FCS
 Math: Functions
 Exercises

Massimo Caboara

April $15^{t h}, 2021$

Exercises, full solution will be provided

Exercise 1. Prove that $|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|$ [Solution will be discussed in class]
Exercise 2. We have the function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & x^{2}+2 x-15
\end{array}
$$

1. Draw the graph of F. Mark the intersections with the axis and the vertex.
2. Determine $F([1,2])$.
3. Determine $F((-\infty, 1])$.
4. Determine the intersection of the graph of F with the line $y=0$.
5. Determine the intersection of the graph of F with the line $y=-7$.
6. Determine the intersection of the graph of F with the line $y=1$.
7. Determine $F^{-1}([0,1])$.
8. Determine $F([-5,+\infty))$.
9. Build an invertible function from F by restricting its domain and codomain.
10. Determine the formula for this inverse.
11. Find $F^{-1}(0), F^{-1}(1), F^{-1}(3), F^{-1}(8)$.

Solutions:

1. First of all we draw the graph of the parabola. We find the parabola roots

$$
x_{1,2}=\frac{-2 \pm \sqrt{4+60}}{2}=\frac{-2 \pm \sqrt{64}}{2}=\frac{-2 \pm 8}{2}=\{-5,3\}
$$

and its vertex. The x-coordinate of the vertex is

$$
V_{x}=-\frac{b}{2 a}=-\frac{2}{2}=-1
$$

and thus the y-coordinate of the vertex is

$$
V_{y}=F(-1)=(-1)^{2}+2(-1)-15=-6
$$

The vertex is $V=(-1,-16)$.
GNU1: Graph of F

2. Determine $F([1,2])$.

3. Determine $F((-\infty, 1])$.

4. The intersection of F with the line $y=0$ is $\{(-5,0),(3,0)\}$, the roots of the parabola.
5. The intersection of the graph of F with the line $y=-7$ is strictly related to solution of the equation
$F(x)=-7 \Longleftrightarrow x^{2}+2 x-15=-7 \Longleftrightarrow x^{2}+2 x-8=0 \Longleftrightarrow x_{1,2}=\{-4,2\}$
The intersection is $\{(-4,-7),(2,-7)\}$.
6. The intersection of the graph of F with the line $y=1$ is strictly related to
solution of the equation

$$
\begin{aligned}
F(x) & =1 \\
x^{2}+2 x-15 & =1 \\
x^{2}+2 x-16 & =0 \\
x_{1,2} & =\frac{-2 \pm \sqrt{5+64}}{2}=\frac{-2 \pm \sqrt{68}}{2}=\frac{-2 \pm \sqrt{4^{2} \cdot 17}}{2}=\frac{-2 \pm 2 \sqrt{17}}{2}=-1 \pm \sqrt{17}
\end{aligned}
$$

The intersection is $\{(-1-\sqrt{17}, 1),(-1+\sqrt{17}, 1)\}$. Graphically,

GNU4: intersection of $\operatorname{Graph}(F)$ with $y=1$

Build an invertible function from F by restricting its domain and codomain. The function

$$
F^{\prime}: \begin{array}{ccc}
{[-1,+\infty)} & \longrightarrow & {[-16,+\infty)} \\
x & \mapsto & x^{2}+2 x-15
\end{array}
$$

is invertible (it follows immediatley from the graph).
The function F has inverse. To find the formula we have to solve the equation with respect to the unknown x and parameter b

$$
F^{\prime}(x)=b \Longleftrightarrow x^{2}+2 x-15=b \Longleftrightarrow x^{2}+2 x-(b+15)=0
$$

We get

$$
x=\frac{-2 \pm \sqrt{4+4(b+15)}}{2}=\frac{-2 \pm \sqrt{64+4 b}}{2}=-1 \pm \sqrt{16+b}
$$

And for the inverse of F^{\prime} we choose the root $x=-1+\sqrt{16+b}$. If we had chosen to build the inverse to the left of the vertex, and not to the right, we would have chosen the root $x=-1-\sqrt{16+b}$. So we have

$$
\begin{array}{ccc}
F^{\prime-1}: & {[-16,+\infty)} & \longrightarrow \\
y & \mapsto & {[-1++\infty)} \\
& -1+\sqrt{16+y}
\end{array}
$$

We have

- $F^{-1}(0)=-1+\sqrt{16+0}=-1+4=3$.
- $F^{-1}(1)=-1+\sqrt{16+1}=-1+\sqrt{17}$.
- $F^{-1}(3)=-1+\sqrt{16+3}=-1+\sqrt{19}$.
- $F^{-1}(8)=-1+\sqrt{16+8}=-1+\sqrt{24}=-1+2 \sqrt{6}$.

