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1 Logica proposizionale

1.1 Proposizioni e connettivi

Spesso in matematica, per dimostrare una certa tesi B, si usa il seguente me-
todo, chiamato ragionamento per casi: se riusciamo a dedurre B sia a partire
dall’ipotesi che un certo enunciato A sia vero, sia a partire dall’ipotesi che A sia
falso, allora B deve necessariamente essere vera (a prescindere dal fatto che si
sia riusciti a determinare se A sia vero o falso). Un noto esempio ¢ il seguente.

Esempio 1.1. Supponiamo di voler dimostrare che esistono due numeri irra-

zionali a, b tali che a’ & razionale. Consideriamo a tal fine il numero ¢ = \/5\/5
Se esso ¢ razionale (ipotesi A) abbiamo finito perché possiamo prendere a = b =
v/2. Altrimenti esso non & razionale (cioe I'ipotesi A ¢ falsa). Ma ¢V? = 2, quin-
di anche in questo caso abbiamo mostrato che esistono due numeri irrazionali
(c e V/2) che elevati a potenza forniscono un risultato razionale.

La discussione precedente motiva la seguente definizione.

Definizione 1.2. Una proposizione ¢ un enunciato di cui ha senso dire (o
ipotizzare), nel dato contesto o nelle date circostanze, che esso sia vero, o falso.

Alla base del metodo del ragionamento per casi & vi & la concezione classica
della verita, secondo la quale (una volta fissato il contesto o le circostanze)
una proposizione & o vera o falsa (principio del terzo escluso), ma non pud
essere sia vera che falsa (principio di non contraddizione). In queste note
ci atterremo alla concezione classica.

Osservazione 1.3. Nell’ambito della filosofia della matematica, il principio del
terzo escluso (e quindi il metodo del ragionamento per casi) & stato criticato dalla
scuola intuizionista di Brouwer (1881-1966). Gli intuizionisti sostengono che
la veritd matematica pud essere intesa solamente nel senso della conoscibilita (o
dimostrabilitd). Pertanto secondo questa scuola di pensiero si pud affermare che
un enunciato A & vero o falso solamente se si sa se sia vero o falso, o perlomeno
se si conosce un metodo per poter arrivare, almeno in linea di principio, a deter-
minare se A sia vero o se sia falso. (Ad esempio si conosce un tale metodo per
determinare se un numero & primo. Quindi un intuizionista, pur non ritenendo
accettabile il principio del terzo escluso in generale, lo riterrebbe accettabile se
applicato alla proposizione “2230402457 _ 1 & yn numero primo”.)

Tlustriamo il significato dei connettivi secondo la logica classica.

Definizione 1.4. I connettivi proposizionali sono usati per costruire pro-
posizioni complesse a partire da proposizioni semplici. Nella formalizzazione
del linguaggio matematico i connettivi di cui faremo maggiore uso sono indicati
con i simboli =, A,V, =, <. La loro traduzione approssimativa in italiano & la
seguente:



“=A” significa “non A” (negazione),
“A A B” significa “A e B” (congiunzione),
“AV B” significa “A o B” (disgiunzione),
“A — B” significa “se A, allora B” (implicazione),
“A > B” significa “A se e solo se B” (doppia implicazione).

Le lettere A, B sopra usate indicano generiche proposizioni. La traduzione che
abbiamo dato € solo approssimativa: non c’e una perfetta corrispondenza tra 1'u-
so dei connettivi in una lingua naturale come ’italiano e il loro uso nel linguaggio
matematico.

Definizione 1.5. Ad una proposizione ¢ associamo il valore di verita 1 se essa
e vera, e il valore di verita 0 se essa ¢ falsa. I connettivi proposizionali sono
vero-funzionali nel senso che il valore di verita di una proposizione composta
tramite i connettivi dipende solo dal valore di verita delle proposizioni semplici
che la costituiscono. Questo avviene secondo le seguenti tavole di verita che
precisano il significato dei connettivi secondo la logica classica.

A|-A
0| 1
10

La tavola dice che la proposizione —A ¢ vera se A ¢ falsa, ed € invece falsa
se A & vera. La negazione inverte il valore di veritd. Diamo ora le tavole degli
altri connettivi.

A B|AANB AVB A—B A& B

0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 0 0
1 1 1 1 1 1

Le prime due colonne indicano i quattro possibili valori di verita di A e B.
Le altre colonne indicano i corrispondenti valori degli enunciati composti AA B,
AVB,A— B, A& B.

La tavola della congiunzione (A) dice che AA B ¢ vera se e solo se sia A che
B sono vere!.

Discutiamo ora in dettaglio le tavole del V e —. La tavola di verita del
connettivo V dice che AV B & vera se almeno uno di A e B & vero, senza
escludere la possibilita che entrambi siano veri. Questa modalita di disgiunzione
corrisponde al “vel” della lingua latina e viene chiamata disgiunzione inclusiva.
Esiste anche una disgiunzione escusiva, corrispondente all’ “aut” latino, che
indichiamo con il simbolo @ ed & definita dalla seguente tavola di verita:

IConfrontiamo tuttavia ’enunciato: “mi sono sentito male e ho preso la medicina” con
“ho preso la medicina e mi sono sentito male”. Nel linguaggio comune il primo significa
ho preso la medicina perché stavo male, il secondo che & stata la medicina a farmi sentire
male. Ci sono circostanze in cui € vero il primo enunciato, e altre circostanze in cui & vero il
secondo. Tuttavia secondo la tavola di verita AA B equivale a BA A, nel senso che risulta vero
negli stessi casi. Questo mostra che il connettivo “e” del linguaggio comune non corrisponde
perfettamente a “A”. Mentre A & vero-funzionale (nel senso che pud essere spiegato con la
tavola di verita), “e” non lo &.



A B|AeB
0 0[ O
0 1| 1
1 0] 1
1 1] 0

Dalle tavole di verita risulta che I'implicazione A — B & falsa solo nel caso
in cui la premessa A & vera e il conseguente B & falso. In particolare se la
premessa A e falsa, I'implicazione A — B & sempre vera: da una premessa falsa
segue ogni proposizione. L’implicazione cosi definita viene detta implicazione
materiale.

Esempio 1.6. L’implicazione x > 5 — x > 2 & vera per ogni valore di x.
Ad esempio se £ = 6 essa € vera in quanto sia la premessa (6 > 5) che la
conclusione (6 > 2) sono vere, mentre se £ = 1 & ugualmente vera, perché la
premessa (1 > 5) & falsa.

Per dimostrare che vale una implicazione A — B basta dimostrare che B &
vera a partire dall’ipotesi che A sia vera. Questo procedimento e giustificato dal
fatto che nel caso A sia invece falsa, 'implicazione & sempre vera in base alla
tavola di verita.

Volendo si puo fare a meno dell’implicazione e definirla in termini di negazio-
ne e disgiunzione. Un enunciato della forma A — B equivale infatti a ~A V B,
nel senso che ha lo stesso valore di verita comunque si scelgano le proposizioni
A, B. Cio si puo verificare utilizzando le tavole di verita (si assegnino nei quat-
tro modi possibili i valori 0,1 ad A, B e si verifichi che A — B risulta avere
sempre lo stesso valore di ~A V B).

Osservazione 1.7. (Convenzioni sull’uso delle parentesi) Utilizzando i con-
nettivi e le parentesi si possono costruire proposizioni sempre pitu complesse a
partire da proposizioni date. Le parentesi hanno lo scopo di indicare ’ordine
in cui si effettuano le operazioni. Non potremmo scrivere A A BV C' in quanto
non si capirebbe se intendiamo (A A B) V C (prendere prima la congiunzione di
A e B e poi fare la disgiunzione con C) o se invece intendiamo A A (B Vv C).
Possiamo pero scrivere senza ambiguith A A B A C' in quanto il connettivo A e
associativo, ovvero (A A B) A C equivale a A A (B A C) (nel senso che le due
formule risultano vere o false negli stessi casi). Analogamente si puo verificare
che (AV B) V C equivale a AV (B V C) (associativitd di V) e quindi possiamo
scrivere senza ambiguitd AV BV C. Osserviamo che AV BV C & vero se almeno
uno degli enunciati A, B,C & vero mentre A A B A C & vero se tutti e tre gli
enunciati A, B, C sono veri. Per un ulteriore risparmio di parentesi stabiliamo
la convenzione che in assenza di parentesi A e V legano maggiormente di —
e - lega maggiormente di A e V, quindi ad esempio "A A B — C significa
((mA)AB) = C.

1.2 Formule proposizionali e tautologie

Se pensiamo alle lettere A, B, C' come a nomi di proposizioni fissate (ad esem-
pio A sta per “oggi piove”, B sta per “oggi nevica”’, C sta per “oggi vado al



cinema”), una espressione come “(A A B) V C”denota una proposizioni (ed &
quindi vera o falsa). Se invece pensiamo alle lettere A, B, C' semplicemente co-
me a variabili, ovvero simboli senza significato, allora la medesima espressione
non & una proposizione (non ha senso chiedersi se sia vera o falsa) ma ¢ un
esempio di “formula proposizionale”. Una formula proposizionale ¢, parlando
informalmente, uno schema astratto da cui si possono ottenere infinite proposi-
zioni andando a sostituire al posto delle variabili delle proposizioni. Ad esempio
dalla formula A — B possiamo ottenere la proposizione vera “Nevica — fa fred-
do” sostituendo la variabile A con la proposizione “Nevica” e la variabile B con
la proposizione “fa freddo”. Dalla stessa formula possiamo anche ottenere la
proposizione falsa “3 = 3 — 1 > 4” sostituendo “A” con “3 = 3” ¢ “B” con
“1 > 4”. Diamo ora la definizione precisa di formula proposizionale.

Definizione 1.8. Un linguaggio proposizionale & un insieme L di simboli,
chiamati variabili proposizionali. L’insieme delle formule proposizionali
nel linguaggio L € un insieme di espressioni definito induttivamente come segue.
Ogni variabile proposizionale in L & una formula proposizionale. Se ¢ e ¢
sono formule proposizionali, lo sono anche (=@), (¢ A ¥), (¢ V ¥), (¢ — ).
Talvolta conviene introdurre tra le formule proposizionali il simbolo L, che sta
intuitivamente a rappresentare una formula sempre falsa. (Facciamo a meno di
¢ > ¢ considerandola come abbreviazione di (¢ — ¥) A (¥ — ¢).)

