FCS
 Math: Functions Exercises

Massimo Caboara

April $29^{\text {th }}, 2021$

Solved exercise

Example 1. We have the function

$$
\begin{aligned}
F: \mathbb{R} & \left.\longrightarrow \begin{array}{ll}
\mathbb{R} \\
x & \mapsto \begin{cases}\arctan (x) & x<0 \\
x^{2}+1 & x \geq 0\end{cases}
\end{array} . \begin{array}{rl}
F &
\end{array}\right)
\end{aligned}
$$

1. Draw the graph of F. Mark the intersections with the axis and the interesting points.
2. Is F injective, surjective, invertible? What is the image of F ?
3. Determine $F(0), F(\pi), F([-\pi / 2, \pi / 4])$.
4. Determine $F^{-1}(0), F^{-1}(1), F^{-1}((-\sqrt{2} / 2, \sqrt{2} / 2]), F^{-1}((-\infty, 0])$.
5. Build an invertible function from F by restricting its domain and/or codomain.
6. Determine the formula for this inverse.

1 The graph is

GNU1: Graph of $F(x)$

2 It is easy to see that every horiziontal line $y=a, a \in \mathbb{R}$ intersects the graph of F once or not at all, so F is injective.

The horizontal line $y=1 / 2$ does not intersects the graph of F, so F is not surjective. We could have chosen another horizontal line with no intersection, for example $y=-2$. The graphical rule says that a function is surjective if EVERY horizontal line $y=a$ with a in the domain of F intersects the graph of the function at least once.

Being injective but not surjective, F is not invertible.
The image of F is $(-p i / 2,0] \cup[1,+\infty)$
3 $F(0)=1, F([1,2])=[F(1), F(2)]=[2,5]$ because F is increasing. To determine the image of $(-\pi / 2, \pi / 4]$ it is useful to split this interval

$$
(-\pi / 2, \pi / 4]=(-\pi / 2,0) \cup[0, \pi / 4]
$$

and we have

$$
\begin{aligned}
F((-\pi / 2, \pi / 4]) & =F((-\pi / 2,0) \cup[0, \pi / 4]) \\
& =F((-\pi / 2,0)) \cup F([0, \pi / 4]) \\
& =(F(-\pi / 2), F(0)) \cup[F(0), F(\pi / 4)] \\
& =(-1,0) \cup\left[1, \pi^{2} / 16+1\right]
\end{aligned}
$$

$4 F^{-1}(1 / 2)=\emptyset$ because the graph of F and the line $y=1 / 2$ have no intersection. $F^{-1}(-2)=\emptyset$ because the graph of F and the line $y=-2$ have no intersection. For the counterimage of the interval $[-1,2]$ it is useful to split this interval

$$
[-1,2]=[-1,0) \cup[0,1) \cup[1,2]
$$

and we have

$$
\begin{aligned}
F^{-1}([-1,2]) & =F^{-1}([-1,0) \cup[0,1) \cup[1,2]) \\
& =F^{-1}([-1,0)) \cup F^{-1}([0,1)) \cup F^{-1}([1,2]) \\
& =\left[F^{-1}(-1), F^{-1}(0)\right) \cup \emptyset \cup\left[F^{-1}(1), F^{-1}(2)\right] \\
& =[-\pi / 4,0) \cup \emptyset \cup[0,1] \\
& =[-\pi / 4,0) \cup[0,1] \\
& =[-\pi / 4,1]
\end{aligned}
$$

5 The function is injective, so we keep its domain. To make the function surjective, we restrict the codomain to the image. The new, invertible, function is

$$
\begin{aligned}
F^{\prime}: \mathbb{R} & \longrightarrow(-\pi / 2,0] \cup[1,+\infty) \\
x & \mapsto \begin{cases}\arctan (x) & x<0 \\
x^{2}+1 & x \geq 0\end{cases}
\end{aligned}
$$