Exercise 3. Is the function

$$
\begin{array}{rccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & e^{2 x+1}-3
\end{array}
$$

injective, surjective, invertible? Can we make it invertibile by restriciting domain and/or codomain? In the latter case, what is the inverse function formula?

Solution:

We try the algebraic way, solving the equation

$$
F(x)=b \Longleftrightarrow e^{2 x+1}-3=b \Longleftrightarrow e^{2 x+1}=b+3
$$

for the variable $x \in \mathbb{R}(\mathbb{R}$ is the domain) and the parameter $b \in \mathbb{R}(\mathbb{R}$ is the codomain).

Surgectivity: we note that the right side of the equation is always positive (check the graph of the function $f(x)=e^{x}$). Hence, for example, for $b=-4$ there is no solution to the equation. The function T is not surjective. This happens for every $b \leq-3$.

Injectivity: If $b \leq-3$ there is no solution, and this is OK. What happens if $\mathbf{b}>-3$?

$$
e^{2 x+1}=b+3
$$

We apply the invertible function (we can easily check its invertibility for example, by checking the graph)

$$
\begin{array}{rccc}
\log _{e}(\cdot): & \mathbb{R}^{+} & \longrightarrow & \mathbb{R} \\
x & \mapsto & \log _{e}(x)
\end{array}
$$

to the equation. This is possibile since both the left and the right side are always in the domain of $\log _{e}(\cdot), \mathbb{R}^{+}$.
(Remember that $b>-3$ and $\forall x \in \mathbb{R} e^{2 x+1} \geq 0$). We get

$$
\begin{aligned}
\log _{e}\left(e^{2 x+1}\right) & =\log _{e}(b+3) \\
2 x+1 & =\log _{e}(b+3) \\
2 x & =\log _{e}(b+3)-1 \\
x & =\frac{\log _{e}(b+3)-1}{2}
\end{aligned}
$$

we have solved the equation and there is only one solution for every b. For example

$$
\begin{gathered}
x=\frac{\log _{e}(-2+3)-1}{2}=\frac{\log _{e}(1)-1}{2}=-\frac{1}{2} \text { if } b=-2 \\
x=\frac{\log _{e}(0+3)-1}{2}=\frac{\log _{e}(3)-1}{2} \text { if } b=0
\end{gathered}
$$

the function in injective.

Since F is surjective but not injective, the function is not invertible.
If we restrict the codomain form \mathbb{R} to $[-3,+\infty)$, we study the function

$$
\begin{array}{rlll}
F^{\prime}: & \mathbb{R} & \longrightarrow & {[-3,+\infty)} \\
& x & \mapsto & e^{2 x+1}-3
\end{array}
$$

that is still injective (restricting the codomain does not change the iniectivity of a function) but is now surgjective, because

For all $b \in[-3,+\infty)$ there is $x \in \mathbb{R}$ s.t. $F^{\prime}(x)=b$ e.g. $x=\frac{\log _{e}(b+3)-1}{2}$
So the function F^{\prime}, that is different form F because it has a different codomain, is invertible, and its inverse is

$$
\begin{array}{ccc}
F^{\prime-1}: & {[-3,+\infty)} & \longrightarrow \\
\mathbb{R} \\
x & \mapsto & \frac{\log _{e}(b+3)-1}{2}
\end{array}
$$

Please note that
$\forall x \in[-3,+\infty) \quad F^{\prime} \circ F^{\prime-1}(x)=F^{\prime}\left(F^{\prime-1}(x)\right)=\frac{\log _{e}\left(e^{2 x-1}-3+3\right)-1}{2}=x$
$\forall x \in \mathbb{R} \quad F^{\prime-1} \circ F^{\prime}(x)=F^{\prime-1}\left(F^{\prime}(x)\right)=e^{2\left(\frac{\log _{e}(x+3)-1}{2}\right)+1}-3=x$
remember thet \forall stand for "for all". We have checked that $F^{\prime-1}$ is indeed the inverse of F^{\prime}. We will usually omit this check.

