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Abstract

We define a model of λβ-calculus which is similar to the model of
Böhm trees, but it does not identify all the unsolvable lambda-terms.
The role of the unsolvable terms is taken by a much smaller class of
terms which we call mute. Mute terms are those zero terms which are
not β-convertible to a zero term applied to something else. We prove
that it is consistent with the λβ-calculus to simultaneously equate all
the mute terms to a fixed arbitrary closed term. This allows us to
strengthen some results of Jacopini and Venturini Zilli concerning easy
λ-terms. Our results depend on an infinitary version of λ-calculus. We
set the foundations for such a calculus, which might turn out to be a
useful tool for the study of non-sensible models of λ-calculus.

Dedicated to the memory of Roberto Magari

1 Introduction

Our aim is to define a new model of λ-calculus in which two λ-terms are iden-
tified if they have the same “asymptotic behaviour”, namely they approach
the same limit by repeated β-reductions. Such an idea is already present in
the notion of “Böhm tree” (see [6, 2]) but it is not fully exploited in the sense
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that the aymptotic behaviour of the unsolvable terms is completely ignored.
The Böhm tree of a λ-term, is a kind of infinite unfolding of the λ-term
with respect to β-reduction. Consider for instance the Turing fixed point
combinator Yt ≡ QQ where Q ≡ λx, y.y(xx) (as usual ≡ between λ-terms
is syntactic identity up to renaming of bound variables, whilst = denotes
β-convertibility). The Böhm tree BT (Yt) is obtained as a limit of the ω-
sequence of β-reductions Yt → λy.y(QQ) → λy.y(y(QQ)) → . . . , namely
BT (Yt) is the “completely unfolded” infinite λ-term λy.y(y(y(. . .))). Böhm
trees are more often depicted as trees, but we prefer to think of them as
infinite λ-terms. For the reader’s convenience we recall the formal definition
of Böhm tree in section 2. Since the Böhm tree of an unsolvable λ-term
is defined to be ⊥ (where ⊥ is a special symbol staying for “bottom”, or
“undefined”, or “empty”), Böhm trees do not distinguish among unsolvable
terms.

The importance of Böhm trees both for the proof-theory and for the
semantics of lambda-calculus needs not be stressed. Let us just recall that
two λ-terms are equal in the Plotkin model Pω if and only if they have the
same Böhm tree (see [11, 2]). Moreover two λ-terms are equal in the Scott
model D∞ if and only if they have the same “βη-Böhm tree” (see [11, 24, 2]).

The fact that the Böhm tree of an unsolvable term is ⊥ can be a draw-
back: it means that Böhm trees give no information on the inner structure
of the unsolvable terms. It has been argued that the unsolvable terms corre-
spond to the notion of “undefined” in λ-calculus (see [2]), and therefore one
does not need to look inside them. However some recent papers [12, 13, 4]
have suggested that some unsolvable terms can have an operational mean-
ing and therefore one should take as undefined elements a smaller set of
terms than the unsolvables, for instance the zero terms (Statman) or the
easy terms [14, 15, 16, 25]. Using a result of Visser [23] Statman proved
(see [3]) that one can take any Π1 set of terms closed under β-conversion
to represent the undefined value of a partial recursive function. Topological
models of λ-calculus where not all the unsolvable are identified are studied
in [10, 21].

With these motivations in mind we extend non-trivially the notion of
Böhm tree to a large class of unsolvable terms. We do so by introducing what
we call the infinite β⊥-normal form of a λ-term. The definition of the infinite
β⊥-normal form is very natural: we just apply the idea of infinite unfolding
also to the unsolvable terms. Consider for instance the unsolvable term
Ω3 ≡ ω3ω3 where ω3 ≡ λx.xxx. We have the ω-sequence of β-reductions

Ω3 → Ω3ω3 → Ω3ω3ω3 → . . .
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such a sequence “converges” to the infinite β-reduction Ω3 →∞
NF∞(Ω3), where NF∞(Ω3) is the unique infinite term satisfying the syn-
tactic identity NF∞(Ω3) ≡ NF∞(Ω3)ω3. This can be depicted as a tree
with binary application nodes:
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NF∞(Ω3) ≡

The notion of convergence here used is convergence with respect to
the usual topology of infinite trees plus the stronger requirement that the
depth of the redexes reduced in an infinite β-reduction must go to infinity
(such a notion is called strong-convergence in [17] in the context of term-
rewriting systems for first order infinite terms). Unlike what happens for
finite lambda-terms, the above example shows that there are terms, like
NF∞(Ω3), which are in normal form (as they have no β-redexes) and yet
they begin neither with a λ-abstraction nor with a variable.

