Functions Exercises

Massimo Caboara

February 25, 2021

Exercise 1. Given the sets

 $A = \{1, 3, 5, 7, 14\}$ and $B = \{-2, 3, 4, 8\}$

Describe $A \cup B$, $A \cap B$, A - B, $A \times B$.

Solution: The first solutions are trivial,

 $\begin{array}{rcl} A\times B & = & \{ (\ (\ 1,-2 \), (\ 1,3 \), (\ 1,4 \), (\ 1,8 \), (\ 3,-2 \), (\ 3,3 \), (\ 3,4 \), (\ 3,8 \), (\ 5,-2 \), (\ 5,3 \), (\ 5,4 \), \\ & & (\ 5,8 \), (\ 7,-2 \), (\ 7,3 \), (\ 7,4 \), (\ 7,8 \), (\ 14,-2 \), (\ 14,3 \), (\ 14,4 \), (\ 14,8 \) \) \} \end{array}$

Exercise 2. Given the sets

 $A = \{a \in \mathbb{N} \mid a \text{ is a multiple of } 12\} \text{ and } B = \{k \in \mathbb{N} \mid k \text{ is a multiple of } 15\}$

Describe $A \cup B$, $A \cap B$, A - B, $A \times B$.

Solution:

Exercise 3. Given the sets

$$A = \{ (a, a^2) \mid a \in \mathbb{R} \} and A = \{ (b, b) \mid b \in \mathbb{R} \}$$

Describe $A \cup B$, $A \cap B$, A - B, $A \times B$.

Solution:

The set A is the parabola $y = x^2$, the set B the line y = x. The set $A \cup B$ is the union of the two drawing, the set $A \cap B$ is just the two points $\{(0,0), (1,1)\}$, the set A - B is the parabola minus the points $\{(0,0), (1,1)\}$ and

$$A \times B = \{ (a, a^2, b, b) \in \mathbb{R}^4 \mid a, b \in \mathbb{R} \}$$

Exercise 4. Draw on the \mathbb{R}^2 plane the sets

 $[1,2]\times [1,1], \ [-1,2]\times [2,+\infty], \ \{(1,1),(2,3),(3,7)\}$

Exercise 5. Given the sets

$$A = \{a \in \mathbb{R} \mid x^3 - 4x^2 + x + 6 = 0 \in \mathbb{R}\}$$

$$B = \{a \in \mathbb{R} \mid x^4 - 5x^2 + 4 = 0 \in \mathbb{R}\}$$

$$C = \{a \in \mathbb{R} \mid x^4 - 2x^3 + 4x^2 - 6x + 3 = 0 \in \mathbb{R}\}$$

Detail the equalities and inclusions between A, B, C

Solution: We have that

$$x^{3} - 4x^{2} + x + 6 = (x + 1)(x - 2)(x - 3)$$

$$x^{4} - 5x^{2} + 4 = (x + 2)(x - 2)(x + 1)(x - 1)$$

$$x^{4} - 2x^{3} + 4x^{2} - 6x + 3 = (x^{2} + 3)(x - 1)^{2}$$

Hence

$$A = \{1, 2, 3\} B = \{\pm 1, \pm 2\} C = \{1\}$$

Hence there are no equalities and the only inclusions are

$$C \subset A, B$$

Exercise 6. We have the function

$$\begin{array}{cccc} F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \mapsto & 3x^2 - x + 1 \end{array}$$

Compute

- 1. F(1) = F(-1)? $[F(-1) = 5 \neq 3 = F(1)]$ 2. F(1), F(0), F(5). [F(-1) = 5, F(0) = 1, F(5) = 71]
- 3. Given $a \in \mathbb{R}$, compute $F(a-1), F(3a^2-2), F(\sqrt{a^2+1})$.

$$\begin{array}{rcl} F(a-1) &=& 3(a-1)^2-(a-1)+1=3a^2-7a+5\\ F(3a^2-2) &=& 3(3a^2-2)^2-(3a^2-2)+1=27a^4-39a^2+15\\ F(\sqrt{a^2+1}) &=& 3(\sqrt{a^2+1})^2-(\sqrt{a^2+1})+1=3a^2-\sqrt{a^2+1}+4 \end{array}$$

4. Given $\clubsuit \in \mathbb{R}$, with $\clubsuit > 0$, compute $F(\clubsuit - 2)$, $F(2\clubsuit)$, $F(\sqrt{\clubsuit})$.

$$F(\clubsuit - 2) = 3 \clubsuit^2 - 13 \clubsuit + 15. \ F(2 \clubsuit) = 12 \clubsuit^2 - 2 \clubsuit + 1, \ F(\sqrt{\clubsuit}) = 3 \clubsuit - \sqrt{\clubsuit} + 12 \clubsuit + 12 \r +$$

Exercise 7. We have the function

$$\begin{array}{rccc} F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \mapsto & x^2 + 1 \end{array}$$

Compute

- 1. F(1) = F(-1)? [YES]
- 2. For which $a \in \mathbb{R}$ we have F(a) = F(-a). [Solutions of $a^2 + 1 = a^2 + 1$, so for all $a \in \mathbb{R}$]
- 3. For which $y \in \mathbb{R}$ we have F(y) = F(y+1). [Solutions of $y^2 + 1 = (y+1)^2$, so y = 0]

4. For which $b \in \mathbb{R}$ we have F(b+2) = F(2b+3). [Solutions of $(b+2)^2 + 1 = (2b+3)^2 + 1$, so b = -5/3, -1]

Exercise 8. We have the functions

- 1. Is it true that $F \equiv G$? [NO, there is an $a \in \mathbb{R}$ such that $F(a) \neq G(a)$, for exaple a = 2, for which $F(2) = 4 \neq 2 = G(2)$]
- 2. Is there an $a \in \mathbb{R}$ such that F(a) = G(a)? [YES, for example a = 1, since F(1) = 1 = G(1)]

Exercise 9. We try to describe a function by

$$\begin{array}{cccc} F: & \mathbb{Q} & \longrightarrow & \mathbb{Q} \\ & p/q & \mapsto & p^2/q^2 \end{array}$$

Is F a well defined function?

Solution: YES.

Exercise 10. We try to describe a function by

$$\begin{array}{cccc} F: & \mathbb{Q} & \longrightarrow & \mathbb{Q} \\ & & p/q & \mapsto & p+q \end{array}$$

Is F a well defined function? If not, how can we modify the formula of F to have a well defined function?

Solution: NO, because $\frac{6}{3} = \frac{4}{2}$ but $F\left(\frac{6}{3}\right) = 9 \neq 6 = F\left(\frac{4}{2}\right)$

Exercise 11. In the plane \mathbb{R}^2 , draw the graphs of the functions