Exercise 4. Is the function

$$
\begin{array}{cccc}
T: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \sqrt[3]{\sqrt[5]{x}+2}
\end{array}
$$

injective, surjective, invertible? Can we make it invertibile by restriciting domain and/or codomain? In the latter case, what is the inverse function formula?

We proceed algebraically, solving the equation

$$
T(x)=b \quad \text { or } \quad \sqrt[3]{\sqrt[5]{x}+2}=b
$$

for the unknown $x \in \mathbb{R}$ and the parameter $b \in \mathbb{R}$. We apply to the equation the invertible function

$$
\begin{array}{rlll}
(\cdot)^{3}: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
x & \mapsto & x^{3}
\end{array}
$$

we obtain

$$
\begin{aligned}
(\sqrt[3]{\sqrt[5]{x}+2})^{3} & =b^{3} \\
\sqrt[5]{x}+2 & =b^{3} \\
\sqrt[5]{x} & =b^{3}-2
\end{aligned}
$$

We apply to the equation the invertible function

$$
(\cdot)^{5}: \begin{array}{clc}
\mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto
\end{array} x^{5}
$$

we obtain

$$
\begin{aligned}
(\sqrt[5]{x})^{5} & =\left(b^{3}-2\right)^{5} \\
x & =\left(b^{3}-2\right)^{5}
\end{aligned}
$$

we have always only one solution, for every $b \in \mathbb{R}$, and T is thus injective and surjective, hence invertible, and the inverse is

$$
\begin{array}{cccc}
T^{-1}: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \left(x^{3}-2\right)^{5}
\end{array}
$$

the checking that

$$
\forall x \in \mathbb{R} \quad F \circ F^{-1}(x)=x \text { and } \forall x \in \mathbb{R} \quad F^{-1} \circ F(x)=x
$$

is left as an exercise.

Exercise 5. We have the function

$$
\begin{array}{lclc}
f: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & x^{2}-5 x+6
\end{array}
$$

1. Determine $f^{-1}([0,+\infty))$.
2. Determine $f^{-1}(\mathbb{R})$.
3. Determine $f^{-1}([-10,-20])$.
4. Determine $f^{-1}([1,3])$.

Solution

We draw the graph of f and some lines lines, considering that the vertex V of the parabola is

$$
V_{x}=-\frac{b}{2 a}=\frac{5}{2} \text { and } V_{y}=f\left(\frac{5}{2}\right)=-\frac{1}{4}
$$

that the x-coordinates of intersections of $y=x^{2}-5 x+6$ and $y=1$ are the solutions of

$$
x^{2}-5 x+6=1 \text { thus } x=\frac{5 \pm \sqrt{5}}{2} \sim 1.4,3.6
$$

and that the x-coordinates of intersections of $y=x^{2}-5 x+6$ and $y=3$ are the solutions of

$$
x^{2}-5 x+6=3 \text { thus } x=\frac{5 \pm \sqrt{13}}{2} \sim 0.7,4.3
$$

1. Looking at the graph it is easy to see that

$$
f^{-1}([0,+\infty))=(-\infty, 2] \cup[3,+\infty)
$$

2. Looking at the graph, $f^{-1}(\mathbb{R})=\mathbb{R}$.

GNU8: $f^{-1}(\mathbb{R})$

3. From the graph of f it is easy to see that $f^{-1}([-10,-20])=\emptyset$, since the horizontal lines lower that $y=-0.25$ don't intersect the parabola, and the lines we are interested here are the ones between $y=-10$ and $y=-20$.
4. Looking at the graph $f^{-1}([1,3])=\left[\frac{5-\sqrt{5}}{2}, \frac{5-\sqrt{13}}{2}\right] \cup\left[\frac{5-\sqrt{13}}{2}, \frac{5-\sqrt{5}}{2}\right]$.