The main result of this paper is that the infinite β⊥-normal forms are, like
the Böhm trees, a model of the λβ-calculus. Such a model is not sensible, i.e.
not all the unsolvable are identified. What plays the role of the unsolvable
terms is a much smaller class of terms which we call mute. We recall that a
zero term is a term which cannot by reduced to an abstraction term λx.T .
Mute terms are then defined as those zero terms which cannot be reduced
to a variable or to a zero term applied to some other term. If A is mute we
set by convention NF∞(A) =⊥. For instance Ω ≡ (λx.xx)(λx.xx) is mute,
whilst Ω3 is a zero term but it is not mute. The idea is that mute terms
have a totally indefined operational behaviour.

To prove our main result the crucial lemma is to show that infinite β⊥-
normal forms behave well under substitutions, i.e. we must show:

NF∞(A[x := B]) = NF∞(NF∞(A)[x := NF∞(B)]) (∗)
A similar problem arises if one deals with Böhm trees, and in that con-

text it is usually handled by using finite approximations to infinite trees
and proving some kind of continuity theorem. Here we propose a different
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approach. While in the usual treatment of Böhm trees one deals exclusively
with infinite λ-terms which are in normal form, we take the more liberal view
of considering a full fledged infinite λ-calculus in which we allow arbitrary
infinite λ-terms and infinite reductions among them. This extra freedom
allows us to state and prove some general results about infinite λ-calculus
of which (∗) is an immediate consequence. More precisely we formulate two
versions of infinite λ-calculus, an infinite λβ-calculus and an infinite λβ⊥-
calculus. The infinite λβ-calculus is not Church-Rosser and not normalizing
(with respect to infinite β-reductions), but if a finite term has an infinite
β-normal form, then it is unique. The infinite β⊥-calculus behaves better:
it is Church-Rosser, at least for reductions starting from a finite term, and
normalizing. So a finite term A has one and only one β⊥-normal form, which
coincides with what we have called NF∞(A). The equality (∗) follows at
once since the two sides coincide with the (unique) infinite β⊥-normal form
of A[x := B].

In our approach finite approximations are not explicitly used but they
are somehow implicit in the notion of infinite reduction.

In section 14 we prove, that mute terms are much more “undefined” than
the unsolvable terms in the sense that it is consistent with the λβ-calculus
to simultaneously equate all mute terms to an arbitrary closed term (not
necessarily mute). In particular each mute term is easy, i.e. it can be
consistently equated to every closed term. The proof consists in defining
a suitable Church-Rosser extension of λ-calculus. The method of proving
consistency results via Church-Rosser extensions was used by Mitschke (see
[2] Section 15.3, [19]) and by Intrigila [12] in a more complex situation. The
method is improved in [4] where the use of infinite Böhm trees is introduced.
A general overview is given in [5].

The fact that all mute terms can be simultaneously equated to an arbi-
trary closed fixed term is a very strong property which is not shared by the
class of the easy terms, or even by the smaller class of the closed recurrent
zero terms: for instance Ω ≡ (λx.xx)(λx.xx) and ΩI (where I ≡ λx.x) are
two closed recurrent zero terms which cannot be simultaneously equated to
λxy.x.

