FCS
 Math: Functions
 Exercises

Massimo Caboara

February 25, 2021

Exercise 1. Given the sets

$$
A=\{1,3,5,7,14\} \text { and } B=\{-2,3,4,8\}
$$

Describe $A \cup B, A \cap B, A-B, A \times B$.
Solution: The first solutions are trivial,

$$
\begin{aligned}
A \times B= & \{((1,-2),(1,3),(1,4),(1,8),(3,-2),(3,3),(3,4),(3,8),(5,-2),(5,3),(5,4), \\
& (5,8),(7,-2),(7,3),(7,4),(7,8),(14,-2),(14,3),(14,4),(14,8))\}
\end{aligned}
$$

Exercise 2. Given the sets
$A=\{a \in \mathbb{N} \mid a$ is a multiple of 12$\}$ and $B=\{k \in \mathbb{N} \mid k$ is a multiple of 15$\}$
Describe $A \cup B, A \cap B, A-B, A \times B$.

Solution:

$$
\begin{aligned}
A \cup B & =\{12,15,24,30,36,45,48,60,72,65, \ldots\} \\
A \cap B & =\{k \in \mathbb{N} \mid k \text { is a multiple of } \operatorname{LCM}(12,15)=60\} \\
A-B & =\{12,24,36,48,72, \ldots\} \\
A \times B & =\left\{(a, b) \in \mathbb{N}^{2} \mid \text { a is a multiple of } 12 \text { and } b \text { is a multiple of } 15\right\}
\end{aligned}
$$

Exercise 3. Given the sets

$$
A=\left\{\left(a, a^{2}\right) \mid a \in \mathbb{R}\right\} \text { and } A=\{(b, b) \mid b \in \mathbb{R}\}
$$

Describe $A \cup B, A \cap B, A-B, A \times B$.
Solution:
The set A is the parabola $y=x^{2}$, the set B the line $y=x$. The set $A \cup B$ is the union of the two drawing, the set $A \cap B$ is just the two points $\{(0,0),(1,1)\}$, the set $A-B$ is the parabola minus the points $\{(0,0),(1,1)\}$ and

$$
A \times B=\left\{\left(a, a^{2}, b, b\right) \in \mathbb{R}^{4} \quad \mid a, b \in \mathbb{R}\right\}
$$

Exercise 4. Draw on the \mathbb{R}^{2} plane the sets

$$
[1,2] \times[1,1],[-1,2] \times[2,+\infty],\{(1,1),(2,3),(3,7)\}
$$

Figure 1

Exercise 5. Given the sets

$$
\begin{aligned}
& A=\left\{a \in \mathbb{R} \quad \mid x^{3}-4 x^{2}+x+6=0 \in \mathbb{R}\right\} \\
& B=\left\{a \in \mathbb{R} \quad \mid x^{4}-5 x^{2}+4=0 \in \mathbb{R}\right\} \\
& C=\left\{a \in \mathbb{R} \quad \mid x^{4}-2 x^{3}+4 x^{2}-6 x+3=0 \in \mathbb{R}\right\}
\end{aligned}
$$

Detail the equalities and inclusions between A, B, C
Solution:
We have that

$$
\begin{aligned}
x^{3}-4 x^{2}+x+6 & =(x+1)(x-2)(x-3) \\
x^{4}-5 x^{2}+4 & =(x+2)(x-2)(x+1)(x-1) \\
x^{4}-2 x^{3}+4 x^{2}-6 x+3 & =\left(x^{2}+3\right)(x-1)^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{ \pm 1, \pm 2\} \\
& C=\{1\}
\end{aligned}
$$

Hence there are no equalities and the only inclusions are

$$
C \subset A, B
$$

Exercise 6. We have the function

$$
\begin{array}{rllc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & 3 x^{2}-x+1
\end{array}
$$

Compute

1. $F(1)=F(-1)$? $[F(-1)=5 \neq 3=F(1)]$
2. $F(1), F(0), F(5) .[F(-1)=5, F(0)=1, F(5)=71]$
3. Given $a \in \mathbb{R}$, compute $F(a-1), F\left(3 a^{2}-2\right), F\left(\sqrt{a^{2}+1}\right)$.

$$
\begin{aligned}
F(a-1) & =3(a-1)^{2}-(a-1)+1=3 a^{2}-7 a+5 \\
F\left(3 a^{2}-2\right) & =3\left(3 a^{2}-2\right)^{2}-\left(3 a^{2}-2\right)+1=27 a^{4}-39 a^{2}+15 \\
F\left(\sqrt{a^{2}+1}\right) & =3\left(\sqrt{a^{2}+1}\right)^{2}-\left(\sqrt{a^{2}+1}\right)+1=3 a^{2}-\sqrt{a^{2}+1}+4
\end{aligned}
$$

4. Given $\boldsymbol{\&} \in \mathbb{R}$, with $\boldsymbol{\&}>0$, compute $F(\boldsymbol{\infty}-2), F(2 \boldsymbol{\infty}), F(\sqrt{\boldsymbol{\phi}})$.

Exercise 7. We have the function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & x^{2}+1
\end{array}
$$

Compute

1. $F(1)=F(-1)$? [YES]
2. For which $a \in \mathbb{R}$ we have $F(a)=F(-a)$. [Solutions of $a^{2}+1=a^{2}+1$, so for all $a \in \mathbb{R}]$
3. For which $y \in \mathbb{R}$ we have $F(y)=F(y+1)$. [Solutions of $y^{2}+1=(y+1)^{2}$, so $y=0$]
4. For which $b \in \mathbb{R}$ we have $F(b+2)=F(2 b+3)$. [Solutions of $(b+2)^{2}+1=(2 b+3)^{2}+1$, so $\left.b=-5 / 3,-1\right]$

Exercise 8. We have the functions

$$
\begin{array}{cccccccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & x^{2}, & G: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
x & \mapsto & x
\end{array}
$$

1. Is it true that $F \equiv G$? $[N O$, there is an $a \in \mathbb{R}$ such that $F(a) \neq G(a)$, for exmple $a=2$, for which $F(2)=4 \neq 2=G(2)$]
2. Is there an $a \in \mathbb{R}$ such that $F(a)=G(a)$? [YES, for example $a=1$, since $F(1)=1=G(1)]$

Exercise 9. We try to describe a function by

$$
\begin{array}{lccc}
F: & \mathbb{Q} & \longrightarrow & \mathbb{Q} \\
& p / q & \mapsto & p^{2} / q^{2}
\end{array}
$$

Is F a well defined function?

Solution: YES.
Exercise 10. We try to describe a function by

$$
\begin{array}{lclc}
F: & \mathbb{Q} & \longrightarrow & \mathbb{Q} \\
& p / q & \mapsto & p+q
\end{array}
$$

Is F a well defined function? If not, how can we modify the formula of F to have a well defined function?

Solution: NO, because $\frac{6}{3}=\frac{4}{2}$ but $F\left(\frac{6}{3}\right)=9 \neq 6=F\left(\frac{4}{2}\right)$
Exercise 11. In the plane \mathbb{R}^{2}, draw the graphs of the functions

```
F: \mathbb{R}\longrightarrow\mathbb{R}F:\mathbb{R}\longrightarrow\mathbb{R}\quadF:\mathbb{R}\longrightarrow
```


