ELIMINAZIONE DEI QUANTIFICATORI PER ALGEBRE DI BOOLE SENZA ATOMI

MARCO USULA

Diversi lemmi che enunceremo e utilizzeremo in seguito sono intuitivi e hanno dimostrazioni tecniche che non aggiungono nulla alle informazioni già contenute nell'enunciato. Tali dimostrazioni verranno posposte alla Sezione 3 per non appesantire la lettura.

1. Definizioni e prime proprietà

Definiamo la teoria delle algebre di Boole.

Definizione 1.1. Sia $\mathcal{L} = \{0, 1, +, *, \bar{,} \leq\}$ dove 0, 1 sono simboli di costante, +, * sono simboli di funzioni binarie, $\bar{}$ è simbolo di funzione unaria, \leq è simbolo di relazione binaria. La teoria delle algebre di Boole BA è costituita dai seguenti assiomi (che si intendono quantificati universalmente):

- (1) (associatività) (x+y) + z = x + (y+z); x * (y*z) = (x*y)*z;
- (2) (idempotenze) x + x = x; x * x = x;
- (3) (commutatività) x + y = y + x; x * y = y * x;
- (4) (assorbimenti) x + (x * y) = x; x * (x + y) = x;
- (5) (distributività) (x+y)*z = (x*z)+(y*z); (x*y)+z = (x+z)*(y+z);
- (6) (minimo e massimo) x * 0 = 0; x + 1 = 1; x + 0 = x; x * 1 = x;
- (7) (complemento) $x + \bar{x} = 1$; $\bar{x} * x = 0$;
- (8) (ordine) $x \le y \leftrightarrow x + y = y$.

Osservazione 1.2. Avremmo potuto omettere il simbolo \leq dal linguaggio e l'assioma 8 dalla teoria, e definire \leq a partire dal + come nell'assioma 8, scegliamo di includere \leq nel linguaggio solo per comodità di notazione.

Omettiamo la facile dimostrazione del seguente

Lemma 1.3.

- (1) $BA \models \bar{0} = 1 \land \bar{1} = 0;$
- (2) (Leggi di De Morgan) $BA \models \overline{x+y} = \overline{x} * \overline{y} e BA \models \overline{x*y} = \overline{x} + \overline{y};$
- (3) (\leq è un ordine parziale) $BA \models x \leq x$, $BA \models x \leq y \land y \leq x \rightarrow x = y$; $BA \models x \leq y \land y \leq z \rightarrow x \leq z$;
- (4) (0 è minimo, 1 è massimo) $BA \models 0 \le x \land x \le 1$;
- (5) (definizione equivalente di \leq) $BA \models x \leq y \leftrightarrow x * y = x;$
- (6) (compatibilità di \leq rispetto a +) $BA \models x \leq y \rightarrow x + z \leq y + z;$
- (7) (compatibilità di \leq rispetto a*) $BA \models x \leq y \rightarrow x*z \leq y*z;$
- (8) (-cambia il verso delle disuguaglianze) $BA \models x \leq y \leftrightarrow \bar{y} \leq \bar{x}$.

Esempio 1.4. Dato un insieme non vuoto X, l'insieme delle parti $\mathcal{P}(X)$ è un modello di BA in modo naturale.

Lemma 1.5. (Forma normale) Sia Σ un'algebra di Boole generata da $e_1, ..., e_n$. Allora ogni elemento $x \in \Sigma$ può essere espresso nella forma

$$\sum_{i \in I} \prod_{j=1}^{n} \delta_i(e_j),$$

dove I è un insieme finito e $\delta_i(e_j) \in \{e_j, \bar{e}_j\}$ (se I è vuoto, la somma si intende uguale a 0).

Proof. Nella Sezione 3.

Teorema 1.6. Ogni algebra di Boole finitamente generata è finita.