B. Intrigila [12] showed that the class of the easy terms is not semantically
stable in the sense that if we equate all the closed easy terms to Ω, then the
rules of the λβ-calculus force us to equate an easy term to a non-easy one.
Our main result shows instead that the class of all mute terms is stable, in
the sense that it is possible to have a model in which all mute terms are
identified without having equalities between mute and non-mute terms.
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We finish the paper by comparing mute terms with another class of
previously studied easy terms, namely closed recurrent zero terms studied
in [15] (A is recurrent if every reduct of A can be reduced to A). Neither
class is included in the other but every closed recurrent zero term is a strong
zero term of finite degree (see section 15), namely it is β-convertible to a
term of the form AM1 . . .Mn with A mute. We show that every strong zero
term of finite degree is easy. (This is an immediate consequence of the fact
that mute terms are easy and that if A is easy, then AM is also easy.) We
thus obtain a strenghtening of the fact that closed recurrent zero terms are
easy.

By our results the problem of which zero terms are easy, is reduced to
the case of the strong zero terms of infinite degree. Here both possibilities
can happen and some difficult problems remain: for instance it is still not
known whether YtΩ3 is easy (see [15, 16, 4]). We hope that our results will
shed some light on the elusive nature of easy-terms.

We finish this introduction with the following two remarks, which point
out the limitations of the infinite β⊥-normal forms. First it is clear that
there is no “Böhm out technique” for the infinite β⊥-normal forms. Secondly
note that while the unsolvable terms form a Π1 set, the mute terms form
prima facie a more complicated set, namely a Π2 set (complete?). Moreover,
unlike the case of Böhm trees, there seems to be no general algorithm to
compute higher and higher finite approximations to an infinite β⊥-normal
form, although in many special cases, for instance the case of Ω3, this is
possible.

For related work in the area of term rewriting systems and infinite first
order terms see the last section.

Notation: A context C[ ] is a term containing some occurrences of a
special constant “hole”. C[B] is the term obtained by replacing all the
occurrences of the holes with the term B. With the notation A[x := B]
we indicate as usual the result of substituting all the free occurrences of x
in A with B after renaming the bound variables of A in such a way that
the free variables of B do not become bound in A[x := B]. The difference
between substitutions and contexts is that the free variables of B might
become bound in C[B] but not in A[x := B].

A notion of reduction is an arbitrary binary relation on lambda-terms.
We consider also notion of reductions ρ different from β-reduction. →ρ

denotes one-step ρ-reductions, i.e. the closure of ρ under substitutions and
contexts (see [2] Definition 3.1.5, p. 51). ⇒ρ is the reflexive and transitive
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closure of →ρ and →=ρ is the reflexive closure of →ρ. If we omit subscripts
we mean β-reduction. The sign ≡ between terms stands for syntactical
identity up to renaming of bound variables (α-conversion). The sign =
between two terms stands for provable equality in some theory (in most of
the cases = is β-convertibility).

Added in proofs: An infinitary version of λ-calculus has beed in-
dependently introduced by Kennaway, Klop, Sleep and Van de Vries in
a recent manuscript [18]. Our approach is different since: 1) we do not
equate all the unsolvable closed terms; 2) we allow infinite terms of the form
(((. . .)A2)A1)A0 (infinitely many parenthesis). In this paper the Church-
Rosser theorem for infinite β⊥-reductions is only proved for the class of
those infinite terms B which arise from finite terms, in the sense that there
is an infinite reduction A→β⊥∞ B with A a finite term. Later investigations
in collaboration with B. Intrigila showed that the Church-Rosser property
holds even without this restriction (see also [5]).

2 Infinite λ-terms and normal forms

We identify λ-terms with their parsing trees, so we write λ-terms either in
linear form or in tree form. This is convenient when we consider infinite
λ-terms. An infinite λ-term is defined as a finite or infinite rooted tree
such that each leaf is labeled by a variable and the inner nodes are either
binary “application nodes”, or unary “abstraction nodes”, in which case
they have a label of the form λx where x is a variable. For later purposes
we expand the language with a constant ⊥ which can then appear as a label
of a leaf. Unless otherwise stated “term” means “infinite λ-term” possibly
containing some occurrences of ⊥. Finite λ-terms are special cases of infinite
λ-terms. We have seen examples of infinite λ-terms in the introduction, for
instance BT (Yt) or NF∞(Ω3). When we write terms in linear form we
follow the usual convention of left-associativity, thus ABC is (AB)C etc.
This corresponds to a tree whose root has left-son AB and right-son C. The
term λx.A is identified with the tree with root λx having the son A.