Definizione 1.9. Una interpretazione booleana (o valutazione boolea-
na) di un linguaggio proposizionale L & una funzione M che associa ad ogni
variabile proposizionale A € L un valore M(A) € {0,1} (0 per falso, 1 per
vero). Osserviamo che se L contiene n variabili proposizionali, ci sono 2" pos-
sibili interpretazioni. Una volta fissata una interpretazione M tutte le formule
del linguaggio ricevono un valore vero o falso in base alle tavole di veritd. Pid
precisamente estendiamo M ad una funzione che associa ad ogni formula pro-
posizionale nel linguaggio L un valore di veritd procedendo dalle formule piu
semplici a quelle via via pitt complesse nel modo seguente: M (—¢) = 1 se e solo
se M(¢) =0, M(aAnB)=1seesolose M(a)=1e M) =1, M(aVvp) =1
se e solo se almeno uno tra M(a) ed M(B) ha il valore 1, M((a — 8)) =1 in
tutti i casi eccetto che nel caso M(a) =1 e M(B) = 0. Infine stabiliamo che
M(L) = 0, ovvero L & una formula falsa in tutte le interpretazioni (non & la
sola: anche A A —A ha questa proprieta).

Definizione 1.10. Una formula proposizionale ¢ si dice una tautologia se &
vera per tutte le interpretazioni delle sue variabili.

Ad esempio AV —A & una tautologia, in quanto risulta vera sia se A e vera,
sia se A & falsa. Analogamente (A — B) A =B — —A @& una tautologia, in
quanto usando le tavole si vede che essa risulta vera nei quattro possibili casi
per i valori di A e B (A vera e B vera, A vera e B falsa, A falsa e B vera, A
falsa e B falsa).

Osservazione 1.11. Un algoritmo per riconoscere se una formula con n va-
riabili &€ una tautologia & quello di considerare i 2™ possibili casi per i valori di



verita delle sue variabili e verificare usando le tavole che in ognuno dei casi la
proposizione composta che ne risulta € vera. Si tratta di una procedura sempli-
ce e meccanica ma che nel caso ci siano molte variabili richiede molto tempo,
anche da parte di un calcolatore. Il problema di stabilire se esistano metodi che
richiedano un tempo polinomiale nel numero delle variabili anziché esponenziale
e tuttora irrisolto.

Si noti che secondo la definizione appena data, e nel successivo sviluppo
formale della teoria, il concetto di tautologia si applica solo ed esclusivamente
alle formule proposizionali e non alle proposizioni stesse. Tuttavia, parlando a
livello informale, una proposizione ottenuta per sostituzione da una tautologia
sard talvolta chiamata essa stessa tautologia. Ad esempio la proposizione “piove
o non piove” sara informalmente detta una tautologia anche se cio che realmente
si intende € che la formula proposizionale da cui proviene, ovvero la formula
AV —A, & una tautologia. Come si vede da questo esempio una tautologia ha
contenuto informativo nullo. Affermare “piove o non piove” non ci da alcuna
informazione sul fatto se piova o meno. Proprio perché una tautologia & vera a
prescindere dalla verita o falsita degli enunciati elementari che la costituiscono,
essa non comunica nulla riguardo alla verita o falsita di questi ultimi. In effetti
una tautologia & vera in virtu esclusivamente della sua forma sintattica, e non
del suo contenuto.

1.3 Conseguenza (tauto)logica

Abbiamo visto che le tautologie non comunicano informazione. E lecito dun-
que domandarsi a cosa servano. Una possibile risposta e che esse giocano
un ruolo importante nelle dimostrazioni matematiche, e pilt in generale nelle
argomentazioni logiche di qualsiasi tipo. Consideriamo il seguente esempio:

Esempio 1.12. L’assassino e il professore o 1’assessore. Ma non & ’assessore.
Quindi ¢ il professore.

Per condurre questo ragionamento, cioé per mostrare che la tesi & conse-
guenza logica delle premesse, abbiamo implicitamente utilizzato la tautologia
((AVv B) A =B) — A, applicandola al caso in cui A sta per “l’assassino ¢ il
professore”, e B sta per “l’assassino e l’assessore”.

In generale possiamo dare la seguente definizione di conseguenza logica per
la logica proposizionale.

Definizione 1.13. Una formula proposizionale 3 & conseguenza logica (o
conseguenza tautologica) di una formula proposizionale a, se la formula
a — f & un tautologia (cioé 8 & vera per tutti i valori delle variabili in cui a &
vera). Scriviamo

af=p
per indicare che 8 & conseguenza logica di a. Pil in generale una formula S &
conseguenza logica di un insieme di altre formule a1, ..., a,, se (a1 A. .. Aay) =



B & una tautologia, ovvero se in tutti i casi in cui tutte le a; sono vere, anche 8
¢ vera. Scriviamo

o1,...,an =0

per indicare questo fatto. Due formule sono logicamente equivalenti se ognu-
na delle due & conseguenza logica dell’altra (cid equivale a dire che le due formule
assumono gli stessi valori di veritd per i medesimi valori delle variabili).

Esempio 1.14. AA(BVC) & logicamente equivalente a (AAB)V (AAC), come
si puo verificare assegnando ad A, B,C i valori 1,0 negli otto modi possibili e
verificando che in ciascun caso il valore di A A (B V C) & uguale a quello di
(AAB)V (AAC). Similmente si verifica che =(A V B) equivale a =A A =B.

Osservazione 1.15. Si noti la differenza tra implicazione materiale (—) e con-
seguenza logica (|=). Secondo la tavola di verita dell’implicazione, date due pro-
posizioni A e B vale sempre una delle due implicazioni A — B oppure B — A
(infatti se sono entrambe false si implicano a vicenda, mentre se una delle due
¢ vera laltra certamente la implica). Non & perd sempre vero che date due
formule proposizionali ¢ e ¥ una delle due & conseguenza logica dell’altra.

A livello intuitivo possiamo dire che mentre una implicazione materiale puo
essere vera per motivi contingenti senza che ci sia un reale nesso tra le pro-
posizioni coinvolte (come in “ I’acqua bolle a 100 gradi — Roma & la capitale
d’Ttalia”), la conseguenza logica esprime invece una implicazione che deve essere
necessariamente vera in tutte le possibili circostanze in base al significato stesso
dei connettivi.

1.4 Teorie proposizionali

Risulta conveniente, per gli sviluppi successivi della teoria, estendere la defi-
nizione di conseguenza logica al caso di un insieme possibilmente infinito I" di
ipotesi. Cio puo essere fatto nel modo seguente.

Definizione 1.16. Fissiamo un linguaggio proposizionale L, cioé un insieme
(possibilmente infinito) di variabili proposizionali. Una L-teoria proposizionale
¢ un insieme I" (possibilmente infinito, o anche vuoto) di formule proposizionali
nel linguaggio L. Le formule appartenenti a I' vengono chiamate assiomi della
teoria I'. Un modello di una L-teoria I' & una interpretazione delle variabili di
L che rende vere tutte le formule di I' (ogni singola formula conterra ovviamente
solo un numero finito di variabili). Diciamo che una formula ¢ nel linguaggio L
¢ conseguenza logica di I', e scriviamo

I'k= ¢,

se ogni modello di T' rende vera ¢. Se I' & vuoto scriviamo = ¢ per T’ = ¢.
Osserviamo che se I & vuoto tutte le intepretazioni sono modelli di T (in quanto,
proprio perché vuoto, non pud contenere una formula che viene resa falsa). In
base alle definizioni |= ¢ se e solo se ¢ & una tautologia.



2 Calcolo dei predicati

2.1 Predicati e quantificatori

Un predicato o relazione ¢ una funzione che associa agli elementi di un dato
dominio di oggetti un valore di verita, che puo essere vero o falso. Ad esempio
il predicato “essere un numero primo”, associa 1 (vero) ai numeri primi e 0
ai numeri composti. La relazione < tra numeri reali associa 1 alle coppie di
numeri (a,b) che verificano la relazione (ovvero tali che a < b) e 0 alle altre.
In generale se P ¢ un predicato ad un posto scriviamo P(z) per esprimere il
fatto che z verifica il predicato. Similmentre se ) ¢ un predicato a due posti
scriviamo Q(x,y) per esprimere il fatto che (z,y) verifica il predicato; se P &
un predicato a tre posti scriviamo P(z,y, z) per esprimere il fatto che la terna
(z,y,2) lo verifica, e cosi via.

Assumiamo che il lettore abbia gia qualche familiarita a livello intuitivo con
i quantificatori 3 (esiste) e V (per ogni). Ricordiamo che se P & un predicato
unario, la proposizione 3z P(z) esprime il fatto che esiste almeno un oggetto a
nel dominio considerato che verifica il predicato, ovvero tale che valga P(a). La
proposizione Yz P(z) dice che per tutti gli oggetto a nel dominio considerato
vale P(a). Per predicati binari possiamo avere diverse combinazioni di V e 3.
Vz3yP(xz,y) significa che dato un z posso sempre trovare un y, che in genere
dipendera da z, tale che P(z,y), mentre invece JyVzP(z,y) significa che &
possibile trovare un y che va bene per tutti gli z, ovvero un y tale che per ogni x
vale P(z,y). Ad esempio se il dominio delle variabili & un insieme di persone, e
P(z,y) ¢ la relazione “y & padre di z”, VoIyP(z,y) dice che ogni persona ha un
padre, mentre JyVz P(z,y) esprime la proposizione falsa che asserisce ’esistenza
di una persona y che & padre di tutti (inclusa se stessa).

2.2 Linguaggi del primo ordine

Abbiamo bisogno di un formalismo adatto ad esprimere le leggi logiche valide
per i quantificatori.

