FCS
 Math: Functions

Massimo Caboara

April 8 ${ }^{\text {th }}, 2021$

Definition 1. If A, B are sets, then we say that

$$
|A| \leq|B|
$$

if there is an injective function $F: A \longrightarrow B$
Remark 1. Given A, B, C sets

1. $|A|=|B|$ if and only if there is an invertible function $F: A \longrightarrow B$.
2. $|A| \neq|B|$ if and only if there no invertible function $F: A \longrightarrow B$.
3. $|A| \leq|B|$ if and only if there is an injective function $F: A \longrightarrow B$.
4. $|A|<|B|$ if and only if there is an injective function $F: A \longrightarrow B$ but there no invertible function $F: A \longrightarrow B$.
5. $|A|=|B|$ and $|B|=|C|$ then $|A|=|C|$. Since the composition of invertible functions is an invertible function.
6. If A, B sets $A \subseteq B$ then $|A| \leq|B|$.
7. (Cantor-Schröder-Bernstein theorem)

$$
|A| \leq|B| \text { and }|B| \leq|A| \Longrightarrow|A|=|B|
$$

We can define the sum for infinite cardinalities, but it is weird.
8. If A, B infinite sets and $|A|=|B|$ then $|A|+|B|=|A|=|B|$.
9. If A, B infinite sets and $|A|>|B|$ then $|A|+|B|=|A|$.

A consequence of Cantor-Schröder-Bernstein theorem:
10. If A, B sets $|A \cup B|=|A|+|B|$ and $|A \cap B| \leq|A|,|B|$. [This will be shown in class]

Exercise 1. We prove that $|\mathbb{N}|=|\mathbb{N} \times \mathbb{N}|$ by building a one-to-one correspondence $F: \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N}$.

We say that $F(0)=(0,0), F(1)=(1,0), F(2)=(0,1), F(3)=(0,2)$, $F(4)=(1,1), F(5)=(2,0)$ and so on as in the imagine below.

GNU1 - The one-to-one correspondence $F: \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N}$

The function F is a one-to-one correspondence, and so

$$
|\mathbb{N}|=|\mathbb{N} \times \mathbb{N}|
$$

Exercise 2. We prove that

$$
|\mathbb{N}|=|\mathbb{Q}|
$$

by building a one-to-one correspondence $F: \mathbb{N} \longrightarrow \mathbb{Q}$. The idea is to mimick the one-to-one correspondence between \mathbb{N} and $\mathbb{N} \times \mathbb{N}$.

There is a natural function between \mathbb{Q} and $\mathbb{Z} \times \mathbb{N}$,

$$
\begin{array}{rccc}
T: & \mathbb{Q} & \longrightarrow & \mathbb{N} \times \mathbb{N} \\
p / q & \mapsto & (p, q)
\end{array}
$$

with the usual provisos that $q>0$ and p, q are coprime (no common factor, we don't consider the rationals like $4 / 2$) to ensure that the definition of p / q is unique.

If we restrict the codomain to the couples (p, q) such that $q>0$ and p, q are coprime we have a one-to one correspondence

$$
\begin{array}{rccc}
T^{\prime}: & \mathbb{Q} & \longrightarrow & A \\
p / q & \mapsto & (p, q)
\end{array} \text { where } A=\{(p, q) \in \mathbb{N} \times \mathbb{N} \mid q>0 \text { and } p, q \text { are coprime }\}
$$

So $|\mathbb{Q}|=|A|$.
We give a description of A, detailing the elements of $\mathbb{Z} \times \mathbb{N}$ that we are taking out. We proceed diagonally
$(0,0) \quad$ we take it out because denominator is 0

Listed elements of \mathbb{Q} : none.

$$
(-1,0) \quad \text { we take it out because denominator is } 0
$$

$(0,1) \quad=0 / 1=0 \in \mathbb{Q}$ OK
$(1,0) \quad$ we take it out because denominator is 0

Listed elements of \mathbb{Q} : 0 .

$$
\begin{aligned}
(-2,0) & \text { NO, denominator is } 0 \\
(-1,1) & =-1 / 1=-1 \in \mathbb{Q} \text { OK } \\
(0,2) & =0 / 1=0 \in \mathbb{Q} \text { we take it out, repeat } \\
(1,1) & =1 / 1=1 \in \mathbb{Q} \text { OK } \\
(2,0) & \text { NO, denominator is } 0
\end{aligned}
$$

Listed elements of $\mathbb{Q}: 0, \pm 1, \pm 2, \pm 1 / 2$.
$(-3,0) \quad$ NO, denominator is 0
$(-2,1) \quad=-2 / 1=-2 \in \mathbb{Q}$ OK
$(-1,2) \quad=-1 / 2 \in \mathbb{Q}$ OK
$(0,3) \quad=0 / 1=0$ we take it out, repeat
$(1,2) \quad=1 / 2 \in \mathbb{Q}$ OK
$(2,1) \quad=2 / 1=2 \in \mathbb{Q} O K$
$(3,0) \quad$ NO, denominator is 0