We compute its inverse piece by piece
First piece

$$
\arctan (x)=y \Longleftrightarrow \tan (\arctan (x))=\tan (y) \Longleftrightarrow x=\tan (y)
$$

and we can apply the tangent to the equation because $\arctan (x) \in(\pi / 2, \pi / 2)$ for every x and $y \in(-p i / 2,0]$ for this piece. In both cases the values are in the domain of THIS tangent (restriction of the tangent to $(-\pi / 2, \pi / 2)$), that for the sake of simplicity we still call tangent

$$
\begin{array}{cccc}
\tan : & (-\pi / 2, \pi / 2) & \longrightarrow & \mathbb{R} \\
x & \mapsto & \tan (x)
\end{array}
$$

and so we can apply it to the equation. Since THIS tangent is invertible, the equation does not change and we have $\tan (\arctan (x))=x$

Second piece

$$
x^{2}+1=y \Longleftrightarrow x^{2}=y-1 \Longleftrightarrow \sqrt{x^{2}}=\sqrt{y-1} \Longleftrightarrow x=\sqrt{y-1}
$$

and we can apply the square root to the equation because $x^{2} \geq 0$ and $y-1 \geq 0$ in this piece. In both cases the values are in the domain of the square root, and so we can apply it to the equation. Since the square root

$$
\begin{array}{cccc}
\sqrt{ }: & \mathbb{R}_{0}^{+} & \longrightarrow & \mathbb{R}_{0}^{+} \\
& x & \mapsto & \sqrt{x}
\end{array}
$$

is invertible with inverse

$$
\begin{array}{cccc}
(\cdot)^{2}: & \mathbb{R}_{0}^{+} & \longrightarrow & \mathbb{R}_{0}^{+} \\
x & \mapsto & x^{2}
\end{array}
$$

the equation does not change and we have $\sqrt{x^{2}}=x$ for the x 's in \mathbb{R}_{0}^{+}.
The inverse of F^{\prime} is then

$$
\begin{array}{rll}
F^{\prime-1}:(-\pi / 2,0] \cup[1,+\infty) & \longrightarrow & \mathbb{R} \\
x & \mapsto & \begin{cases}\tan (x) & x \in(-\pi / 2,0] \\
x^{2}+1 & x \in[1,+\infty)\end{cases}
\end{array}
$$

Proposed exercises

Exercise 1. We have the function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \arctan x
\end{array}
$$

1. Draw the graph of F. Mark the intersections with the axis and the interesting points.
2. Is F injective, surjective, invertible?
3. Determine $F(0), F(\pi), F([-\pi / 2, \pi / 4])$.
4. Determine $F^{-1}(0), F^{-1}(1), F^{-1}((-\sqrt{2} / 2, \sqrt{2} / 2]), F^{-1}((-\infty, 0])$.
5. Build an invertible function from F by restricting its domain and/or codomain.
6. Determine the formula for this inverse and draw its graph.

Solution: The graph of F is
Draw the graph of F. Mark the intersections with the axis and the interesting points.

Clearly, F in injective, not surjective and hence not invertible.
We have that $F(0)=0, F(\pi) \sim 1.26, F(-\pi / 2) \sim-1, F(\pi / 4) \sim 0.66$, using the arctan function on a pocket computer. Since the function F is increasing and continuous,

$$
F([-\pi / 2, \pi / 4])=[F(-\pi / 2), F(\pi / 4)] \sim[-1,0.66]
$$

The image of $[-\pi / 2, \pi / 4]$ is $[-1,0.66]$
The function F is not invertible, but if we restrict its codomain we get the invertible function

$$
\begin{array}{rlll}
F^{\prime}: & \mathbb{R} & \longrightarrow & (-\pi / 2, \pi / 2) \\
& x & \mapsto & \arctan (x)
\end{array}
$$

whose inverse is

$$
\begin{array}{cccc}
F^{\prime}: & (-\pi / 2, \pi / 2) & \longrightarrow & \mathbb{R} \\
x & \mapsto & \tan (x)
\end{array}
$$

and we have $F(x)=F^{\prime}(x)=\tan (x)$ for all the $x \in \mathbb{R}$ we have, using the tan function on a pocket computer, that

$$
\begin{aligned}
F^{-1}(0) & =\tan (0)=0 \\
F^{-1}(1) & =\tan (1) \sim 1.55 \\
F^{-1}(-\sqrt{2} / 2) & =\tan (\pm \sqrt{2} / 2) \sim \pm 0.85
\end{aligned}
$$