Definizione 2.1. Un linguaggio del primo ordine & un insieme L di simboli
(possibilmente anche vuoto) divisi in tre categorie, simboli di costante, simboli
di funzione, e simboli di relazione, dove ad ogni simbolo & associato un numero
naturale detto “arietd” del simbolo (che servird ad indicare il numero degli
argomenti a cui va applicato il simbolo). L’arieta di ogni simbolo di costante &
zero, mentre le arietd dei simboli di funzione e di relazione sono arbitrari interi
positivi. Una possibile formalizzazione in termini insiemistici della nozione di
simbolo sopra data & la seguente: un simbolo & una terna ordinata (a,i,n) dove
a & il nome del simbolo, i € {1,2,3} indica il tipo del simbolo, ovvero se si tratti
di un simbolo di costante, funzione o relazione, ed n & arieta.

Definizione 2.2. Sia L una linguaggio del primo ordine. Una L-struttura o
(L-interpretazione) M consiste di:



1. Un insieme non vuoto dom(M) detto dominio (oppure universo) della
struttura?.

2. Una corrispondenza® ¢ — cjr che associa ad ogni simbolo di costante ¢ di
L un elemento ¢y € dom (M), detto interpretazione del simbolo ¢ in M.

3. Una corrispondenza f — fas che associa ad ogni simbolo di funzione f di L
di arieta n, una funzione fys: dom(M)™ — dom(M), detta interpretazione
del simbolo f in M.

4. Una corrispondenza R — Rjs che associa ad ogni simbolo di relazione R
di L di arietd n, una relazione Ry C dom(M)™, detta interpretazione del
simbolo R in M. (Identifichiamo una relazione ad n posti con 'insieme
delle n-uple che la verificano.)

Esempio 2.3. Un grafo G = (Vg,Eg) ¢ dato da un insieme non vuoto Vg
di wvertici dotato di una relazione binaria Eg. Esso pu0 essere visto come una
L-struttura (con dominio Vi) nel linguaggio L = {E}, dove E & un simbolo di
relazione binaria.

Quando non ci sia rischio di confusione useremo la stessa notazione per
indicare sia la struttura che il suo dominio (ad esempio scriveremo G = (G, Eg),
dove G indica sia il grafo che I'insieme dei suoi vertici).

Esempio 2.4. Un anello ordinato M = (M,0u, 1ar, +r, -0, <ar) € un strut-
tura nel linguaggio L = {0,1,+,-, <}, dove 0,1 sono simboli di costante, +, -
sono simboli di funzioni binarie, < & un simbolo di relazione binaria, e i sim-
boli 0,1, 4+, -, < sono intepretati in modo da soddisfare gli assiomi degli anelli
ordinati.

Per semplicita talvolta ometteremo i sottoindici e useremo la stessa notazione
per i simboli e la loro interpretazione. Ad esempio ’anello degli interi viene in
genere indicato con (Z,0,1,+,-).

2.3 Termini e Formule

Fissiamo un linguaggio L e un insieme infinito V' di simboli chiamati variabili
(o variabili individuali).

Definizione 2.5. Definiamo induttivamente 'insieme Terr, (V) dei L-termini
(con variabili da V') come il piu piccolo insieme di espressioni tale che:

1. Ogni variabile € V' & un L-termine;

2. ogni simbolo di costante di L & un L-termine;

2Sara il dominio su cui variano le variabili di cui faremo uso. Stiamo quindi facendo
I’assunzione che vi sia un unico dominio per tutte le variabili.
3Usiamo la parola ‘corrispondenza’ come sinonimo di ‘funzione’.



3. sety,...,t, sono L-termini, e f & un simbolo di funzione di arieta n della
segnatura L, allora f(t1,...,t,) € un L-termine.

Un termine in cui non occorrano variabili viene detto termine chiuso. Chia-
ramente i termini chiusi possono esserci solo se il linguaggio contiene almeno un
simbolo di costante.

Esempio 2.6. Se L contiene un simbolo di funzione binaria f e un simbolo
di costante ¢, allora ’espressione f(z, f(c,y)) (dove z,y sono variabili) & un
termine, e l’espressione f(c,¢) & un termine chiuso.

Passiamo ora a definire ’insieme delle L-formule.

Definizione 2.7. Una L-formula atomica ¢ una espressione della forma t; =
ta, dove t1,t2 sono L-termini, oppure della forma R(ti,...,t,), dove R & un
simbolo di relazione n-aria di L (se ve ne sono) e ti,...,t, sono L-termini.

Per definire 'insieme delle formule (non atomiche), oltre ai simboli fino ad
ora introdotti faremo uso dei simboli —, A, V, — per i connettivi proposizionali,
i simboli 3 e V per i quantificatori esistenziale e universale, il simbolo = per
l'uguaglianza, e le parentesi.

Definizione 2.8. L’insieme delle L-formule ¢ definito induttivamente come il
piu piccolo insieme di espressioni tale che:

1. Ogni L-formula atomica ¢ una L-formula.

2. Se a e f sono L-formule, allora (-a), (@ A B8), (e V B) e (& = B) sono
L-formule.

3. Se a ¢ una L-formula e x & una variabile, allora (Vza) e (Jza) sono
L-formule.

Osservazione 2.9. Nel dare esempi di L-formule ometteremo le parentesi ri-
dondanti quando non sussista ambiguitd di lettura, ovvero qualora esista un
unico modo di aggiungere le parentesi mancanti in modo da ottenere una L-
formula. Ad esempio la formula (((z = z) A (z = y)) V (y = 2)) pud essere
scritta in forma abbreviata come (x = z Az = y) Vy = z. Per un ulteriore
risparmio di parentesi stabiliamo la convenzione che in assenza di parentesi A e
V legano maggiormente di — e — lega maggiormente di A e V, quindi ad esempio
—a A — 7 significa (((—a) A 8) = 7). Conveniamo inoltre che un quantifica-
tore seguito da piu variabili stia ad indicare la ripetizione del quantificatore su
ciascuna variabile. Ad esempio Vzy¢ sta per (Vz(Vy¢)). Resta inteso che queste
sono solo abbreviazioni informali e 1a definizione di L-formula resta quella sopra
data.

Definizione 2.10. Le sottoformule di una formula ¢ sono per definizione
quelle formule che intervengono nella formazione induttiva di ¢ (inclusa la ¢
stessa). Quindi ad esempio le sottoformule di (« = ) sono (@ — B) e tutte le
sottoformule di a e di 8 (incluse a e § stesse).
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Definizione 2.11. Un’occorrenza di una variabile z in una formula « si dice
legata se occorre in una sottoformula 8 di a immediatamente preceduta da un
quantificatore Vz o dz. Un’occorrenza non legata si dice libera. Le wvariabili
libere di una formula sono le variabili che hanno almeno una occorrenza libera
nella formula. Una formula senza, variabili libere viene detta formula chiusa
0 enunciato.

Esempio 2.12. Ad esempio le variabili libere di z = y A Vu3z(z = u) sono la
z e la y (sebbene la z abbia anche una occorrenza legata).

Definizione 2.13. (Sostituzioni) Se « & un termine o una formula, e t,...,t,
sono termini, indichiamo con a(t1/z1,...,t,/z,) il termine o formula risultante
da « dalla simultanea sostituzione di ogni occorrenza libera della variabile z; in
acont;peri=1,...,n. Sele variabili z1,...,z, di cui si sta parlando sono sot-
tointese scriviamo pitt semplicemente a(t1,. .., t,) invece di a(t1 /z1, . .., tn/2y).
Ad esempio Vza(z) — a(t) & la stessa cosa di Vza — a(t/z) (in quanto se sot-
tointendiamo la z, allora «(t) coincide con a(t/x) e a(z) coincide con a(z/z),
che & proprio a).

Esercizio 2.14. In generale la formula a(t;/z1,t2/22), ottenuta per sostituzio-
ne simultanea, non coincide con la formula «(t; /z1) (t2/z2), in cui la sostituzione
(t2/z2) viene effettuata dopo la sostituzione (t1/z1). Nel caso di termini chiusi
tutti i modi di effettuare le sostituzioni (simultanee o in sequenza) danno lo
stesso risultato.

2.4 Semantica di Tarski

Data una L-formula chiusa ¢, essa puo in generale essere vera in alcune inter-
pretazioni e falsa in altre. Prima di dare le definizioni formali diamo alcuni
esempi.

Esempio 2.15. Vz3yP(x,y) & una formula in un linguaggio con un simbolo di
predicato binario P. Essa € vera in alcune intepretazioni e falsa in altre. Ad
esempio & vera se le variabili z, y variano sui numeri interi e P(z,y) & interpretato
come la relazione x > y, mentre & falso se le variabili variano sugli interi non
negativi e P(x,y) & intepretato di nuovo come z > y.

Esempio 2.16. Vz(P(z) — Jy(f(z,y) = ¢)) & una formula in un linguaggio con
un simbolo di funzione binaria f, un simbolo di relazione unaria P e un simbolo
di costante ¢. Essa & vera in certe intepretazioni e falsa in altre. Ad esempio
supponiamo che le variabili z,y varino sui numeri reali, P(z) & interpretato
come “x e diverso da zero”, f e interpretata come la moltiplicazione tra due
numeri reali e ¢ ¢ interpretata come il numero uno. In questa interpretazione
la formula esprime la seguente proposizione: “per ogni numero reale x, se x
e diverso da zero, esiste un numero reale y tale che z -y = 17. Si tratta di
una proposizione vera, che asserisce l’esistenza, nei numeri reali, dell’inverso
moltiplicativo di ciascun numero diverso da zero.
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Esempio 2.17. —-VzP(z) — Jz—P(z) ¢ una formula in un linguaggio con un
simbolo di predicato unario P. Essa ¢ vera in tutte le intepretazioni (cioe &
“logicamente valida”).

Passiamo ora alle definizioni formali. Data una L-struttura M, per poter
definire cosa significhi che una formula della forma Vz¢ o Jz¢ & vera in M,
conviene non limitarsi a considerare le L-formule, ma un insieme di formule in
un linguaggio piu grande in cui abbiamo un simbolo di costante ¢, associato ad
ogni elemento di M. (Questo permettera di dare la seguente definizione: Vrg(x)
¢ vera in M se e solo se per ogni a € M la formula ¢(c,) & verain M.)

