FCS Math: Functions

Massimo Caboara

April 15th, 2021

Definition 1. If $F : A \longrightarrow B$ is a function, we say it is a surjective function *if*, equivalently

- 1. In the case $A \subseteq \mathbb{R}$, $B \subseteq \mathbb{R}$, every horizontal line y = b intersects the graph of F at least once.
- 2. The equation F(x) = b has al least one solution for each $b \in B$.
- 3. $\forall b \in B \exists a \in A \text{ s.t. } F(a) = b.$

Definition 2. Let X be a set. Then the set of all the subsets of X is called the parts of X and indicated as $\mathcal{P}(\mathcal{X})$.

Remark 1. If X has cardinality $n \in \mathbb{N}$, then $|\mathcal{P}(X)| = 2^n$.

Example 1. If $X = \{a, b\}$ then

$$\mathcal{P}(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$

|X| = 2 and $|\mathcal{P}(X)| = 2^2 = 4$.

Example 2. If $X = \{a, b, c\}$ then

$$\mathcal{P}(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$

 $|X| = 3 \text{ and } |\mathcal{P}(X)| = 2^3 = 8.$

Teorem 1. Let X be a set, then $|X| < |\mathcal{P}(X)|$

Proof. If X, finite of cardinality n, the thesis follows from the previous remark, $|X| = n \Longrightarrow |\mathcal{P}(X)| = 2^n$.

If X is an infinite set, the function

$$\begin{array}{rcccc} F: & X & \longrightarrow & \mathcal{P}(X) \\ & x & \mapsto & \{x\} \end{array}$$

is clearly injective, since $F(a) = F(b) \iff \{a\} = \{b\} \iff a = b$, and so

 $\mid X \mid \leq \mid \mathcal{P}(X) \mid$

To prove that $|X| \neq |\mathcal{P}(X)|$ we have to prove that there is no one-to-one correspondence between X and $\mathcal{P}(X)$. We prove that by contradiction. We suppose one such one-to-one correspondence $T: X \longrightarrow \mathcal{P}(X)$ does exists and we find a contradiction.

Let $A = \{x \in X \mid x \notin T(x)\}$ be a subset of X, and hence an element of $\mathcal{P}(X)$. Since T is a one-to-one correspondence, there exists $a \in A$ such that T(a) = A. Since $a \in X$ and $A \subseteq X$ there are only two possibile cases: $a \in A$ or $a \notin A$.

- If $a \in A$, the *a* has to fulfill the condition of *A*, hence $a \notin A$, absurd.
- If $a \notin A$, the *a* is an element of *X* that does not fulfill the condition of *A*, hence $a \notin A$ is false, hence $a \in A$, absurd.

So a one-to-one correspondence like T cannot exists. Thus

$$|X| \leq |\mathcal{P}(X)|$$
 and $|X| \neq |\mathcal{P}(X)| \Longrightarrow |X| < |\mathcal{P}(X)|$

Remark 2. There are a infinite number of infinite sets with different (increasing) cardinality.

$$|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < \cdots$$

Definition 3. If $F : A \longrightarrow B$ is a function and $C \subseteq A$ then the set

$$Im(A) = \{F(a) \mid a \in A\} \subseteq B$$

is called the image of A.

Definition 4. If $F : A \longrightarrow B$ is a function and $D \subseteq B$ then the set

$$\{a \in A \mid F(a) \in D\} \subseteq A$$

is called the counterimage of A.