FCS

Math: Functions

Massimo Caboara

April $29^{\text {th }}, 2021$

We remind the definition of continuous function
Remark 1. We remember that a continuous function $F: A \longrightarrow B$, with $A, B \subseteq \mathbb{R}$ is a function whose graph can be drawn without raising the pen from the paper.

Proposition 1. Let $F: A \longrightarrow B$ be a continuous, increasing function and $[a, b] \subset \mathbb{R}$. Then

$$
F([a, b])=[F(a), F(b)]
$$

Proposition 2. Let $F: A \longrightarrow B$ be a continuous, decreasing function and $[a, b] \subset \mathbb{R}$. Then

$$
F([a, b])=[F(b), F(a)]
$$

Proposition 3. A monotone function $F: A \longrightarrow B$ is injective.
Proposition 4. If $F: A \longrightarrow B$ is an invertible, increasing (decreasing) function, then its inverse is also increasing (decreasing).
Proposition 5. If $F: A \longrightarrow B$ is a function, and $A^{\prime} \cup A^{\prime \prime} \subset A, B^{\prime} \cup B^{\prime \prime} \subset B$ then

$$
F\left(A^{\prime} \cup A^{\prime \prime}\right)=F\left(A^{\prime}\right) \cup F\left(A^{\prime \prime}\right) \text { and } F^{-1}\left(B^{\prime} \cup B^{\prime \prime}\right)=F^{-1}\left(B^{\prime}\right) \cup F^{-1}\left(B^{\prime \prime}\right)
$$

Remark that $F(\cdot)$ is the image and $F^{-1}(\cdot)$ is the counterimage, NOT NECESSARILY THE INVERSE. The function F is not necessarily invertible.

Definition 1. A function like

$$
\begin{aligned}
& F: \mathbb{R} \longrightarrow \quad \mathbb{R} \\
& x \mapsto \begin{cases}x^{2}-2 & x \leq 0 \\
-x+1 & x>0\end{cases}
\end{aligned}
$$

is a picecewise function. and the two functions
are its pieces.