Definizione 2.18. Data una L-struttura M, sia L[M] il linguaggio ottenuto
aggiungendo all’insieme dei simboli di L un nuovo simbolo di costante ¢, per
ogni elemento a del dominio di M. Sebbene sia importante tener distinto il
simbolo ¢, dall’elemento a, per non appesantire la notazione spesso scriveremo
a invece di ¢,. Ad esempio scriveremo ¢(a/z) (o semplicemente ¢(a) se x &
sottointesa) per denotare la formula ¢(c, /) ottenuta sostituendo le occorrenze
libere di z nella formula ¢ con il simbolo ¢,. Ribadiamo che si tratta solo di un
abuso di notazione e non di una reale identificazione.

Definizione 2.19. Dato un L[M]-termine chiuso ¢, definiamo un elemento M (t)
del dominio di M, chiamato I'interpretazione del termine ¢ in M, nel modo
seguente.

1. Se ¢, & la costante associata all’elemento a € M, allora M (c,) = a.

2. Se ¢ & un simbolo di costante di L, poniamo M(c) = ¢M, dove cM € M &
I’elemento che la struttura M associa al simbolo di costante c.

3. Sia ora t un termine della forma f(t1,...,t,), dove f & un simbolo di fun-
zione n-aria di L e i t; sono L[M]-termini chiusi. Induttivamente risultano
definiti gli elementi M (¢;) € M (o piu precisamente M (¢;) € dom(M)).
Per definizione di L-struttura risulta data una funzione fM: M™ — M.
Possiamo dunque definire M (f(t1,...,t,)) = fM(M(t1),..., M(t,)).

Il seguente esempio chiarisce la distinzione tra termini di un linguaggio ed
elementi di una struttura.

Esempio 2.20. Sia L un linguaggio con un simbolo di funzione unaria s, un
simbolo di funzione binaria f e un simbolo di costante 0. Sia N la L-struttura
il cui dominio e ’insieme dei numeri naturali e in cui s, f e 0 sono interpretati
come la funzione successore, la funzione somma, e il numero zero. Ogni elemento
di N ¢ allora U'interpretazione di un termine chiuso di L (ad esempio il numero
due & linterpretazione del termine s(s(0))). Consideriamo ora la L-struttura
R il cui dominio sono i numeri reali, e in cui s, f,0 sono interpretati di nuovo
come la funzione successore, la funzione somma e lo zero (dove per definizione il
successore di un numero reale z si ottiene sommando uno ad z). In R non & piu
vero che ogni elemento del dominio é ’interpretazione di un termine chiuso di L
(ad esempio v/2 & un numero reale che non & I'interpretazione di alcun termine di
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L). Tuttavia se consideriamo il liguaggio esteso L[R] in cui abbiamo aggiunto
una costante ¢, per ogni elemento a del dominio di R, allora ogni elemento
a del dominio & linterpretazione di almeno un termine (la costante ¢;). In
generale puo capitare che vi siano termini diversi con la stessa interpretazione
(ad esempio 0 e f(0,0), se f & interpretata come la funzione somma e 0 come
lo zero). Quindi la corrispondenza tra termini chiusi ed elementi del dominio
(ovvero la funzione che manda un termine chiuso ¢ nella sua intepretazione) puo
non essere iniettiva, e inoltre se ci restringiamo a termini del linguaggio non
esteso L pud non essere neppure surgettiva.

Una L-struttura M determina una partizione dell’insieme delle L[M]-formule
atomiche chiuse in due sottoinsiemi: quello delle formule vere e quello delle
formule false.

Definizione 2.21. Sia R un simbolo di relazione n-ario di L (se ve ne sono), e
siano t1,ts,...,t, dei L[M]-termini chiusi.

1. Diciamo che la formula R(ty,...,t,) € vera in M se e solo se la n-upla
(M(ty),-..,M(t,)) appartiene ad Ry;.

2. Diciamo che la formula ¢; = ¢2 & vera in M se e solo se M (t1) e M(t2)
sono lo stesso elemento.

Quindi ad esempio la formula 0 = f(0,0) & vera nella struttura R dell’esem-
pio 2.20.

Consideriamo ora il caso delle L[M]-formule chiuse arbitrarie, ovvero non
necessariamente atomiche.

Lemma 2.22. Data una partizione delle formule atomiche chiuse di L[M] in
due sottoinsiemi V ed F (ad esempio la partizione in formule atomiche vere
e false) esiste un unico modo di definire una partizione dell’insieme di tutte le
L[M)-formule chiuse in due sottonsiemi V' DV ed F' D F in modo che:

1. Se ¢ ¢é atomica, p € V' se e solo se p € V.

2. Se ¢ é una qualsiasi L[M]-formula chiusa, ¢ appartiene ad uno e uno solo
dei due insiemi V' ed F'.

(Vzp) € V' se e solo se per ogni a € dom(M), ¢(a/z) € V'.
(Fzg) € V' se e solo se esiste a € dom(M) tale che ¢p(a/z) € V'.
—¢p € V' seesolosepeF'.

(pAY) eV seesolosepeV' ep e V',

(V) eV' seesolosepeV' orpeV'.

(¢ > ) € F' se e solosep € V' erp € F'.

® RS e

13



Dimostrazione. L’appartenenza di una formula a V' o F’ & determinata dall’ap-
partenenza a V' o F' di formule di complessitd minore (cio& con meno connettivi
o quantificatori). Quindi per induzione V' ed F' esistono e sono unici. O

Definizione 2.23. Una L-struttura M determina, come abbiamo visto, una
partizione delle L[M]-formule atomiche in due sottoinsiemi V' ed F', quello delle
formule atomiche vere, e quello delle formule atomiche false. Il lemma preceden-
te ci permette di definire due altri insiemi V', F', che partizionano I'insieme delle
L[M]-formule chiuse (non solo quelle atomiche). Per definizione diciamo che le
formule di V' sono vere in M, e che quelle di F' sono false in M. Scriviamo

ME¢
per indicare il fatto che ¢ & vera in M.

Abbiamo cosi definito I’insieme delle L[M]-formule chiuse vere in M, e quindi
in particolare il sottoinsieme delle L-formule chiuse vere in M. Spesso sono que-
ste ultime quelle a cui siamo principalmente interessati, ma per poterle definire
siamo dovuti passare attraverso le L[M]-formule per poter trattare i quantifi-
catori. La seguente osservazione mette in luce l’aspetto non costruttivo della
definizione di verita che abbiamo dato.

Osservazione 2.24. Sinoti che V' ed F’, sebbene siano stati definiti induttiva-
mente a partire da V, F', non sono stati definiti in modo costruttivo, ovvero non
& chiaro dalla definizione se vi sia un algoritmo stabilire se una L[M]-formula
chiusa sia in V' o in F' (anche supponendo che vi sia un tale algoritmo per
il sottoinsieme delle formule atomiche). Per strutture finite la definizione & in
effetti costruttiva, ma se la il dominio di M ¢ infinito, per stabilire se Vz¢ sia
in V' dovrei controllare se ¢(a/z) sia in V' per ognuna delle infinite possibili
scelte di a € M, cosa evidentemente impossibile da realizzare con un algoritmo.
Cio0 tuttavia non esclude che, per determinate strutture infinite, vi possa esse-
re un algoritmo in grado di stabilire se una formula chiusa sia vera nella data
struttura (magari limitandosi alle formule del linguaggio non esteso L). Un tale
algoritmo si potrebbe basare su una caratterizzazione delle formule vere in una
data struttura M equivalente, ma piu costruttiva, di quella fornita dalla defini-
zione (e che funziona solo per la data M e non per altre strutture). Ad esempio
si puo dimostrare che per la struttura dei numeri naturali, in un linguaggio L
con un simbolo per lo zero, il successore e la somma, esiste un algoritmo per il
riconoscimento delle L-formule chiuse vere (Presburger). Tuttavia se mettiamo
nel linguaggio anche un simbolo per il prodotto, un tale algoritmo non esiste pit
(Godel), e lo stesso avviene per i numeri razionali (J. Robinson), mentre invece
per i numeri reali (sempre con somma e prodotto) si conoscono degli algoritmi
per riconoscere gli L-enunciati veri (A. Tarski). Molti dei problemi irrisolti del-
la matematica, come ad esempio la congettura di Goldbach (ogni numero pari
maggiore di 3 & somma di due numeri primi), equivalgono a chiedersi se una
data formula in un linguaggio con somma a prodotto € vera nei numeri naturali;
non deve dunque stupire che non esista un algoritmo generale per risolvere tali
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questioni, anche se naturalmente aver dimostrato che non esiste & un notevole
risultato (tutto cio dipende naturalmente anche dalla definizione di algoritmo).

2.5 Insiemi definibili

Definizione 2.25. Sia M una L-struttura. Un sottoinsieme A di M™ & 0-

definibile se esiste una L-formula ¢(z1,...,,) (con variabili libere incluse
tra le x1,...,%,) tale che A & l'insieme di tutte quelle n-uple (aq,...,a,) di
elementi di M che verificano la formula, ovvero tali che M = ¢(aq,...,a,).
Analogamente diciamo che A ¢ definibile se esiste una formula ¢(z1,...,z,)

del linguaggio ampliato L[M] tale che A & I'insieme delle n-uple (a1, ... ,a,) tali
che M = ¢(a1,...,an).

Esercizio 2.26. Tl cerchio unitario {(z,y) € R? | z2+y? = 1} & 0-definibile nella
struttura (R, +, -), mentre il cerchio di raggio = (pur non essendo 0-definibile) &
definibile. In generale si puo dimostrare che il cerchio di raggio r & 0-definibile
se e solo se r & un numero reale algebrico.

Esercizio 2.27. L’insieme dei numeri primi & definibile nella struttura (N, +, -).

Esempio 2.28. Gddel ha dimostrato che I'insieme delle coppie (a,b) € N? tali
che b = 2% & definibile nella struttura (N, +, ).

2.6 Conseguenza logica

Definizione 2.29. Una teoria T & una coppia consistente di una segnatura L
e di un insieme di L-enunciati chiamati assiomi di T. Quando L sia sottointeso
identifichiamo T con l'insieme dei suoi assiomi, e penseremo quindi a T come
ad un insieme di L-enunciati.

Definizione 2.30. La teoria dei gruppi ha come assiomi le formule

8 8 =8 8
8
|
ur—‘

implicitamente precedute da Vzyz, e formulate in una segnatura con un simbolo

di costante 1 per ’elemento neutro, un simbolo di funzione binaria - per 'ope-

razione di gruppo, e un simbolo di funzione unaria per ’inverso moltiplicativo
-1

7.