Proof. Sia Σ generata da $e_1,...,e_n$. Sia C l'insieme degli elementi $c \in \Sigma$ tali che

$$c = \prod_{j=1}^{n} \delta(e_j),$$

per qualche funzione δ tale che, per ogni j, $\delta(e_j) \in \{e_j, \bar{e}_j\}$. Allora chiaramente $|C| \leq 2^n$. Dall'esistenza della forma normale, abbiamo che ogni elemento di Σ è uguale ad una somma finita di elementi di C: grazie alla proprietà di idempotenza di +, queste somme finite sono al più tante quante sono le parti di C, e quindi $|\Sigma| \leq 2^{2^n}$.

Osservazione 1.7. In generale, non è detto che $|\Sigma| = 2^{2^n}$. Un facile controesempio è dato dalle parti di un insieme di 3 elementi, che ha cardinalità 2^3 .

Definizione 1.8. Un atomo di un'algebra di Boole Σ è un elemento minimale di $\Sigma \setminus \{0\}$ rispetto a \leq . Se ogni elemento di Σ diverso da 0 è minorato da qualche atomo, allora l'algebra si dice atomica.

Lemma 1.9. Il prodotto di due atomi distinti di un'algebra di Boole è uguale a 0.

Proof. Nella Sezione 3. □

Esempio 1.10. (Algebra di Boole atomica) Prendiamo X non vuoto e $\mathcal{M} = \mathcal{P}(X)$. Allora gli atomi di \mathcal{M} sono i singoletti, e quindi $\mathcal{P}(X)$ è atomica in quanto ogni insieme non vuoto è minorato dai singoletti dei suoi elementi.

Esempio 1.11. (Algebra di Boole senza atomi) Consideriamo l'algebra di Boole $\mathcal{P}(\mathbb{Q})$, e consideriamo su \mathbb{Q} la topologia indotta da quella euclidea su \mathbb{R} . L'insieme \mathcal{C} dei clopen di \mathbb{Q} è una sottoalgebra di $\mathcal{P}(\mathbb{Q})$

- (1) contiene \emptyset ;
- (2) contiene \mathbb{Q} ;
- (3) è chiusa per unione finita, intersezione finita, e passaggio al complemetare.

Sia $A \in \mathcal{C}$ non vuoto. Allora, essendo A intersezione di un aperto di \mathbb{R} con \mathbb{Q} , esistono $a,b \in \mathbb{R}$ tali che $(a,b) \cap \mathbb{Q}$ sia contenuto strettamente in A. Dato che gli irrazionali sono densi in \mathbb{R} , possiamo prendere senza perdita di generalità a e b irrazionali. Allora $(a,b) \cap \mathbb{Q}$ è un clopen non vuoto di \mathbb{Q} (perchè \mathbb{Q} è

denso in \mathbb{R}) contenuto strettamente in A, in quanto il complementare è dato da $((-\infty, a] \cup [b, +\infty)) \cap \mathbb{Q} = ((-\infty, a) \cup (b, +\infty)) \cap \mathbb{Q}$, che è ancora un aperto di \mathbb{Q} .

Proposizione 1.12. Un'algebra di Boole finita è atomica.

Proof. Supponiamo che Σ non sia atomica. Allora esiste $x \in \Sigma$ diverso da 0 e non minorato da alcun atomo. Questo significa che in particolare x non è un atomo: allora esiste $0 < x_1 < x$. Ma allora anche x_1 non è un atomo, e quindi come prima esiste $0 < x_2 < x_1$. Iterando questo procedimento, si giunge ad una catena infinita di elementi distinti di Σ , per cui Σ è infinita.

Teorema 1.13. In un'algebra di Boole finita, ogni elemento si esprime in modo unico come somma degli atomi più piccoli di lui.