The Böhm tree of a (finite) λ-term A is an infinite λ-term BT (A) (pos-
sibly containing some occurrences of ⊥), defined as follows.

• if there is a (multistep) β-reduction of the form

A⇒ λx1, . . . , xn.xiA1 . . . Ak,

then
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BT (A) ≡ λx1, . . . , xn.xiBT (A1) . . . BT (Ak).

• if A is unsolvable, i.e. there is no reduction of the above form, then
BT (A) =⊥.

Notice that a finite term in normal form coincides with its Böhm tree. It
can be shown that the map A 7→ BT (A) is single valued, namely it does not
depend on the non-deterministic choice of the β-reductions in the definition
of BT (A).

Our way of depicting Böhm trees is different from the usual one, for
instance we write λx, y.xy as

λx

λy

�@x y

This change of notation is justified by the extension of the notion of
Böhm tree that we want to do. We recall that a zero term is a term which
cannot be reduced (by a multiple β-reduction) to an abstraction term, i.e.
to a term of the form λx.A (it then follows that a zero term is not β-
convertible to an abstraction term). Note that a variable is a zero term.
The key property of zero terms is that if A is a zero term, M is an arbitrary
term, and AM ⇒ B, then B has the form A′M ′ with A⇒ A′ and M ⇒M ′.
The infinite β⊥-normal form NF∞(A) of a term A is defined as follows.

• If A⇒ x for some variable x, then NF∞(A) ≡ x.

• If A⇒ λx.B for some B, then NF∞(A) ≡ λx.NF∞(B).

• If A ⇒ BC where B is a zero term, then NF∞(A) ≡
NF∞(B)NF∞(C).

• In the remaining cases we say that A is mute and we set NF∞(A) ≡⊥.

Thus a term is mute if and only if it is a zero term and it is not β-
reducible to a variable or to a zero term applied to some other term.

The fact that A 7→ NF∞(A) is single valued will follow from the Church-
Rosser theorem for infinite β⊥-reductions (starting from a finite term) to be
proved later.
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Mute terms can be characterized as follows. We say that a term is in
top normal form (or is a top normal form) if it is either a variable, or an
abstraction term λx.T , or a term of the form BC where B is a zero term.
We say that A has a top normal form if there is a β-reduction A⇒ A′ with
A′ in top normal form. It follows from the definitions that a term A is mute
iff it has no top normal form. (If we work in ordinary λβ-calculus a term
is in top normal form if and only if it can never be reduced to a β-redex,
however this characterization fails if we extend the language with a new
constant ⊥. According to our definition ⊥ is mute.)

The name top normal form is justified by the remark that any β-reduct
of a term in top normal form is in top normal form. Since to be a zero term
is an undecidable property, to be in top normal form is also undecidable (and
to have a top normal form is even more complex). The intuitive reason for
the undecidability is that, unlike what happens for head normal forms (see
[2]), in order to recognize if a term is in top normal form, it does not suffice
to look at the first level of its tree-representation, it is sometimes necessary
to look at the whole term.

Example 2.1 We have already seen in the introduction the infinite normal
form of Ω3. Now let YtΩ3 be the Curry fixed point of Ω3. Then YtΩ3 →
Ω3(YtΩ3) and it can be shown that NF∞(YtΩ3) ≡ NF∞(Ω3)NF

∞(YΩ3).
In tree-form this means:
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NF∞(YΩ3) ≡

It is easy to see that the infinite normal form of a term is “finer” than
its Böhm tree, in the sense that NF∞(A) can be obtained from BT (A) by
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replacing all the ⊥’s in BT (A) by suitable terms (possibly containing other
⊥’s). This depends on the fact that every term in head-normal form is in
top normal form but not conversely, for instance Ω3 has no head-normal
form.

Notice that an infinite β⊥-normal form can have infinitely many initial
abstractions, consider for instance NF∞(K∞) where K∞ is the Turing fixed
point of K ≡ λx, y.x. Then NF∞(K∞) ≡ λx1, x2, x3, x4, . . .. On the other
hand since K∞ is unsolvable, the Böhm tree of K∞ is ⊥.