Definizione 2.31. Un modello di una L-teoria T' € una L-struttura in cui
risultano veri tutti gli assiomi di 7. (Ad esempio un gruppo &, per definizione,
un modello della teoria dei gruppi.) Se M & un modello di T scriviamo M |=T.
Quindi M = T se per ogni assioma ¢ di T, si ha M | ¢. Indichiamo con
Modr(T) la classe di tutti i modelli di T'. Una L-teoria T si dice soddisfacibile,
se ha almeno un modello.
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Definizione 2.32. (Conseguenza logica) Sia ¢ una L-formula chiusa e T' una
L-teoria. Diciamo che ¢ segue logicamente da T, e scriviamo T |= ¢, se ¢ &
vera in tutti i modelli di 7', ovvero non esiste alcuna L-struttura che rende veri
tutti gli assiomi di 7" e non rende vera ¢. In altre parole:

T = ¢ se e solo se Mody,(T) C Mody ().

In particolare se T' & insoddisfacibile, ciod se Mody(T) = @, allora vale sempre
T E ¢ (in quanto l'insieme vuoto & contenuto in ogni altro insieme).

Esercizio 2.33. Sia T un insieme di L-enunciati, sia ¢ un L-enunciato, e sia
L' 5 L. Allora Modr(T) C Mody(¢) se e solo se Modr:(T) C Modr (¢).

L’esercizio giustifica la scelta di non aver reso esplicito il linguaggio L nella
notazione T = ¢. Il linguaggio ¢ irrilevante, a condizione naturalmente che esso
contenga tutti i simboli presenti in ¢ e nelle formule di T' (anche se potrebbe
contenerne anche altri).

Definizione 2.34. (Formule logicamente valide) Sia L una data segnatura e
sia ¢ una L-formula chiusa. Diciamo che ¢ & logicamente valida, e scriviamo
= ¢, se ¢ & vera in ogni L-struttura. Osserviamo che se T & la L-teoria con un
insieme vuoto di assiomi, allora ogni L-struttura ¢ modello di T, e pertanto si
ha |= ¢ se e solo se T |= ¢.

Esercizio 2.35. Sia L la segnatura con un simbolo di funzione binario f. La
L-formula

Vayz(f(f(2,y),2) =y) = Vay(z = y)

¢ logicamente valida.

2.7 Termini sostituibili

Osservazione 2.36. L’implicazione espressa dalla formula Vza(z) — a(t) non
& sempre logicamente valida. Sia ¢(x) la formula Jy(x = y) e sia ¢ il termine
y + 1. Allora Vz¢(z) € Penunciato VzIy(x = y), che & sempre vero, mentre ¢(t)
& Penunciato Jy(y + 1 = y) che non & vero se interpretiamo i simboli +,1 come
la addizione tra numeri naturali e come il numero naturale “uno”.

L’osservazione precedente motiva la seguente definizione.

Definizione 2.37. Un termine ¢ € sostituibile al posto della variabile z
nella formula « se per ogni variabile y in ¢, nessuna occorrenza libera di x in
« appare all’interno di una sottoformula della forma JyB o VypB. In altre parole
questo significa che le variabili di ¢ non diventano legate dopo che si e effettuata
la sostituzione a(t/x).

Si noti che un termine chiuso & sempre sostituibile al posto di qualsiasi
variabile in qualsiasi formula.
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Lemma 2.38. Sia t un termine sostituibile al posto di x nella formula o e sup-
poniamo che le variabili libere di Vza(z) — a(t) siano incluse in {y1,...,Yn}-
Allora Yy, ...,yn(Vza(z) = «a(t)) & logicamente valida.

Dimostrazione. Dobbiamo mostrare che per ogni L-struttura M, abbiamo

M EVYy,...,yn(Vza(z) — at)) (1)

Siano ay,...,a, € dom(M) sia s la sostituzione (a1 /y1,--.,an/yn). Dob-
biamo dunque mostrare che:

M = ((Vza(z))® — o(t)’) (2)-

Ora poiche t & sostituibile, a(t)® = a®(t®) e t* & un termine senza variabili
(verificare!). Esiste quindi b € dom(M) con b = M(t°). Ne segue che M
a?(t%) + a®(b), e quindi (2) equivale a:

M = (Vza®(z) = o° (b)) 4)
La verita di questa ultima asserzione segue dalla semantica di Tarski del V
applicata alla formula con parametri o®(x). O

2.8 Espansioni del linguaggio

Definizione 2.39. Dati due linguaggi L ed L' D L, diciamo che la L'-struttura
A & una espansione della L-struttura B (o che B & una restrizione di A), se A
e B hanno lo stesso dominio e interpretano nello stesso modo i simboli di L.

Ad esempio il gruppo (R, +,0) & una restrizione del campo (R, +,-,0,1).

Lemma 2.40. Sia T un insieme di L-enunciati, sia ¢(x) una L-formula e sia
c un simbolo di costante non in L. Sono equivalenti:

1. T = ¢(c) (nel linguaggio LU {c}).
2. T =Vzd(x) (nel linguaggio L).

Dimostrazione. Se T' [~ Vzp(x), allora esiste un modello A di T ed un elemento
a € Acon A |= ~¢(a). La struttura (A, a) che espande A interpretando ¢ con a
¢ allora un modello di T'U {—¢(c)}. O

2.9 Conseguenza logica con variabili libere

Definizione 2.41. Vogliamo estendere la definizione di conseguenza logica
T = ¢ al caso in cui le formule di T o di ¢ possano contenere delle variabi-
li libere, che possiamo supporre siano prese da un certo insieme che chiamiamo
C. Anziché considerare le formule in questione come formule aperte nel linguag-
gio L, possiamo considerarle come formule chiuse in un linguaggio espanso LUC'
dove questa volta le C' sono pensate come simboli di costante anziché di variabile
(supponendo di aver ridenominato se necessario le variabili quantificate in modo
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da non usare per queste ultime i simboli di C). Definiamo: T |= ¢ se ¢ & vera
in ogni modello di T, dove per modello di T intendiamo una L U C-struttura M
che rende vere tutte le formule di T'.

Esempio 2.42. Sia L un linguaggio con un simbolo di predicato unario P e
siano x,y due variabili distinte. Secondo le nostre definizioni si ha

P(z) = P(y),

ovvero il giudizio P(z) = P(y) non & valido (ciog esiste una LU {z, y}-struttura
in cui P(x) & verae P(y) & falsa). Altri autori adottano una convenzione diversa
secondo la quale il giudizio P(z) = P(y) ha lo stesso significato di Ve P(z) |=
VyP(y), ed & quindi da ritenersi valido. Mentre la nostra convenzione & in
accordo con il sistema dimostrativo della deduzione naturale, 1’altra & in accordo
con il sistema dimostrativo di Hilbert-Frege.

Lemma 2.43. SeT' |E ¢ et é un termine sostituibile per x in ¢, allora T |=
o(t/x). (Ammettiamo la presenza di variabili libere, anche diverse da z, sia
nelle formule di T che in ¢.)

Dimostrazione. Segue dal Lemma, 2.38. O

3 Deduzione naturale

Nella logica proposizionale per verificare che una certa tesi ¢ & conseguenza lo-
gica di certe ipotesi I" (ovvero I |= ¢) possiamo utilizzare le tavole di verita. Nel
calcolo dei predicati la relazione di conseguenza logica I' = ¢ & stata invece de-
finita in modo altamente non costruttivo facendo riferimento a tutte le possibile
L-strutture. In questa sezione definiremo una relazione - (o pill precisamente
Fpn) che risulterd a posteriori equivalente a |= ma che & definita in modo piu
costruttivo. Il metodo si applica sia alla logica proposizionale che a quella dei

......

3.1 Caso proposizionale

Nella seguente definizione usiamo il termine “formula” per indicare una formula
del calcolo proposizionale in un certo fissato linguaggio.

Definizione 3.1. Le lettere greche minuscole «, 3, ¢ denotano delle formule.
La lettera greca maiuscola I' denota un insieme finito di formule. Scriviamo
T, ¢ per l'insieme I" U {¢}, cioe Iinsieme contenente ¢ e tutte le formule di I'. A
livello intuitivo I' - ¢ va letto come “¢ e dimostrabile a partire da I'”. La barra
orizzontale va letta come una implicazione. Le seguenti regole vanno intese come
una definizione induttiva di .

* (Ax)pt ¢
Dall’ipotesi ¢ posso dedurre ¢.
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| )
Nak ¢
Se posso dedurre ¢ da un dato insieme I' di ipotesi, allora posso dedurlo
anche se aggiungo una ulteriore ipotesi?.
'ka kg
- TraAf

Se da un dato insieme di ipotesi posso dedurre sia « che 8 allora posso
dedurre a A B.

T,ak~y I,6F~
_ o= T Fy_ 27"
TanBExy (A )F,a/\,BI—'y

Se rimpiazzo una ipotesi (@) con una ipotesi piu forte (a A ) posso
continuare a dedurre cio che deducevo prima (7).

T'ta g
VOrrave Vrravs
Se posso dedurre a posso dedurre anche la tesi pitt debole a V 3.

aky I,BF~y
FavpBk~y
Se posso dedurre una certa tesi () sia utilizzando una certa ipotesi (a) che

utilizzandone un’altra (4), allora la posso dedurre dalla loro disgiunzione
(aV B) (oltre al resto delle ipotesi I').

. () T,al B Tha—f
Tha—B TFj3
Per dedurre un’implicazione (a — ) basta riuscire a dedurre S aggiun-
gendo come ulteriore ipotesi a.

o (Wk)

° (I— /\)

e (AF)

° (l— V)

(= Jef @

Se posso dedurre sia o che o — (3, allora posso dedurre .

TFa T'F -« n 'L

L1 (L) | e
Se deduco sia una tesi a che la sua negazione —a ho dedotto una contrad-
dizione (L). Inoltre se deduco una contraddizione, posso dedurre qualsiasi

cosa.
I'ka

* O F)F, —a kL
Se da certe ipotesi posso dedurre «, allora aggiungendo —« alle ipotesi
ottengo una contraddizione (L).

