FCS
 Math: Functions

Massimo Caboara

April $15^{\text {th }}, 2021$

Definition 1. If $F: A \longrightarrow B$ is a function, we say it is a surjective function if, equivalently

1. In the case $A \subseteq \mathbb{R}, B \subseteq \mathbb{R}$, every horizontal line $y=b$ intersects the graph of F at least once.
2. The equation $F(x)=b$ has al least one solution for each $b \in B$.
3. $\forall b \in B \exists a \in A$ s.t. $F(a)=b$.

Definition 2. Let X be a set. Then the set of all the subsets of X is called the parts of X and indicated as $\mathcal{P}(\mathcal{X})$.
Remark 1. If X has cardinality $n \in \mathbb{N}$, then $|\mathcal{P}(X)|=2^{n}$.
Example 1. If $X=\{a, b\}$ then

$$
\mathcal{P}(X)=\{\emptyset,\{a\},\{b\},\{a, b\}\}
$$

$|X|=2$ and $|\mathcal{P}(X)|=2^{2}=4$.
Example 2. If $X=\{a, b, c\}$ then

$$
\begin{aligned}
& \mathcal{P}(X)=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\} \\
& |X|=3 \text { and }|\mathcal{P}(X)|=2^{3}=8
\end{aligned}
$$

Teorem 1. Let X be a set, then $|X|<|\mathcal{P}(X)|$
Proof. If X, finite of cardinality n, the thesis follows from the previous remark, $|X|=n \Longrightarrow|\mathcal{P}(X)|=2^{n}$.

If X is an infinite set, the function

$$
\begin{array}{cccc}
F: & X & \longrightarrow & \mathcal{P}(X) \\
& x & \mapsto & \{x\}
\end{array}
$$

is clearly injective, since $F(a)=F(b) \Longleftrightarrow\{a\}=\{b\} \Longleftrightarrow a=b$, and so

$$
|X| \leq|\mathcal{P}(X)|
$$

To prove that $|X| \neq|\mathcal{P}(X)|$ we have to prove that there is no one-to-one correspondence between X and $\mathcal{P}(X)$. We prove that by contradiction. We suppose one such one-to-one correspondence $T: X \longrightarrow \mathcal{P}(X)$ does exists and we find a contradiction.

Let $A=\{x \in X \quad \mid x \notin T(x)\}$ be a subset of X, and hence an element of $\mathcal{P}(X)$. Since T is a one-to-one correspondence, there exists $a \in A$ such that $T(a)=A$. Since $a \in X$ and $A \subseteq X$ there are only two possibile cases: $a \in A$ or $a \notin A$.

- If $a \in A$, the a has to fulfill the condition of A, hence $a \notin A$, absurd.
- If $a \notin A$, the a is an element of X that does not fulfill the condition of A, hence $a \notin A$ is false, hence $a \in A$, absurd.

So a one-to-one correspondence like T cannot exists. Thus

$$
|X| \leq|\mathcal{P}(X)| \text { and }|X| \neq|\mathcal{P}(X)| \Longrightarrow|X|<|\mathcal{P}(X)|
$$

Remark 2. There are a infinite number of infinite sets with different (increasing) cardinality.

$$
|\mathbb{N}|<|\mathcal{P}(\mathbb{N})|<|\mathcal{P}(\mathcal{P}(\mathbb{N}))|<\cdots
$$

Definition 3. If $F: A \longrightarrow B$ is a function and $C \subseteq A$ then the set

$$
\operatorname{Im}(A)=\{F(a) \mid a \in A\} \subseteq B
$$

is called the image of A.
Definition 4. If $F: A \longrightarrow B$ is a function and $D \subseteq B$ then the set

$$
\{a \in A \mid F(a) \in D\} \subseteq A
$$

is called the counterimage of A.