3 Infinite λβ-calculus

So far the notion of infinite β⊥-normal form that we have defined in the
previous section is not associated to any notion of reduction. Moreover we
have defined NF∞(A) only for a finite term A. In the sequel of this paper
we will fill these gaps by defining an infinite λβ-calculus (in this section)
and an infinite λβ⊥-calculus (in later sections).

First notice that β-reduction → is defined for infinite lambda terms in
exactly the same way as for finite ones, namely (λx.A)B → A[x := B]
(as usual → is closed under substitutions and contexts). Having defined
β-reduction we can extend the notion of zero term, mute term, etc. to the
infinite terms. Therefore the definition of NF∞(A) makes sense also for
infinite terms.

To obtain the infinite λβ-calculus we will define a notion of infinite β-
reduction →∞.

Definition 3.1 Given two terms A and B, we say A ≡n B if A and B
coincide up to the n-th level of their tree-representation. More precisely:

1. A ≡0 B iff A and B have the same root.

2. A ≡n+1 B iff A and B have the same root and each immediate subterm
of A is in relation ≡n to the corresponding immediate subterm of B.

If n is negative we make the convention that A ≡n B holds for every A
and B.

Note that the root of a term, determines in particular whether the term
is an application term (of the form BC), or an abstraction term (of the form
λx.U), or a variable. In the last two cases the root specifies also which is
the corresponding variable.
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As an example we have: AB 6≡0 λx.U ≡0 λx.V 6≡0 λy.Q where x and y
are different variables. Note that A ≡ B iff A ≡n B for every n.

Since terms are trees, they possess a natural topology and a notion of
limit.

Definition 3.2 Let < An | n ∈ ω > be a sequence of terms. We say
lim < An >≡ A if A is a term, and ∀k∃n∀m ≥ n Am ≡k A.

Definition 3.3 The depth of a specific occurrence of a subterm A in B, is
defined as the length of the path connecting the root of B to the root of A
in the tree-representation of B.

Example 3.4 The depth of A in A is 0. The depth of A in λx.A is 1. The
depth of A in λx.AB and in λx.BA is 2. The depth of A in λx.ABC is 3.

Definition 3.5 The depth of a β-reduction A→ B is defined as the depth
of the redex being contracted. The depth of a multistep β-reduction A⇒ B
is the minimum of the depths of the one-step β-reductions of which the
multistep reduction is composed. The empty reduction has infinite depth.

Remark 3.6 If the reduction A⇒ B has depth n, then A ≡n−1 B.

We define infinite β-reduction A→∞ B as follows.

Definition 3.7 Let σ:A0 ⇒ A1 ⇒ A2 ⇒ A3 ⇒ . . . be an infinite sequence
of β-reductions such that the depth of the reduction Ai ⇒ Ai+1 tends to
infinity with i. Then by the previous remark B ≡ lim < Ai > exists and
we set by definition A0 →∞ B via the reduction σ. We also say that the
ω-sequence σ converges.

So an ω-sequence of reductions is an infinite reduction if and only if
it converges. Note that by our convention empty-reductions have infinite
depth. It follows that A⇒ B implies A→∞ B.

Definition 3.8 The depth of an infinite reduction A →∞ B given by A ≡
A0 ⇒ A1 ⇒ A2 ⇒ . . . →∞ B, is defined as the mimimum of the depths of
the reductions Ai ⇒ Ai+1.

Remark 3.9 Let ω ≡ λx.xx. The infinite sequence of β-reductions ωω →
ωω → ωω → . . . does not converge because the depth of redexes does not
go to infinity. However we still have ωω →∞ ωω (with another reduction)
because empty reductions have infinite depth .
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4 Residuals under infinite β-reductions

The residuals of a subterm under a (finite) β-reduction can be defined as in
the case of finite lambda-terms. A simple way of doing this is to introduce
labels. We do this in some detail in order to extend it to infinite reductions.
We make a distinction between “residuals” and “extended residuals”. The
latter will be used in section 11.

