FCS
 Math: Functions
 Exercises

Massimo Caboara

April $15^{t h}, 2021$

Exercises, full solution will be provided

Exercise 1. Prove that $|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|$ [Solution will be discussed in class]
Exercise 2. We have the function

$$
\begin{array}{cclc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & x^{2}+2 x-15
\end{array}
$$

1. Draw the graph of F. Mark the intersections with the axis and the vertex.
2. Determine $F([1,2])$.
3. Determine $F((-\infty, 1])$.
4. Determine the intersection of the graph of F with the line $y=0$.
5. Determine the intersection of the graph of F with the line $y=-7$.
6. Determine the intersection of the graph of F with the line $y=1$.
7. Determine $F^{-1}([0,1])$.
8. Determine $F([-5,+\infty))$.
9. Build an invertible function from F by restricting its domain and codomain.
10. Determine the formula for this inverse.
11. Find $F^{-1}(0), F^{-1}(1), F^{-1}(3), F^{-1}(8)$.

Exercise 3. Is the function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & e^{2 x+1}-3
\end{array}
$$

injective, surjective, invertible? Can we make it invertibile by restriciting domain and/or codomain? In the latter case, what is the inverse function formula?

Exercise 4. Is the function

$$
\begin{array}{rllc}
T: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \sqrt[3]{\sqrt[5]{x}+2}
\end{array}
$$

injective, surjective, invertible? Can we make it invertibile by restriciting domain and/or codomain? In the latter case, what is the inverse function formula?

Exercise 5. We have the function

$$
\begin{array}{lllc}
f: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & x^{2}-5 x+6
\end{array}
$$

- Determine $f^{-1}([0,+\infty))$.
- Determine $f^{-1}(\mathbb{R})$.
- Determine $f^{-1}([-10,-20])$.
- Determine $f^{-1}([1,3])$.

Exercise 6. We have the function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \sin (x)
\end{array}
$$

- Determine $f^{-1}([0,1])$.
- Determine $f^{-1}([0, \sqrt{2} / 2])$.

Exercise 7. We have the function

$$
\begin{array}{rllc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R}^{+} \\
& x & \mapsto & 3^{x+2}
\end{array}
$$

- Say why F is invertible.
- Find the explicit formula for F^{-1}.
- Determine $F^{-1}([0,1])$.
- Determine $F^{-1}([2,4])$.
- Determine $F^{-1}([3,+\infty))$.
- If $a, b \in \mathbb{R}^{+}, a<b$, determine $F^{-1}([a, b])$

Example 1. Consider the function

$$
\begin{array}{r}
F: \begin{array}{c}
\mathbb{Z} \\
n \\
\mapsto
\end{array} n^{2}-n-6 \\
F^{-1}(\{0\})=? \\
F^{-1}(\{1,2,3\})=? \\
F^{-1}(\{-4,-6\})=? \\
F^{-1}(\{0,1,2,3,4,5,6\})=?
\end{array}
$$

Exercises

Exercise 8. Is the function

$$
\begin{array}{cccc}
f: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \left(x^{3}-2\right)^{5}
\end{array}
$$

injective, surjective, invertible? Can we make it invertibile by restriciting domain and/or codomain? In the latter case, what is the inverse function formula? [Invertible. Formula of the inverse is $\sqrt[3]{\sqrt[5]{x}-2}$]

Exercise 9. Is the function

$$
\begin{array}{cccc}
T: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & 2 x^{2}+3 x-2
\end{array}
$$

injective, surjective, invertible? Can we make it invertibile by restriciting domain and/or codomain? In the latter case, what is the inverse function formula? [usual parabola exercise]

Exercise 10. Is the function

$$
\begin{array}{ccc}
f^{-1}:[-3,+\infty) & \longrightarrow & \mathbb{R} \\
x & \mapsto & \frac{\log _{e}(x+3)-1}{2}
\end{array}
$$

injective, surjective, invertible? Can we make it invertibile by restriciting domain and/or codomain? In the latter case, what is the inverse function formula? [Invertible. Inverse formula is $3^{2 x+1}-3$]