Proof. Siano $e_1, ..., e_n$ gli atomi di un'algebra di Boole finita Σ . Dimostriamo che ogni elemento è somma di atomi. Osserviamo che $e_1 + \cdots + e_n = 1$: infatti, supponendo per assurdo che $e_1 + \cdots + e_n \neq 1$, allora avremmo $\bar{e}_1 * \cdots * \bar{e}_n \neq 0$, e quindi esisterebbe un atomo e_i tale che $0 < e_i < \bar{e}_1 * \cdots * \bar{e}_n$; ma allora $e_i * (\bar{e}_1 * \cdots * \bar{e}_n) = e_i$, e contemporaneamente $e_i * (\bar{e}_1 * \cdots * \bar{e}_n) = e_i * \bar{e}_i * \cdots = 0$, da cui $e_i = 0$ (assioma 7, $BA \models x * \bar{x} = 0$), e questo è assurdo perchè e_i è un atomo. Ora, sia $x \in \Sigma$. Se x = 0, la tesi è banale. Se invece $x \neq 0$, allora esiste un atomo a tale che $0 < a \leq x$. Senza perdita di generalità, supponiamo $a = e_1$. Allora, detto

$$x_1 = x * \sum_{j>1} e_j,$$

si ha che

$$x = x * \sum_{j=1}^{n} e_j = x * e_1 + x_1 = e_1 + x_1.$$

Osserviamo che $e_1*x_1=0$ per il Lemma 1.9. Se $x_1=0$, allora $x=e_1$, e quindi abbiamo finito. In caso contrario, esiste un atomo a tale che $0 < a \le x_1$. Allora $a*x_1=a$, e quindi $a \ne e_1$. Supponiamo allora $a=e_2$ senza perdita di generalità. Analogamente a prima, detto

$$x_2 = x_1 * \sum_{j>2} e_j,$$

si ha che

$$x_1 = x_1 * \sum_{j=1}^{n} e_j = x_1 * e_1 + x_1 * e_2 + x_2 = e_2 + x_2,$$

e quindi

$$x = e_1 + e_2 + x_2$$

e inoltre $e_1*x_2=e_2*x_2=0$. Possiamo iterare questo procedimento solo un numero finito di volte, in quanto se così non fosse Σ avrebbe infiniti atomi, assurdo. Ne consegue la tesi. Per quanto riguarda l'unicità, mostriamo che se $x=\sum_{i\in I}e_i$ con $I\subseteq\{1,...,n\}$, allora gli e_i con $i\in I$ sono tutti e soli gli atomi più piccoli di x. Dato che x=0 se e solo se $I=\emptyset$, per x=0 la tesi è vera. Sia quindi $I\neq\emptyset$, o equivalentemente $x\neq0$. Per ogni $i\in I$, si ha $x*e_i=e_i$ da cui $e_i\leq x$; viceversa, sia $e_j\leq x$: allora $\left(\sum_{i\in I}e_i\right)*e_j=x*e_j=e_j$, e, essendo il prodotto di due atomi distinti uguale a 0, questo accade se e solo se $j\in I$.

Teorema 1.14. Siano \mathcal{M} ed \mathcal{N} due algebre di Boole finite con lo stesso numero di atomi. Allora ogni bigezione tra l'insieme degli atomi di \mathcal{M} e l'insieme degli atomi di \mathcal{N} si estende in modo naturale ad un unico isomorfismo da \mathcal{M} ad \mathcal{N} .

Proof. Siano $m_1, ..., m_k$ e $n_1, ..., n_k$ gli atomi di \mathcal{M} e di \mathcal{N} rispettivamente. Sia $f: \vec{m} \to \vec{n}$ una bigezione tra atomi. Senza perdita di generalità supponiamo che $f(m_i) = n_i$. Definiamo un'estensione di f in questo modo:

$$\tilde{f}: \mathcal{M} \to \mathcal{N}
\sum_{i \in I} m_i \mapsto \sum_{i \in I} n_i$$

dove $I \subseteq \{1,...,n\}$. La \tilde{f} è ben definita e biunivoca per il teorema precedente, così come la sua inversa. Inoltre, è immediato verificare che sia la \tilde{f} sia la sua inversa sono morfismi. Ne consegue che la \tilde{f} è un isomorfismo. L'unicità è banale, in quanto due morfismi che coincidono su un insieme di generatori del dominio coincidono su tutto il dominio.

Corollario 1.15. Ogni algebra di Boole finita è isomorfa alle parti di un insieme finito.

