FCS Math: Functions

Massimo Caboara

April 29th, 2021

We remind the definition of continuous function

Remark 1. We remember that a continuous function $F : A \longrightarrow B$, with $A, B \subseteq \mathbb{R}$ is a function whose graph can be drawn without raising the pen from the paper.

Proposition 1. Let $F : A \longrightarrow B$ be a continuous, increasing function and $[a,b] \subset \mathbb{R}$. Then

$$F([a,b]) = [F(a), F(b)]$$

Proposition 2. Let $F : A \longrightarrow B$ be a continuous, decreasing function and $[a,b] \subset \mathbb{R}$. Then

$$F([a,b]) = [F(b), F(a)]$$

Proposition 3. A monotone function $F : A \longrightarrow B$ is injective.

Proposition 4. If $F : A \longrightarrow B$ is an invertible, increasing (decreasing) function, then its inverse is also increasing (decreasing).

Proposition 5. If $F : A \longrightarrow B$ is a function, and $A' \cup A'' \subset A$, $B' \cup B'' \subset B$ then

$$F(A' \cup A'') = F(A') \cup F(A'')$$
 and $F^{-1}(B' \cup B'') = F^{-1}(B') \cup F^{-1}(B'')$

Remark that $F(\cdot)$ is the image and $F^{-1}(\cdot)$ is the counterimage, NOT NECESSARILY THE INVERSE. The function F is not necessarily invertible.

Definition 1. A function like

$$\begin{array}{cccc} F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \mapsto & \begin{cases} x^2-2 & x \leq 0 \\ -x+1 & x>0 \end{cases} \end{array}$$

is a picecewise function. and the two functions

are its pieces.