IakL

I'F -«

Se da certe ipotesi deduco una contraddizione (L), allora posso dedurre la

negazione di una qualsiasi delle ipotesi a partire dalle rimanenti. Alcuni

o (F1)

(k=)

4Qui la logica matematica si discosta dal buon senso comune, dove puo capitare che ulteriori
informazioni portino a rivedere le conclusioni precedentemente acquisite.
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autori definiscono —A come A — 1. Cosi facendo la regola appena data
diventa ridondante in quanto si ottiene da F— prendendo 8 =1.

. (RAA{’F—';ﬂ
(6]

Per dimostrare a da certe ipotesi I & sufficiente riuscire a dedurre una con-
traddizione aggiungendo —« alle ipotesi. Questa e la regola delle dimostrazioni
per assurdo (RAA = reductio ad absurdum), e come vedremo essa & alla base
delle dimostrazioni non costruttive.

Definizione 3.2. Diciamo che il giudizio T' F ¢ & derivabile, se & possibile otte-
nerlo con un numero finito di applicazioni delle regole date a partire da giudizi
della forma ¢ - ¢ (Ax). Detto ancora in altri termini, I' - ¢ & derivabile se ap-
partiene alla pit piccola classe di giudizi che contiene tutti o in della forma (Ax)
e che & chiuso per applicazione delle regole (quest’ultima condizione significa che
se i giudizi al di sopra della barra orizzontale di una regola sono derivabili lo &
anche, per definizione, quello al di sotto).

Se T' & una teoria, possibilmente con un numero infinito di assiomi, e ¢ € un
L-enunciato, diremo che ¢ & dimostrabile in T (nel sistema della deduzione
naturale), se esiste un sottoinsieme finito I" degli assiomi di T tale che il giudizio
I' F ¢ & derivabile usando le regole sopra date. Se ¢ € dimostrabile in 7' diremo
che ¢ & un teorema di T', e scriveremo T F ¢ per esprimere questo fatto.

Esempio 3.3. AABF AV B & derivabile dalle regole della deduzione naturale.
Infatti da A deduco A V B in base alla regola (F V). Quindi da A A B deduco
AV B in base alla regola (A F).

La differenza tra le regole (RAA) e (FL) potrebbe sembrare irrilevante se si
da per scontato che =—A equivale ad A, ma quest’ultima equivalenza richiede
per essere dimostrata proprio la regola RAA. Ovviamente I’equivalenza tra -—A
e A segue anche dalle tavole di verita, ma lo scopo del sistema della deduzione
naturale & per 'appunto quello di fornire un approccio alternativo rispetto alle
tavole di verita, che quindi non possono essere utilizzate in questo contesto.

Esempio 3.4. Mostriamo che =—A F A & derivabile. Per RAA basta far vedere
che =—A,—-A FL & derivabile. Questo ¢ facile perché da ——A,—-A deduco sia
—A che la sua negazione =—A, e quindi per (L) deduco L.

Un esempio piu complicato dove si utilizza RAA ¢ il seguente.

Esempio 3.5. Verifichiamo che - AV = A & derivabile (dove a sinistra del
abbiamo l'insieme vuoto). La difficolta sta nel fatto che potremmo non essere
in grado di dimostrare nessuno dei due disjunti singolarmente presi (cioé ne
F A né F —A sono derivabili). Ragioniamo allora per assurdo, cioé cerchiamo
di dimostrare —(A V —A) FL (per poi concludere applicando RAA). Per la
regola (1), basta riuscire a derivare (1) ~(AV-A) - Ae (2) 2(AV—-A) - -A.
Sempre ragionando per assurdo (cio¢ utilizzando la RAA), per derivare (1) basta
derivare —(A V —A),-A 1. Questo & facile perché da —A deduco AV —A che
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insieme all’altra ipotesi =(A V —A) conduce a L. (Piu formalmente: =4 F -A
per (Ax), quindi —AF AV —A per (L V), quindi ~(AV —-A),-AF AV —A per
(Wk). Ma siccome ho anche =(AV —A4),-AF —~(AV —A) per (Ax) e (Wk), ne
concludo =(AV —A),—-A F1.) Per (2) ragioniamo analogamente: dall’ipotesi A
deduco AV —A, e aggiungendo —(A V —A) alle ipotesi ottengo L. Quindi per
(FL) ottengo —(AV —A) F -A.

3.2 Caso predicativo

Analogamente a quanto fatto nel caso proposizionale definiremo una relazione
Fpn che, come poi vedremo, risultera equivalente a |=.

Definizione 3.6. Sia L un linguaggio del primo ordine. Considereremo giudizi
della forma I' F ¢ dove I' & un insieme finito di L-formule e ¢ & una L-formula
chiusa. Un giudizio & derivabile se si puo ottenere in base alle seguenti regole.

o Tutte le regole gia date nel caso proposizionale, applicate perd a formule
del primo ordine del linguaggio L anziché a formule proposizionali.

Tk
PRS2
I'FVzo
formule di T' U {¢}.
L’idea & che per dimostrare Vz¢ basta dimostrare ¢(y/z) per un elemento
generico y, ovvero per una variabile y su cui non sono state fatte ipotesi.

'FVYzo
* Ve

Dal generale al particolare: se dimostro che ¢(z) vale per ogni z, allora
vale anche per t.

Tk ¢(t/z)
'k 3z¢

dove y € una variabile che non occorre libera nelle

dove t € un qualsiasi termine sostituibile per z in ¢.

e (F3)

dove t & un qualsiasi termine sostituibile per z in ¢.

Si tratta del metodo delle dimostrazioni costruttive di esistenza: per di-
mostrare che esiste un z tale che ¢(x) basta esibire un ¢ per il quale si sa
dimostrare ¢(t).

T ¢y/z) -

e (IH) T ug - 77 dove y e una variabile che non occorre libera in I' o

in 7.

Questa ¢ la regola piu difficile da giustificare a livello intuitivo. L’idea &
la seguente. Supponiamo di voler dimostrare v a partire da Jzd(x). A
livello informale un modo comune di procedere ¢ il seguente. Visto che
vale dz¢(z) possiamo immaginare di scegliere un elemento y che verifica
¢(y) (nelle dimostrazioni informali questo passsaggio ¢ accompagnato in
genere da commenti come “sappiamo che Jz¢(z). Sia dunque y un tale
x”) e proseguire poi la dimostrazione cercando di dedurre v da ¢(y). Se
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¢i riusciamo possiamo affermare di aver dimostrato v da Jz¢(z). E im-
portante che y sia una variabile non usata in precedenza, perché in genere
potremmo non sapere se la x di cui si asserisce l'esistenza coincida con
uno degli elementi nominati in precedenza nella dimostrazione.

e (F=)'Ft=1t,dovet e un termine qualsiasi.
T'F ot P-t=t¢
. L o)
Ik o(t'/z)
in ¢.
La regola dice che se t = t', tutto cio che posso affermare di ¢ lo posso
affermare di ¢'.

, dove t,t' sono termini sostituibili per

Esempio 3.7. La regola (RAA), in combinazione con le regole per i quanti-
ficatori, viene usata in modo essenziale nella dimostrazione che —VzP(x) —
Jz-P(z). L’dea della dimostrazione & la seguente (saltando qualche passaggio).
Abbiamo -P(a) F Jz-P(z). Aggiungendo —3Iz—P(z) alle ipotesi otteniamo
allora facilmente —3z—P(z),~P(a) FL. Quindi per (RAA) -Jz—P(z) F P(a).
Ora la a non compare piu tra le ipotesi e pud pertanto essere quantificata
universalmente: —-3Jz—P(x) F VzP(x). Ma allora se aggiungo —VzP(x) al-
le ipotesi ottengo una contraddizione: —VzP(z),—Jz—P(z) L. Utilizzando
di nuovo (RAA) otteniamo —VzP(z) F 3z—P(z). Infine scaricando l’ipotesi
F =VzP(z) - 3z P(z).

L’implicazione F —=VzP(x) — Jz—P(x) ¢ a sua volta alla base di molte di-
mostrazioni non costruttive in matematica, come ad esempio quella del teorema
che ogni successione infinita di numeri reali nell’intervallo [0, 1] ha un punto di
accumulazione.

3.3 Correttezza della deduzione naturale

Tl collegamento tra le regole della deduzione naturale e le interpretazioni (sia
nel caso proposizionale che predicativo) ¢ il seguente:

Definizione 3.8. Una regola di inferenza ¢ corretta se, rimpiazzando nella
regola = al posto di F, il giudizio al di sotto della barra verticale & valido
ogniqualvolta lo sono quelli al di sopra della barra.

Esempio 3.9. Verifichiamo ad esempio la correttezza della regola

akp
= rass

A tal fine dobbiamo mostrare che, comunque si scelgano le formule in questione,
si ha:

SeT,a B, alloral |=a — g.
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Assumiamo dunque che valga I',a = . Dato un modello M di T' dobbiamo
allora verificare che esso rende vera a — . Questo € chiaro se a ¢ falsa in
M, perché una implicazione con la premessa falsa & vera. Se invece a & vera in
M, allora M & un modello di T, o, e siccome stiamo supponendo che I', a |= S,
nel modello M deve essere vera 3, e quindi anche o — 3 in base alle tavole di
verita.

Osservazione 3.10. La dimostrazione appena data funziona e valida sia nel
caso proposizionale che predicativo. Nel primo caso le formule sono formule
proposizionali e M & una valutazione booleana, nel secondo caso le formule
sono formule di un linguaggio del primo ordine L ed M & una L U C-struttura,
dove C & l'insieme delle variabili libere presenti (si veda la definizione 2.41).

Osservazione 3.11. II lettore avra forse notato che per dimostrare la cor-
rettezza della regola (F—) abbiamo usato nella “metateoria” lo stesso tipo di
ragionamento espresso formalmente dalla regola stessa. Nessun dramma: non
stiamo cercando di spiegare quali siano i ragionamenti corretti, ma solo di rap-
presentarli formalmente, presupponendo naturalmente che tutti si sappia gia
ragionare a livello informale.

Lemma 3.12. Le regole (F V) e (F /e) sono corrette.