Proof. Dato un insieme finito X con n elementi, l'algebra di Boole $\mathcal{P}(X)$ è un'algebra finita con n atomi (i singoletti). Allora, dal teorema precedente, ogni algebra di Boole con n atomi è isomorfa a $\mathcal{P}(X)$.

2. Eliminazione dei quantificatori

Definizione 2.1. La teoria delle algebre di Boole senza atomi (abbreviato ABA) si ottiene aggiungendo a BA l'assioma

(1) (non esistenza di atomi) $\forall x \neq 0 \exists y (0 < y < x)$.

Il nostro obiettivo è dimostrare che la teoria ABA ha eliminazione dei quantificatori.

Osservazione 2.2. La sola BA non ha eliminazione dei quantificatori. Difatti, BA non è neanche model completa. Osserviamo infatti che ogni modello di BA ha una sottostruttura isomorfa all'algebra di Boole $\{0,1\}$ con 2 elementi, che è un modello di BA: se BA fosse model-completa, allora grazie al fatto che $\{0,1\}$ si immerge in ogni modello di BA, la teoria BA sarebbe completa, mentre sappiamo che non lo è (ad esempio, l'enunciato "non esistono atomi" non è decidibile da BA).

Richiamiamo il seguente teorema, che useremo per dimostrare che ABA ha eliminazione dei quantificatori:

Teorema 2.3. Sia T una teoria. Se, per ogni coppia \mathcal{M}, \mathcal{N} di modelli di T, l'insieme degli isomorfismi parziali finiti da \mathcal{M} ad \mathcal{N} ha il va e vieni, allora T ha eliminazione dei quantificatori.

Ora abbiamo tutti gli strumenti per dimostrare il

Teorema 2.4. Siano $\mathcal{M}, \mathcal{N} \models ABA$. Allora l'insieme degli isomorfismi parziali finiti da \mathcal{M} ad \mathcal{N} ha il va e vieni.

Proof. Sia $f: \vec{a} \to \vec{b}$ un isomorfismo parziale. Sia $m \in \mathcal{M}$. Vogliamo trovare un $n \in \mathcal{N}$ in modo da estendere f ad un isomorfismo parziale $\{\vec{a}, m\} \to \{\vec{b}, n\}$. Questo è equivalente a dimostrare che esiste $n \in \mathcal{N}$, e un isomorfismo $\tilde{g}: \langle \vec{a}, m \rangle \to \langle \vec{b}, n \rangle$, la cui restrizione ad \vec{a} coincida con f, e tale che $\tilde{g}(m) = n$. Per fare questo, l'idea è quella di costruire una particolare bigezione g, tra atomi di $\langle \vec{a}, m \rangle$ e atomi di $\langle \vec{b}, n \rangle$, applicare il Teorema 1.14 e dimostrare che l'isomorfismo \tilde{g} , indotto da g, estende f. Per applicare la strategia appena descritta, dobbiamo innanzitutto capire come ottenere gli atomi di un'algebra di Boole finita a partire dai suoi generatori. A tal proposito, ci sarà utile il seguente

Lemma 2.5. Sia Σ un'algebra di Boole finita. Siano $e_1,...,e_n \in \Sigma$ distinti e diversi da 0. Allora gli e_i sono tutti e soli gli atomi di Σ se e solo se verificano le seguenti proprietà:

```
(1) gli e_i generano \Sigma;
```

- (2) $e_1 + \cdots + e_n = 1$;
- (3) $e_i * e_j = 0$ per ogni $i \neq j$.

Proof. Nella Sezione 3.

Troviamo gli atomi di $\langle \vec{a}, m \rangle$. Ricordiamo che f, in quanto isomorfismo parziale, si estende in modo unico ad un isomorfismo $\tilde{f}:\langle \vec{a} \rangle \to \langle \vec{b} \rangle$. Essendo $\langle \vec{a} \rangle$ e $\langle \vec{b} \rangle$ finitamente generate, esse sono finite per il Teorema 1.6. Inoltre, essendo \tilde{f} un isomorfismo, \tilde{f} si restringe ad una bigezione tra gli atomi $c_1, ..., c_k$ di $\langle \vec{a} \rangle$ e gli atomi $d_1, ..., d_k$ di $\langle \vec{b} \rangle$, la cui numerazione è scelta in modo che $\tilde{f}(c_i) = d_i$. Ora, definiamo i seguenti elementi di \mathcal{M} :

- (1) per $i \in \{1, ..., k\}$, definiamo $m_i = m * c_i$;
- (2) per $i \in \{1, ..., k\}$, definiamo $m_{k+i} = \bar{m} * c_i$.