Exercise 6. We have the function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \sin (x)
\end{array}
$$

- Determine $f^{-1}([0,1])$.
- Determine $f^{-1}([0, \sqrt{2} / 2])$.

Solution

We draw the graph of the sin

and it easy to see that $f^{-1}([1,3])=\bigcup_{k \in \mathbb{Z}}[0+2 k \pi, \pi+2 k \pi]$

and it easy to see that

$$
f^{-1}([0, \sqrt{2} / 2])=\bigcup_{k \in \mathbb{Z}}[0+2 k \pi, \pi / 4+2 k \pi] \cup \bigcup_{k \in \mathbb{Z}}[3 / 4 \pi+2 k \pi, 2 \pi+2 k \pi]
$$

Exercise 7. We have the function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R}^{+} \\
& x & \mapsto & 3^{x+2}
\end{array}
$$

1. Say why F is invertible.
2. Find the explicit formula for F^{-1}.
3. Determine $F^{-1}([0,1])$.
4. Determine $F^{-1}([2,4])$.
5. Determine $F^{-1}([3,+\infty))$.
6. If $a, b \in \mathbb{R}^{+}, a<b$, determine $F^{-1}([a, b])$

Solution

1. Since $F=f \circ g$ is the composition of the two invertible functions

$$
g: \begin{array}{clcc}
& \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & x+2
\end{array} \text { and } \begin{array}{ccccc}
f: & \mathbb{R} & \longrightarrow & \mathbb{R}^{+} \\
& x & \mapsto & 3^{x}
\end{array}
$$

it is invertible.
2. Solving the equation

$$
3^{x+2}=b
$$

with respect the unknown x and parameter b in the codomain \mathbb{R}^{+}, we find

$$
x=\log _{3}(b)-2
$$

that exists since $b>0$. The inverse in thus

$$
\begin{array}{cccc}
F^{-1}: & \mathbb{R}^{+} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \log _{3}(x)-2
\end{array}
$$

3. Determine $F^{-1}([0,1])$. [Later]
4. Determine $F^{-1}([2,4])$. [Later]
5. Determine $F^{-1}([3,+\infty))$. [Later]
6. If $a, b \in \mathbb{R}^{+}, a<b$, determine $F^{-1}([a, b])$. [Later]

Exercise 8. Consider the function

$$
\begin{array}{r}
F: \begin{array}{r}
\mathbb{Z}
\end{array} \begin{array}{r}
\mathbb{Z} \\
n
\end{array} \begin{array}{r}
\mapsto \\
n^{2}-n-6
\end{array} \\
F^{-1}(\{0\})=? \\
F^{-1}(\{1,2,3\})=? \\
F^{-1}(\{-4,-6\})=? \\
F^{-1}(\{0,1,2,3,4,5,6\})=?
\end{array}
$$

Solution

This is not a function $: \mathbb{R} \longrightarrow \mathbb{R}$, so the graphical method is less useful. We still know that the points of the graph of f are on the parabola

We compute some images

$$
\begin{array}{llll}
F(-6)=36 & F(-5)=24 & F(-4)=14 & F(-3)=6 \\
F(-2)=0 & F(-1)=-4 & F(0)=-6 & F(0)=-6 \\
F(1)=-6 & F(2)=-4 & F(3)=0 & F(4)=6 \\
F(5)=14 & F(6)=24 & &
\end{array}
$$

We draw the "graph" of f even if this is not a function $: \mathbb{R} \longrightarrow \mathbb{R}$
GNU12: graph of $F(n)=n^{2}-n-6$

We see that
$F^{-1}(\{-4\})=\{-1,2\}$ and $F^{-1}(\{-6\})=\{0,1\} \Longrightarrow F^{-1}(\{-4,-6\})=\{-1,2,0,1\}$

Using the same technique, we see that

$$
\begin{aligned}
F^{-1}(\{0\}) & =\{-2,3\} \\
F^{-1}(\{1,2,3\}) & =\emptyset \\
F^{-1}(\{0,1,2,3,4,5,6\}) & =\{-3,-2,3,4\}
\end{aligned}
$$