Dimostrazione. La correttezza della prima regola segue immediatamente dal
Lemma 2.40. La seconda dal Lemma 2.43. O

Similmente si dimostra:
Lemma 3.13. Tutte le regole della deduzione naturale sono corrette.
Dimostrazione. Lasciato al lettore come esercizio. O

Ne segue immediatamente (per induzione sul numero delle regole applicate)
che:

Teorema 3.14. Sia I' un insieme di formule e sia ¢ una formula. SeT Fpyn ¢,
alloraT |= ¢, dove T |= ¢ significa che ¢ é vera in tutti i modelli diT eT Fpy ¢
significa che T'F ¢ é derivabile dalle regole della deduzione naturale.

Molto piu difficile dimostrare che se T' = ¢ allora T’ Fpy ¢. Cid esprime
esprime la completezza delle regole della deduzione naturale, e ne posponiamo
la dimostrazione.

4 Completezza

4.1 Caso proposizionale

Sebbene in questa sezione siamo interessati alla logica proposizionale, osservia-
mo che i risultati e le definizioni di questa sezione si applicano (con minime
modifiche) sia al caso proposizionale che predicativo.
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Definizione 4.1. Una teoria I' si dice incoerente (o contraddittoria) se
I' L. Diciamo che I" & coerente se non ¢ incoerente.

Esercizio 4.2. Sono equivalenti:
1. T H1;
2. Esiste una formula 6 tale che ' - 6 e I' F —6;
3. Per ogni formula ¢, T' F ¢.

Lemma 4.3. Sia T una teoria e ¢ una formula. Se T é coerente, allora almeno
una delle due teorie I';¢ o T',—¢ € coerente.

Dimostrazione. Supponiamo che le teorie I' U {—¢} e I' U {—¢} siano entrambe
incoerenti. Poiche I' U {—¢} & incoerente abbiamo I' - ¢. Similmente dall’in-
coerenza di I' U {¢} otteniamo I" F —¢. Mettendo insieme le due dimostrazioni
otteniamo I' F_L. O

Definizione 4.4. Una L-teoria coerente I' si dice completa se data una L-
formulag o' ¢ o T'F —¢.

Definizione 4.5. Fissato un linguaggio (proposizionale o predicativo) L, una
L-teoria I' si dice coerente massimale se € coerente e non € propriamente
inclusa in alcun’altra L-teoria coerente.

Osservazione 4.6. Supponiamo che I sia coerente massimale e I' F ¢. Allora
pel.

Dimostrazione. Se ¢ ¢ T" allora I' U {—¢} & una estensione propria di I' ed &
pertanto incoerente. Ma siccome I' - ¢, I e I' U {¢} hanno gli stessi teoremi, e
pertanto anche I' sarebbe incoerente. O

Lemma 4.7. Sono equivalenti:

1. T é coerente massimale;

2. T' é coerente e per ogni formula ¢, ¢ € I" oppure ¢ € T'.

Dimostrazione. 1 — 2. Supponiamo che ¢ € ' e =¢ ¢ I'. Allora entrambe le
teorie 'U {6} e T' U {6} estendono propriamente I'. Ma per il Lemma 4.3 una
di queste due teorie ¢ coerente, contraddicendo la massimalia di T'.

2 — 1. Assumendo (2) dobbiamo mostrare che I' non & estendibile ad una
teoria coerente A D T'. Infatti se ¢ € A\ T, per (2) abbiamo —¢ € I'. Ma allora
A conterrebbe sia ¢ che —¢ e pertanto non sarebbe coerente. O

Lemma 4.8. Consideriamo una famiglia {T; | i € I} di L-teorie che formano
una catena, cioé per ognii,j € I T; CT; o T; C T;. Sia |J;c; Ti V'unione della
catena. Supponiamo che | J;c; T; b ¢. Allora esiste i € I tale che T; F .
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Dimostrazione. Gli assiomi effettivamente utilizzati in una dimostrazione forma-
le sono sempre in numero finito. Esiste quindi un sottoinsieme finito S C |J,; T;
tale che S F . D’altra parte sicuramente esiste i tale che S ¢ incluso in una
delle T; (qui si usa l'ipotesi che le T; formino una catena). Quindi 7; F ¢. O

Corollario 4.9. L’unione di una catena di teorie coerenti é coerente.

Lemma 4.10. (Lemma di Lindenbaum) Ogni L-teoria coerente T' é contenuta
in una L-teoria coerente massimale.

Dimostrazione. Per semplicita consideriamo dapprima il caso in cui L sia nu-
merabile. Possiamo allora fissare una enumerazione {¢,, | n € N} dell’insieme
delle L-formule. Sia Top = T e induttivamente definiamo 7T}, 1 come T, U {¢,}
se questa teoria & coerente, e come T, U {—¢,} nel caso contrario. Per il lemma
4.3 T\, 11 € coerente se Ty, lo e. Quindi per induzione tutte le T}, sono coerenti e
per il corollario precedente lo ¢ la loro unione 7" = | J,,cy T- Data una qualsiasi
formula 6 € {¢,, | n € N}, T' deve contenere una delle due formule § o — (se
0 = ¢, 0 6 o0 la sua negazione appartiene a Tj,;1). Quindi per il Lemma 4.7 T’
& coerente massimale.

Il caso in cui L non & numerabile si dimostra applicando il lemma di Zorn
all’insieme di tutte le L-teorie coerenti contenenti I' ordinate per inclusione. Le
ipotesi del lemma, di Zorn sono verificate grazie al Corollario 4.9. O

Lemma 4.11. Sia T una L-teoria coerente (rispetto alle regole della deduzione
naturale).

1. se =@ € T, allora T,¢ ¢ coerente (quindi se T ¢ coerente massimale,

peT).

2. se N €T, allora T, ¢, ¢é coerente (quindi se T é coerente massimale,
peTeyeT).

3. se ~(p ANY) €T, allora T,—¢ é coerente, o T,—p é coerente (quindi se T
é coerente massimale, ¢ €T o ) € T');

4. se 9V € T, allora T, ¢ é coerente, o T,v é coerente (quindi se T ¢
coerente massimale, p € T op € T).

5 se ~(p V) €T, alora T,~¢,—p é coerente (quindi se T é coerente
massimale, ¢ € T e p € T).

6. se - €T, allora T,—¢ ¢é coerente, o T, & coerente (quindi se T é
coerente massimale, = € T o) € T).

Teorema 4.12. Sia L un linguaggio proposizionale e sia T una teoria proposi-
zionale coerente nel linguaggio L. Allora T ha un modello proposizionale.

Dimostrazione. Per il lemma di Lindenbaum esiste una L-teoria coerente mas-
simale 7' D T. In particolare per ogni variabile proposizionale A di L, A € T"
o —A € T'. Sia M la valutazione booleana che assegna 1 alle variabili A che
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appartengono a 7" e 0 alle variabili la cui negazione appartiene a T’. Per la
coerenza di T ogni variabile riceve da M un solo valore, e per la massimalita di
T nessuna variabile del linguaggio L rimane esclusa. Usando le tavole di verita
ogni formula di L (non solo le variabili proposizionali) riceve da M un valore 1
0 0. Per induzione sulla complessitd delle formule, e usando il Lemma 4.11 per
fare i passaggi induttivi, si verifica che ogni formula di 7" riceve il valore 1 da
M. Quindi M & un modello di 7", e pertanto anche di T'. O

Teorema 4.13. Sia T una teoria proposizionale, e sia ¢ una formula proposi-
zionale. Se T |= ¢ allora T' - ¢.

Dimostrazione. Supponiamo che T I/ ¢. Allora T, —¢ € coerente. Quindi T, —¢
ha un modello M. Tale modello testimonia il fatto che T' [~ ¢. O

4.2 Caso Predicativo

Esattamente come nel caso proposizionale si dimostra:

Lemma 4.14. Sia T una teoria e ¢ una formula chiusa. Se T é coerente, allora
almeno una delle due teorie I'; ¢ o T',=¢ € coerente.

Corollario 4.15. L’unione di una catena di teorie coerenti é coerente.

Lemma 4.16. (Lemma di Lindenbaum) Ogni L-teoria coerente T' é contenuta
in una L-teoria coerente massimale.

Lemma 4.17. Sia X un insieme di L-enunciati, sia 3x¢(x) un L-enunciato e
sia ¢ sia un simbolo di costante mon occorrente né in ¥ né in Ixg(x). Allora
YU {¢(c)} é coerente se e solo se ¥ U {Ixp(x)} é coerente.

Dimostrazione. Poiché ¥ + ¢(c) — Jzp(z), se T U {#(c)} & coerente allora
YU {3z¢(x)} & coerente. Viceversa supponiamo che ¥ U {¢(c)} sia incoerente,
ovvero ¥ U {¢(c)} FL. Rimpiazzando ¢ con una nuova variabile y che non
compare nella dimostrazione, ¥ U {¢(y)} kL (verificare!). Ma allora per una
delle regole della deduzione naturale, ¥ U {Jz¢(z)} FL. O

Lemma 4.18. Sia ¥ un insieme coerente di L-enunciati, sio 3x¢(z) un L-
enunciato e sia ¢ sia un simbolo di costante non occorrente né in X né in Ixg(x).
Allora ¥ U {3zd(x) = ¢(c)} € coerente.

Dimostrazione. Supponiamo che ¥ U {Jz¢d(z) — ¢(c)} FL. Ma allora ¢ facile
vedere che ¥ F {3zd(x)} e £ F —¢é(c). Questo contraddice il Lemma 4.17. O

Definizione 4.19. Sia T una L-teoria. Diciamo che T' & una teoria di Henkin
se per ogni L-enunciato della forma Jxz¢(x) esiste almeno un simbolo di costante
¢ in L tale che la formula 3z¢(z) — ¢(c) & dimostrabile in T'. (Quindi se Az¢(x)
& dimostrabile in T" anche ¢(c) lo &.)
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Esempio 4.20. Sia T la teoria nel linguaggio L = {0,1,+,-} che ha come
assiomi tutti gli L-enunciati veri nel campo dei numeri reali R (interpretando i
simboli di L come lo zero, 'uno, la somma e il prodotto). Allora T non & una
teoria di Henkin. Infatti 7' dimostra 3z (2% = 2) (dove z? sta per z-x e 2 sta per
1+ 1) ma non esiste alcuna costante ¢ del linguaggio tale che T F ¢ = 2. (La
radice quadrata di due esiste nel dominio della struttura R, ma non corrisponde
ad alcun simbolo del linguaggio L).