Listed elements of $\mathbb{Q}: 0, \pm 1$.

$$
\begin{aligned}
(-4,0) & \text { NO, denominator is } 0 \\
(-3,1) & =-3 / 1=-3 \in \mathbb{Q} \text { OK } \\
(-2,2) & =-2 / 2=-1 \text { NO, repeat } \\
(-1,3) & =-1 / 3 \in \mathbb{Q} \text { OK } \\
(0,4) & =0 / 1=0 N O, \text { repeat } \\
(1,3) & =1 / 3 \in \mathbb{Q} \text { OK } \\
(2,2) & =2 / 2=1 N O, \text { repeat } \\
(3,1) & =3 / 1=3 \in \mathbb{Q} \text { OK } \\
(4,0) & N O, \text { denominator is } 0
\end{aligned}
$$

Listed elements of $\mathbb{Q}: 0, \pm 1, \pm 2, \pm 1 / 2, \pm 3, \pm 1 / 3$. graphically

GNU2 - The set $A \subseteq \mathbb{N} \times \mathbb{N}$

From the description above and the drawing, it is clear that T^{\prime} is a one-to-one correspondence.

If we prove that there is a one-to-one correspondence $G: \mathbb{N} \longrightarrow A$, and we are done, because then $|\mathbb{N}|=|A|$ and $|\mathbb{Q}|=|A|$ give $|\mathbb{N}|=|\mathbb{Q}|$.

We define G as in the imagine below:

GNU3 - The one-to-one-correspondence $G: \mathbb{N} \longrightarrow A$

The function G is a one-to-one correspondence, and so

$$
|\mathbb{N}|=|A|
$$

Exercise 3. Prove $|\mathbb{N}| \neq|\mathbb{R}|$.
We have to prove that there is no one-to-one correspondence $F: \mathbb{N} \longrightarrow \mathbb{R}$. Since $|(0,1)|=|\mathbb{R}|$, we can prove that there is no one-to-one correspondence $F: \mathbb{N} \longrightarrow(0,1)$.

By contradiction, we say that there is a one-to-one correspondence $F: \mathbb{N} \longrightarrow(0,1)$. That means that we can enumerate $A L L$ the real numbers
in $(0,1)$. That means that we can put them ALL in a list, where the a's, b 's etc are digits (numbers in $0, \ldots, 9$)

$$
\begin{aligned}
F(0) & =0, a_{0} a_{1} a_{2} a_{3} \cdots \\
F(1) & =0, b_{0} b_{1} b_{2} b_{3} \cdots \\
F(2) & =0, c_{0} c_{1} c_{2} c_{3} \cdots \\
F(3) & =0, d_{0} d_{1} d_{2} d_{3} \cdots \\
\vdots & =\vdots
\end{aligned}
$$

or, if you prefer, changing a_{0} in a_{0}^{0}, etc. etc.

$$
\begin{aligned}
F(0) & =0, a_{0}^{0} a_{1}^{0} a_{2}^{0} a_{3}^{0} \ldots \\
F(1) & =0, a_{0}^{1} a_{1}^{1} a_{2}^{1} a_{3}^{1} \ldots \\
F(2) & =0, a_{0}^{1} a_{1}^{2} a_{2}^{2} a_{3}^{2} \ldots \\
F(3) & =0, a_{0}^{3} a_{1}^{3} a_{2}^{3} a_{3}^{3} \ldots \\
\vdots & =\vdots \\
F(n) & =0, a_{0}^{n} a_{1}^{n} a_{2}^{n} a_{3}^{n} \ldots \\
\vdots & =\vdots
\end{aligned}
$$

to find a contradiction, we build a real y number belonging to $(0,1)$ that is NOT in the above list.

$$
y=0, b_{0} b_{1} b_{2} b_{3} \cdots b_{n} \cdots
$$

where the b_{i} 's are any digit but we have that

$$
b_{0} \neq a_{0}^{0}, \quad b_{1} \neq a_{1}^{1}, \quad b_{2} \neq a_{2}^{2}, \quad b_{3} \neq a_{3}^{3}, \ldots b_{n} \neq a_{n}^{n}, \ldots
$$

And y is different from $F(0)$ since their first digit is different, y is different from $F(1)$ since their second digit is different, y is different from $F(2)$ since their third digit is different and so on.

It is clear that $y \in(0,1)$ but y can't be in the list above, that supposedly contains all the elements of $(0,1)$, and here it is our contradiction. The hypotesis that the list above contains all the elements of $(0,1)$ is hence false, and it is so impossible to find a one-to-one correspondence between \mathbb{N} and $(0,1)$, as so it is impossible to find a one-to-one correspondence between \mathbb{N} and \mathbb{R}. Hence

$$
|\mathbb{N}| \neq|\mathbb{R}|
$$