Osserviamo che:

- (1) da $c_1 + \cdots + c_k = 1$, abbiamo $m_1 + \cdots + m_{2k} = m + \bar{m} = 1$;
- (2) se $i \neq j$, allora $m_i * m_j = 0$ per l'assioma 7 e il Lemma 1.9;
- (3) gli m_i generano la sottoalgebra $\langle \vec{a}, m \rangle = \langle \vec{c}, m \rangle$: infatti, gli m_i appartengono chiaramente a $\langle \vec{c}, m \rangle$, ed inoltre per ogni i abbiamo $c_i = m_i + m_{k+i}$, e inoltre $m_1 + \cdots + m_k = m$.

Per il Lemma 2.5, gli m_i diversi da 0 costituiscono tutti e soli gli atomi della sottoalgebra finita $\langle \vec{a}, m \rangle \subseteq \mathcal{M}$.

Definiamo ora i seguenti elementi di \mathcal{N} :

- (1) per $i \in \{1, ..., k\}$:
 - (a) se $m_i = 0$, definiamo $n_i = 0$;
 - (b) se $0 < m_i < c_i$, definiamo n_i tale che $0 < n_i < d_i$ (esiste in quanto, se non esistesse, allora d_i sarebbe un atomo di \mathcal{N} , il che è assurdo in quanto $\mathcal{N} \models ABA$);
 - (c) se $m_i = c_i$, definiamo $n_i = d_i$;
- (2) definiamo $n = n_1 + \cdots + n_k$;

(3) per
$$i \in \{1, ..., k\}$$
, definiamo $n_{k+i} = \bar{n} * d_i$.

Analogamente a come abbiamo fatto per gli m_i , otteniamo che gli n_i diversi da 0 costituiscono tutti e soli gli atomi della sottoalgebra finita $\langle \vec{b}, n \rangle \subseteq \mathcal{N}$.

Definiamo ora la funzione $g: \vec{m} \to \vec{n}$, che a m_i associa n_i . Si tratta ovviamente di una bigezione finita, che in più si restringe ad una bigezione tra gli atomi di $\langle \vec{a}, m \rangle$ e gli atomi di $\langle \vec{b}, n \rangle$, in quanto, per come sono stati definiti gli n_i , abbiamo che $m_i = 0$ se e solo se $n_i = 0$. Allora, per il Teorema 1.14, g si estende in modo unico ad un isomorfismo $\tilde{g}: \langle \vec{a}, m \rangle \to \langle \vec{b}, n \rangle$. Osserviamo ora che

$$\tilde{g}(m) = \tilde{g}(m_1 + \dots + m_k) = \tilde{g}(m_1) + \dots + \tilde{g}(m_k) = n_1 + \dots + n_k = n_k$$

e che

$$\tilde{g}(c_i) = \tilde{g}(m_i + m_{k+i}) = \tilde{g}(m_i) + \tilde{g}(m_{k+i}) = n_i + n_{k+i} = d_i;$$

quest'ultima uguaglianza ci mostra che \tilde{g} si restringe ad un isomorfismo tra $\langle \vec{a} \rangle$ e $\left\langle \vec{b} \right\rangle$ che coincide con \tilde{f} sugli atomi, e quindi $\tilde{g}_{|\langle \vec{a} \rangle, \langle \vec{b} \rangle} = \tilde{f}$. In particolare $\tilde{g}(\vec{a}) = \vec{b}$ e quindi \tilde{g} estende f. Ne consegue che la restrizione di \tilde{g} a $\{\vec{a}\} \cup \{m\}$ e $\{\vec{b}\} \cup \{n\}$ è un isomorfismo parziale che estende f, come volevasi dimostrare.