Lemma 4.21. Sia T una L-teoria coerente. Allora esiste un linguaggio L' O L
e una L'-teoria T' D T tale che T' é coerente e di Henkin.

Dimostrazione. Definiamo una operazione tra teorie T' — T* nel modo seguente.
Sia L* il linguaggio che si ottiene da L = L(T") con ’aggiunta, per ogni enunciato
di L della forma Jza, di una corrispondente nuova costante che indicheremo
¢o (distinti enunciati corrispondendo a distinte costanti). Sia T* la teoria nel
linguaggio L* i cui assiomi comprendono quelli di 7" e tutti gli enunciati della
forma Jza(z) — a(c,) dove za(x) & un enunciato di L.

Usando ripetutamente il Lemma 4.18 si dimostra che qualsiasi sottoteoria
finita di 7™ & coerente, quindi anche T* & coerente (in quanto una eventuale
dimostrazione di una contraddizione puo coinvolgere solo un numero finito di
assiomi).

Si noti che T non & necessariamente una teoria di Henkin perche, pur es-
sendo vero che tutti gli F-enunciati di L(T") hanno una costante associata, cio’
non & necessariamente vero per tutti gli 3-enunciati di L(T*). Per porre rimedio
a cio dobbiamo iterare il procedimento 7' — T infinite volte come segue.

Sia To = T, Tp4+1 = T,;. Sia T,, I'unione delle teorie T,, per n € w. Poiche
tutte le T}, sono coerenti lo & anche T, per il Lemma 4.15.

Per finire verifichiamo che T,, ¢ una teoria di Henkin. Sia infatti 3za(z) un
enunciato di L(7,). Poicheé Jza(z) puo’ contenere solo un numero finito delle
nuove costanti, esiste n € w tale che 3za(z) & un enunciato di L(T},,). Ma allora
dza(z) = a(cy) € un assioma di Ty, 41 e quindi di Tj,. O

Lemma 4.22. Sia ¥ un insieme coerente di L-enunciati. Allora esiste un
linguaggio L' O L e un insieme di L'-enunciati X' D ¥ tale che X' é coerente
massimale e di Henkin.

Dimostrazione. Prima applichiamo il Lemma 4.21 per trovare una estensione di
Henkin 7' D ¥ in un linguaggio esteso L' O L, poi il Lemma 4.16 per estendere la
teoria di Henkin ad una teoria coerente massimale ¥’ D T sempre nel linguaggio
L'. Visto che nel secondo passaggio non abbiamo cambiato il linguaggio, %'
continua ad essere di Henkin. O

Definizione 4.23. (Insiemi di Hintikka) Sia T un insieme di L-formule chiuse.
Diciamo che T & un insieme di Hintikka (per L) se per ogni scelta di L-formule
chiuse ¢, si ha:

1. se p € T, allora ~¢ €T,
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se =g €T, allora¢p €T,
sepNYeT,allorapeTerp €T,

se (pAY) €T, allora—peT o WpeT,
sepVipeT, allorapeToyeT,

se 7(pV) eT, allora—peTepeT,
sep—peT, allora~peToyeT,

se (g =) eT,allorapeTepeT,

© ® N o e W N

se Vx¢(z) € T, allora per ogni L-termine chiuso ¢, ¢(t) € T,

—
o

se "Vzp(x) € T, allora esiste un L-termine chiuso ¢ tale che —¢(t) € T,

11. se 3z¢(x) € T, allora esiste un L-termine chiuso ¢, tale che ¢(t) € T,

12. se =3z¢(z) € T, allora per ogni L-termine chiuso ¢, ~¢(t) € T

13. (riflessivita) per ogni L-termine chiuso t,t =t € T,

14. (sostituibilitd) per ogni L-formula ¢(z) e termini chiusit e t', set =t' € T,

allora ¢(t) € T se e solo se ¢(t') € T.
(Nella ultima clausola possiamo anche limitarci a formule atomiche ¢(z).)

Esercizio 4.24. Si consideri un linguaggio senza simbolo di uguaglianza nella
segnatura L = {R, c}, dove R & un simbolo di relazione binario e ¢ & un simbolo
di costante. Si trovi un insieme di Hintikka contenente la formula Vz3y(R(z,y)V

R(y,z)).

Lemma 4.25. Sia T una L-teoria coerente massimale di Henkin. Allora T ¢
di Hintikka.

Dimostrazione. Verifichiamo ad esempio la clausola del V nella definizione di
insieme di Hintikka. Supponiamo che a V 8 € X'. Allora per il Lemma 4.11
Y'U{a} & coerente, 0 X'U{S} & coerente. Supponiamo senza perdita di generalita
che ¥' U {a} sia coerente. Essendo ¥’ coerente massimale, si deve allora avere
a € X', Gli altri casi sono analoghi e lasciati al lettore come esercizio. O

Teorema 4.26. Ogni insieme di Hintikka T ha un modello M . Inoltre possiamo
prendere M in modo tale che ogni elemento del dominio di M é linterpretazione
di un termine chiuso del linguaggio L di T'.

Dimostrazione. Per semplicita consideriamo prima il caso di linguaggi senza il
simbolo di uguaglianza né simboli di funzione. In questo caso gli unici termini
chiusi di L sono le costanti. Prendiamo come dom(M) I'insieme delle costanti
di L. Dato un simbolo di relazione R di arietd n, definiamo la sua interpre-
tazione RM C dom(M)™ come I’insieme di tutte le n-uple (ci,...,ct) tali che
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R(c1,...,¢n) € T. In questo modo abbiamo definito una L-struttura che rende
veri tutti gli enunciati atomici in T, e falsi gli enunciati atomici non in 7. Sia
ora ¢ un arbitrario L-enunciato. Usando le proprieta di Hintikka segue per in-
duzione sul numero dei connettivi di ¢ che se ¢ € T, allora M |= ¢ (se T & un
insieme di Hintikka completo sara anche vero che se ¢ ¢ T, allora M = —¢).

Consideriamo ad esempio il caso —¢ € T'. Dalle proprietd di Hintikka segue
che ¢ ¢ T. Se ¢ & atomica, concludiamo che M |= —¢ per definizione di M. Se
invece ¢ non & atomica, allora deve cominciare con un connettivo. Supponiamo
ad esempio che tale connettivo sia V, cioe¢ =¢ = =(a V ). Usando le proprieta
di Hintikka abbiamo —a € T e = € T. Per induzione possiamo concludere
M E -a e M E -8, da cui poi segue M = —(aV 3).

Lasciamo al lettore la verifica degli altri casi. Questo conclude la dimo-
strazione nel caso il linguaggio non abbia simboli di funzione e il simbolo di
uguaglianza.

Consideriamo ora il caso generale. Ricordiamo che il simbolo di uguaglianza
deve essere interpretato come la relazione di uguaglianza, quindi se t =t' € T
dobbiamo fare in modo che t e ¢ siano interpretati con lo stesso elemento del
modello M che vogliamo costruire.

A tal fine prendiamo come dom (M) I'insieme degli L-termini chiusi quozien-
tato rispetto alla relazione di equivalenza ~ definita da t ~ t' sset = t' € T.
Segue dalle proprieta degli insiemi di Hintikka che ~ ¢ in effetti una relazione
di equivalenza. Indichiamo con t/~ la classe di equivalenza di ¢ rispetto a ~.

Dato un simbolo di funzione f di L di arieta n definiamo la sua interpretazio-
ne fM: dom(M)™ — dom(M) ponendo: fM(ty/~, ... to/~) = f(t,-.. tn)/~.
Questa definizione & ben posta perche dalla clausola di sostituibilita nella de-
finizione degli insiemi di Hintikka (applicata ripetute volte) segue che se t; ~

1seoostn ~t allora f(t1,...,tn) ~ f(t],...,t).

Resta solo da definire linterpretazione RM dei simboli di relazione di L
(se ve ne sono). Se R ha arietd n e ti,...,t, sono termini chiusi, poniamo
(t1/ ~,...ytn)~) € RM sse R(t1,...,t,) € T. Questo & ben posto per la
clausola di sostituibilitd. Abbiamo cosi definito una L-struttura M.

Per induzione sulla lunghezza dei termini chiusi ¢, segue che t¥ = t/~.
Quindi se t =t € T, allora t¥ =t/~ =t'/~ = t'M e quindi M =t =t (si
noti che per abuso di linguaggio abbiamo usato “=" sia come simbolo che come
la vera relazione di uguaglianza). Viceversa se t = t' ¢ T, allora t/~ # t'/~
e M Et#1t. Quindi M rende veri gli enunciati di T della forma t = t/, e
falsi gli enunciati della forma ¢ = t' che non sono in T. Similmente si verifica
che R(t1,...,t,) € T sse M = R(t1,...,t,). Quindi tra gli enunciati atomici
(senza connettivi) M rende veri tutti e soli quelli che sono in 7. Ragionando
per induzione sulla complessita della formula, usando le proprieta di Hintitkka
per i passi induttivi, vediamo che ogni ¢ € T' (non necessariamente atomica) &
vera M. Consideriamo nel dettaglio il caso in cui ¢ & della forma Jz6(zx). Se
¢ € T, allora essendo T di Hintikka deve esistere un termine chiuso ¢ tale che
0(t) € T. Per induzione 6(t) & vero nel modello M. Ma allora deve essere vero
anche dz6(x). O
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Teorema 4.27. Sia T una L-teoria. Se T ¢é coerente allora T ha un modello.

Dimostrazione. Se T & coerente esiste un insieme di Hintikka 7' D T in un
linguaggio L' D L. Per il Teorema 4.26 7" ha un modello. Quindi anche T ha
un modello. O

Teorema 4.28. Sia T una L-teoria. Se T |= ¢, allora T + ¢ (nel sistema della
deduzione naturale).

Dimostrazione. Se T t/ ¢ allora T, —¢ & coerente, e quindi ha un modello. Tale
modello testimonia che T}~ ¢. O
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