FCS
 Math: Functions Some solved exercises

Massimo Caboara

April $15^{\text {th }}, 2021$

Some solutions will be discussed in class
Exercise 1. Is the function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & 2^{x}+x-1
\end{array}
$$

injective, surjective, invertible? Can we make it invertibile by restriciting domain and/or codomain? In the latter case, what is the inverse function formula?

We use the algebraic method. We want to solve the equation

$$
2^{x}+x-1=b
$$

with respect to the unknown $x \in \mathbb{R}$ and the parameter $b \in \mathbb{R}$. This is not an easy equation to solve, let's try the graphical resolution. We split the equation as

$$
2^{x}-1=-x+b
$$

We want to know if and when the graphs of the two functions

$$
\begin{array}{cccccccc}
f: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & 2^{x}-1, & g: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & -x+b
\end{array}
$$

intersects depending on the parameter $b \in \mathbb{R}$.

GNU15

We can see that there always one and only one intersection, and thus F is injective, surjective and invertible. An inverse

$$
F^{-1}: \mathbb{R} \longrightarrow \mathbb{R}
$$

does exists, but we are not able to find the formula for F^{-1}
Exercise 2. Is the function

$$
\begin{array}{cccc}
h: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \arctan \left((x-1)^{3}\right)
\end{array}
$$

injective, surjective, invertible? Can we make it invertibile by restriciting domain and/or codomain? In the latter case, what is the inverse function formula?

We use the algebraic method. We solve the equation

$$
\arctan \left((x-1)^{3}\right)=b
$$

for the unknown $x \in \mathbb{R}$ and the parameter $b \in \mathbb{R}$.
We note that

$$
-\pi / 2 \leq \arctan (a) \leq \pi / 2
$$

for any a. Hence if $b \geq \pi / 2$ or $b \leq-\pi / 2$ there are no solution. For example, we take $b=10>\pi / 2$, and the equation

$$
\arctan \left((x-1)^{3}\right)=10
$$

has no solution. The function is not surjective.

Let's try to see if the function is injective. If

$$
b \geq \pi / 2 \text { or } b \leq-\pi / 2
$$

there is no solution, OK. We have to check the number of solutions when

$$
-\pi / 2<b<\pi / 2
$$

We can apply to the equation the invertible function

$$
\begin{array}{cccc}
\tan (\cdot): & (-\pi / 2, \pi / 2) & \longrightarrow & \mathbb{R} \\
x & \mapsto & \tan (x)
\end{array}
$$

since both b and $\arctan \left((x-1)^{3}\right)$ are always in $(-\pi / 2, \pi / 2)$ we get

$$
\begin{aligned}
\tan \left(\arctan \left((x-1)^{3}\right)\right) & =\tan (b) \\
(x-1)^{3} & =\tan (b)
\end{aligned}
$$

We can apply to the equation the invertible function

$$
\begin{aligned}
& \sqrt[3]{\cdot}: \mathbb{R} \longrightarrow \\
& x \mapsto \\
& \sqrt[3]{x} \\
& \sqrt[3]{(x-1)^{3}}=\sqrt[3]{\tan (b)} \\
& x=\sqrt[3]{\tan (b)}
\end{aligned}
$$

and this the one and only solution for any $b \in(-\pi / 2, \pi / 2)$. The function is thus injective.

Since the function is injective but not surjective, it is not invertible. But the function

$$
\begin{array}{rllc}
h^{\prime}: & \mathbb{R} & \longrightarrow & (-\pi / 2, \pi / 2) \\
& x & \mapsto & \arctan \left((x-1)^{3}\right)
\end{array}
$$

obtained from h by restricting the codomain, is surjective. Since it is a restriction, it is still injective. It is hence invertible and its inverse is

$$
\begin{array}{ccc}
h^{\prime-1}:(-\pi / 2, \pi / 2) & \longrightarrow & \mathbb{R} \\
x & \mapsto & \sqrt[3]{\tan (x)}
\end{array}
$$

As an exercise, check that

$$
\forall x \in \mathbb{R} \quad h^{\prime} \circ h^{\prime-1}(x)=x \text { and } \forall x \in \mathbb{R} \quad h^{\prime-1} \circ h^{\prime}(x)=x
$$