Corollario 2.6. La teoria ABA ha eliminazione dei quantificatori.

Corollario 2.7. La teoria ABA è ω -categorica.

Proof. Dati due modelli numerabili \mathcal{M}, \mathcal{N} di ABA, la funzione vuota da \mathcal{M} ad \mathcal{N} è un isomorfismo parziale da \mathcal{M} ad \mathcal{N} , in quanto le sottoalgebre di \mathcal{M} ed \mathcal{N} generate dalle costanti sono isomorfe entrambe all'algebra di Boole con 2 elementi. Allora, per il Teorema 2.4 e per il Teorema di Scott, si ha che \mathcal{M} ed \mathcal{N} sono isomorfe. \square

Corollario 2.8. La teoria ABA è completa.

Proof. Siano \mathcal{M} ed \mathcal{N} due modelli di ABA. Per il Teorema di Lowenheim-Skolem verso il basso, esistono due sottostrutture elementari $\mathcal{A} \prec \mathcal{M}$ e $\mathcal{B} \prec \mathcal{N}$ numerabili. Ma allora, per la ω -categoricità di ABA, $\mathcal{A} \simeq \mathcal{B}$, e quindi, detto ϕ un enunciato, $\mathcal{M} \models \phi$ se e solo se $\mathcal{A} \models \phi$ se e solo se $\mathcal{B} \models \phi$ se e solo se $\mathcal{N} \models \phi$, come volevasi dimostrare.

Corollario 2.9. La teoria ABA è decidibile.

Proof. ABA è completa e finitamente assiomatizzabile, quindi anche ricorsivamente assiomatizzabile, per cui è decidibile.

3. Dimostrazioni dei lemmi

Dimostrazione~del~Lemma~1.5. Sia Nl'insieme degli elementix di Σ che si scrivono nella forma

$$x = \sum_{i \in I} \prod_{j=1}^{n} \delta_i(e_j)$$

per qualche I finito e qualche I-upla di funzioni δ_i tali che, per ogni i,j, si abbia $\delta_i(e_j) \in \{e_j, \bar{e}_j\}$. Vogliamo dimostrare che $N = \Sigma$. Innanzitutto, osserviamo che N contiene tutti gli e_j e i loro complementari. Inoltre, N è una sottoalgebra di Σ . Infatti:

- (1) $1 = e_1 + \bar{e}_1 \in N$;
- (2) $0 \in N$ (basta prendere I vuoto);
- (3) N è ovviamente chiuso rispetto a +;
- (4) N è chiuso anche rispetto a *: infatti, usando la distributività,

$$\left(\sum_{i \in I} \prod_{j=1}^{n} \delta_{i}(e_{j})\right) * \left(\sum_{k \in K} \prod_{h=1}^{n} \delta_{k}(e_{h})\right) =$$

$$= \sum_{i \in I} \left(\prod_{j=1}^{n} \delta_{i}(e_{j}) * \left(\sum_{k \in K} \prod_{h=1}^{n} \delta_{k}(e_{h})\right)\right) =$$

$$= \sum_{i \in I} \sum_{k \in K} \left(\left(\prod_{j=1}^{n} \delta_{i}(e_{j})\right) * \left(\prod_{h=1}^{n} \delta_{k}(e_{h})\right)\right) =$$

$$= \sum_{i \in I} \sum_{k \in K} \left(\prod_{j=1}^{n} \delta_{i}(e_{j}) * \delta_{k}(e_{j})\right) .$$

Osserviamo che, per ogni j, $\delta_i(e_j) \neq \delta_k(e_j)$ se e solo se $\delta_i(e_j) * \delta_k(e_j) = 0$. Ne consegue che, per ogni coppia $(i,k) \in I \times K$, se esiste un j tale che $\delta_i(e_j) \neq \delta_k(e_j)$, allora

$$\prod_{j=1}^{n} \delta_i(e_j) * \delta_k(e_j) = 0.$$

Sia quindi T l'insieme delle coppie $(i,k) \in I \times K$ tali che, per ogni $j \in \{1,...,n\}$, si abbia $\delta_i(e_j) = \delta_k(e_j)$: allora,

$$\sum_{i \in I} \sum_{k \in K} \left(\prod_{j=1}^n \delta_i(e_j) * \delta_k(e_j) \right) = \sum_{(i,k) \in T} \left(\prod_{j=1}^n \delta_i(e_j) * \delta_k(e_j) \right),$$

che appartiene a N.

