FCS
 Math: Functions
 Exercises

Massimo Caboara
April 8 ${ }^{\text {th }}, 2021$

Some solutions will be discussed in class

1. Prove that $|\mathbb{N}|=|\mathbb{Q}|$ using the Cantor-Schröder-Bernstein theorem. [This is quite easy using the right idea].
2. Prove that $|[0,1]|=|\mathbb{R}|$ using the Cantor-Schröder-Bernstein theorem.
3. Prove that $|[0,1]|=|\mathbb{R}|$ by finding an one-to-one correspondence. [Difficult]
4. Prove that $|\mathbb{N}|=|\mathbb{Q}|$ directly by building a function $F: \mathbb{N} \longrightarrow \mathbb{Q}$.
5. Find an infinite set whose cardinality is bigger than $|\mathbb{R}|$.
6. Prove that $|\mathbb{N}|=|\mathbb{Z} \times \mathbb{Z}|$.
7. Prove that $\left|\mathbb{N}^{3}\right|=|\mathbb{N}|$.
8. Prove that $\left|\mathbb{Q}^{2}\right|=|\mathbb{N}|$.
9. Prove that $\forall n \in \mathbb{N},\left|\mathbb{N}^{n}\right|=|\mathbb{N}|$.
10. Prove that $\forall n \in \mathbb{N},\left|\mathbb{Q}^{n}\right|=|\mathbb{N}|$.
11. Let $\mathbb{Z}[x]=\{$ polynomials with coefficients in $\mathbb{Z}\}$.

Prove that $|\mathbb{Z}[x]|=|\mathbb{N}|$. [Difficult]
12. Let $\mathbb{Q}[x]=\{$ polynomials with coefficients in $\mathbb{Q}\}$.

Prove that $|\mathbb{Q}[x]|=|\mathbb{N}|$. [Difficult]
13. Propose as many sets as possible whose cardinality is bigger that the cardinality of \mathbb{R}.

