FCS
 Math: Functions
 Additional exercises

Massimo Caboara

April $1^{s t}, 2021$

Exercise 1. Is there an invertible function between the following sets? If the answer is affermative, give the explicit function, by formula or an explict description. $A=\left\{n^{2} \mid n \in \mathbb{N}\right\}, B=\left\{k^{3} \mid k \in \mathbb{Z}\right\}$

The two sets to have the same cardinality, since $|A|=|\mathbb{N}|,|B|=|\mathbb{Z}|$ and $|\mathbb{N}|=|\mathbb{Z}|$. We build the explicit function $T: A \longrightarrow B$.

We have the functions
and their inverses

$$
\begin{array}{rllllllllll}
F^{-1}: & A & \longrightarrow & \mathbb{N} & G^{-1}: & B & \longrightarrow & \mathbb{Z} & H^{-1}: & \mathbb{Z} & \longrightarrow \\
& n & \mapsto & \sqrt{n} & & k & \mapsto & \sqrt[3]{k} & & n & \mapsto
\end{array} \begin{cases}-2 n & n<0 \\
2 n-1 & n \geq 0\end{cases}
$$

The first two functions and theirs inverses are easy to determine, and the last function and its inverse have been build in a previous exercise.

We have

$$
A \xrightarrow{F^{-1}} \mathbb{N} \xrightarrow{H} \mathbb{Z} \xrightarrow{G} B
$$

and we build

$$
\begin{array}{lllc}
G \circ H \circ F^{-1}: & A & \longrightarrow & B \\
& n & \mapsto & G\left(H\left(F^{-1}(n)\right)\right)
\end{array}
$$

where
$G\left(H\left(F^{-1}(n)\right)\right)=G(H(\sqrt{n}))=G\left(\left\{\begin{array}{ll}-\frac{\sqrt{n}}{2} & n \text { is even } \\ \frac{\sqrt{n}+1}{2} & n \text { is odd }\end{array}\right)= \begin{cases}-\left(\frac{\sqrt{n}}{2}\right)^{3} & n \text { is even } \\ \left(\frac{\sqrt{n}+1}{2}\right)^{3} & n \text { is odd }\end{cases}\right.$
the function

$$
\begin{aligned}
T: A & \longrightarrow \\
n & \mapsto\left\{\begin{array}{cl}
B \\
-\left(\frac{\sqrt{n}}{2}\right)^{3} & n \text { is even } \\
\left(\frac{\sqrt{n}+1}{2}\right)^{3} & n \text { is odd }
\end{array}\right.
\end{aligned}
$$

is invertible since it is the composition of invertible functions. If we want the explicit inverse, we have
$T^{-1} \equiv\left(G \circ H \circ F^{-1}\right)^{-1} \equiv\left((G \circ H) \circ F^{-1}\right)^{-1} \equiv\left(F^{-1}\right)^{-1} \circ(G \circ H)^{-1} \equiv F \circ H^{-1} \circ G^{-1}$
and

$$
\begin{aligned}
F \circ H^{-1} \circ G^{-1}(n) & =F\left(H^{-1}\left(G^{-1}(n)\right)\right) \\
& =F\left(H^{-1}(\sqrt[3]{n})\right. \\
& =F\left(\left\{\begin{array}{ll}
-2 \sqrt[3]{n} & n<0 \\
2 \sqrt[3]{n}-1 & n \geq 0
\end{array}\right)\right. \\
& = \begin{cases}(-2 \sqrt[3]{n})^{2} & n<0 \\
(2 \sqrt[3]{n}-1)^{2} & n \geq 0\end{cases}
\end{aligned}
$$

Exercise 2. Is there an invertible function between the following sets? If the answer is affermative, give the explicit function, by formula or an explict description. $A=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} \subset \mathbb{R}^{2}$, $B=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=4\right\} \subset \mathbb{R}^{2}$.

The two sets are described in the plane \mathbb{R}^{2} by the two circles of radius 1 and 2. The one-to-one correspondence between them is given by the map F

Exercise 3. Do the subsets A, B in \mathbb{R}^{2} have the same cardinality? [YES]
GNU15

We introduce the two sets C, D as shown in the figure below. It is easy to see that $|A|=|C|$ and $|B|=|D|$ using the two one-to-one correspondences indicated as G and F, and $|C|=|D|$ since C is just a translation and rotation of D.

Since $|A|=|C|,|C|=|D|$ and $|D|=|B|$ we have $|A|=|B|$.
Remark 1. Note that the sets A, B are not the graph of any function - they fail the vertical line test. They are, though, subsets of \mathbb{R}^{2}.