(5) N è chiuso per complemento: infatti, usando De Morgan,

$$\overline{\sum_{i \in I} \prod_{j=1}^{n} \delta_i(e_j)} = \prod_{i \in I} \sum_{j=1}^{n} \overline{\delta_i(e_j)}$$

e, dato che $\overline{\delta_i(e_j)} \in N$, dalla chiusura rispetto a + e a * si ottiene che il secondo membro sta in N.

Ne consegue che N è una sottoalgebra di Σ che contiene i generatori di Σ , e quindi coincide con Σ .

Dimostrazione del Lemma 1.9. Siano $a \neq b$ atomi di Σ . Osserviamo che $a * b \leq a$ e $a * b \leq b$. Se $a * b \neq 0$, allora, essendo a e b atomi, deve essere a * b = a e a * b = b, da cui a = b, assurdo. Ne consegue che a * b = 0.

Dimostrazione del Lemma 2.5. (\Rightarrow) Il Teorema 1.13 implica che gli atomi di Σ generano Σ e che 1, essendo il massimo di Σ , coincide con la somma di tutti gli atomi. Il punto 3 deriva dal Lemma 1.9.

- (⇐) Suddividiamo il ragionamento in vari punti:
 - (1) Gli e_i sono atomi. Infatti:
 - (a) Abbiamo

$$\bar{e}_i = \sum_{j \neq i} e_j :$$

infatti, da $e_1 + \dots + e_n = 1$ abbiamo $\bar{e}_i = (e_i * \bar{e}_i) + \left(\sum_{j \neq i} e_j * \bar{e}_i\right) = \left(\sum_{j \neq i} e_j\right) * \bar{e}_i$, da cui

$$\bar{e}_i \le \sum_{j \ne i} e_j,$$

e inoltre da $\bar{e}_i + e_i = 1$ abbiamo $\bar{e}_i * e_j = e_j$, da cui $e_j \leq \bar{e}_i$ per ogni $j \neq i$, e quindi

$$\sum_{j \neq i} e_j \le \bar{e}_i.$$

(b) Ogni elemento di Σ è somma di e_k : infatti, preso $x \in \Sigma$ espresso in forma normale, si ha

$$x = \sum_{i \in I} \prod_{j=1}^{n} \delta_i \left(e_j \right)$$

come nel Lemma 1.5. Ora, osserviamo che, dal punto (a), se $i \neq j$ abbiamo che $e_i * \bar{e}_j = e_i * \left(\sum_{k \neq j} e_k\right) = e_i$ per l'ipotesi 3, e dunque per ogni $i \in I$ abbiamo che $\prod_{j=1}^n \delta_i(e_j)$ è uguale a 0 oppure è un e_k . Ne consegue che x è somma di e_k .

(c) Se $0 \le x \le e_1$, allora si deve avere $x * e_1 = x$. Ma, dal punto (b), possiamo esprimere $x = \sum_i e_i$, e quindi

$$x = \left(\sum_{i} e_i\right) * e_1 = \sum_{i} \left(e_i * e_1\right),$$

da cui che x è uguale a 0 se tutti gli i sono diversi da 1, oppure è uguale a e_1 se almeno un i è uguale a 1. Ne consegue che e_1 è atomico, e analogamente lo sono tutti gli altri.

(2) Gli e_i sono tutti gli atomi. Infatti, per il Teorema 1.13, 1 è somma di tutti gli atomi. Ma $1 = e_1 + \cdots + e_n$ e gli e_i sono atomi per quanto appena dimostrato: dall'unicità dell'espressione di 1 come somma di atomi, si ha che gli e_i sono tutti gli atomi.