Since the function F is increasing and continuous, so is the function F^{-1} and

$$
F^{\prime-1}((-\sqrt{2} / 2, \sqrt{2} / 2])=\left(F^{\prime-1}(-\sqrt{2} / 2), F^{\prime-1}(\sqrt{2} / 2)\right] \sim(-0.85,0.85]
$$

From the graph it is easy to see that

$$
F^{\prime-1}((-\infty, 0])=(-\pi / 2,0]
$$

The graph of $F^{\prime-1}$ is

\bowtie
For the following functions follow the same procedure as the functions above. Only the graph is provided.

Exercise 2. We have the function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \arctan 2^{x}
\end{array}
$$

1. Draw the graph of F. Mark the intersections with the axis and the interesting points.
2. Is F injective, surjective, invertible?
3. Determine $F(0), F(-1), F([-\pi / 2, \pi / 4])$.
4. Determine $F^{-1}(0), F^{-1}(1), F^{-1}((0,1]), F^{-1}((-\infty, 0])$.
5. Build an invertible function from F by restricting its domain and/or codomain.
6. Determine the formula for this inverse and draw its graph.

Solution: The graph of F is

GNU2: The Graph of F

\bowtie
Exercise 3. We have the function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & 2^{\arctan x}
\end{array}
$$

1. Draw the graph of F. Mark the intersections with the axis and the interesting points.
2. Is F injective, surjective, invertible?
3. Determine $F(0), F(\pi), F([-\pi / 2, \pi / 4])$.
4. Determine $F^{-1}(0), F^{-1}(1), F^{-1}((-\sqrt{2} / 2, \sqrt{2} / 2]), F^{-1}((-\infty, 0])$.
5. Build an invertible function from F by restricting its domain and/or codomain.
6. Determine the formula for this inverse and draw its graph.

Solution: The graph of F is

\bowtie
Exercise 4. We have the function

$$
\begin{aligned}
F: & \mathbb{R}
\end{aligned} \begin{array}{ll}
\mathbb{R} \\
x & \mapsto \begin{cases}3^{x} & x<0 \\
-x^{2} & x \geq 0\end{cases}
\end{array}
$$

1. Draw the graph of F. Mark the intersections with the axis and the interesting points.
2. Is F injective, surjective, invertible?
3. Determine $F(0), F(-1), F([-1,1])$.
4. Determine $F^{-1}(0), F^{-1}(-1), F^{-1}([-2,2])$
5. Build an invertible function from F by restricting its domain and/or codomain.
6. Determine the formula for this inverse and draw its graph.

Solution: The graph of F is

Exercise 5. We have the function

$$
\begin{aligned}
F: \mathbb{R} & \longrightarrow \\
x & \mapsto \begin{cases}\sin (x)-1 & x<0 \\
\sqrt{x} & x \geq 0\end{cases}
\end{aligned}
$$

1. Draw the graph of F. Mark the intersections with the axis and the interesting points.
2. Is F injective, surjective, invertible?
3. Determine $F(0), F(-\pi), F([-\pi / 2,2])$.
4. Determine $F^{-1}(0), F^{-1}(1), F^{-1}([-1,1])$.
5. Build an invertible function from F by restricting its domain and/or codomain.
6. Determine the formula for this inverse and draw its graph.

Solution: The graph of F is

GNU2: The Graph of F