Labeled terms are terms in which some (possibly all) subterm occur-
rences have a label (we can take the natural numbers as set of labels). Since
terms are trees and subterms are subtrees, we can consider a labeled term as
a tree in which some nodes are labeled by a natural number. Substitutions
are defined for labeled terms as follows: A[x := B] is obtained by erasing
all the labels attached to the free occurrences of x in A and then replac-
ing all such free occurrences with the term B (with all its labels). So if a
free occurrence of x has a label, then it looses its label in the substitution
x[x := B]. (This ensures that there are no overlappings of labels when a
substitution A[x := B] occurs.)

Having defined A[x := B] for labeled terms we can define β-reduction
for labeled terms as usual: (λx.A)B → A[x := B]. We can depict this in
tree-form:

�
�

@
@

i

j, λx

A

→β A[x := B]B

Note that the labels i and j are lost during the reduction. Clearly if B
has a label, then A[x := B] has as many copies of that label as the number
of free occurrences of x in A (which loose their labels).

We now define the residuals of a specific occurrence of a subterm A ⊂ B
under a β-reduction B → C. This is done as follows: give a label n to the
given occurrence of A in B (and to nothing else). Perform the β-reduction
B → C and look for the set of all subterms of C with label n. These
subterms (actually subterm occurrences) are the residuals of A. From the
above picture we see that if a redex is contracted, it has no residuals.

We now extend these notions to infinite reductions. If A→∞ B via the
sequence of reductions A ≡ A0 → A1 → A2 → . . ., and if some subterms of
A are labeled, then the labeling of A induces a unique labeling of the Ai’s.
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Moreover since the depth of the reductions Ai → Ai+1 tends to infinity,
there is a unique labeling of B such that the Ai’s converge to B as labeled
terms. It thus make sense to define the residuals of a subterm of A under
an infinite β-reduction.

Extended residuals are defined exaclty as residuals except that we add
the further clause that if A → A′, then A′ is an extended residual of A. A
precise definition can be obtained by modifying the above picture in such a
way that the label i is not lost but it is adjoined to the root of A[x := B] in
addition to the other labels possibly present. In this process the labels can
cumulate, so unlike what happens for residuals, two subterms can have the
same extended residual.

5 Failure of the Church-Rosser property for infi-
nite λβ-calculus

The next example shows that the Church-Rosser property fails for infinite
β-reductions.

Example 5.1 Let I ≡ λx.x, ω ≡ λx.xx and Q ≡ λx.I(xx). We have the
reductions

QQ → I(QQ) → I(I(QQ)) →∞ I(I(I(I(. . .))))
⇓ ⇓ ⇓
ωω → ωω → ωω . . . ?

but there is no reduction, whether finite or infinite, from I(I(I(I(. . .))))
(infinitely many I’s) to ωω.

The term QQ responsible for the failure of the Church-Rosser property
is mute. Later we will see that mute terms are the only responsible for
the failure of the Church-Rosser property in the sense that if we add a rule
sending all the mute terms to ⊥, then the Church-Rosser property for infinite
reductions is restored (at least if we start from a finite term).

6 Projections of β-reductions

For finite λ-calculus given two reductions σ and ρ starting from the same
term, there is a well known manner to define in a canonical way a reduction
σ/ρ called the projection of σ over ρ. We investigate up to what extent
this can be extended to infinite λβ-calculus. We will see that there are
limitations. We start by recalling the finite case.
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Definition 6.1 Let A be a finite term. Consider two β-reductions σ:A →
B, and ρ:A → C and suppose that ∆ is the redex contracted by σ. Define
σ/ρ:C ⇒ D as the multistep β-reduction obtained by reducing from left to
right all the residuals of ∆ under ρ.

Proposition 6.2 If A is a finite term and B
ρ← A

σ→ C, then ρ/σ and σ/ρ
end up in the same term D, so that we have the following diagram

A
ρ→ B

σ ↓ ⇓ σ/ρ

C
ρ/σ⇒ D

Proof. It is instructive to recall the proof. If the two redexes being
reduced in B ← A → C are disjoint or coincide, the result is obvious. If
they are nested one inside the other, then, after removing the outer context,
we are in one of the following two cases.

Case 1.

(λx.A)B → A[x := B]
↓ ⇓

(λx.A)B′ → A[x := B′]

where the vertical reductions are induced by a given β-reduction B → B′.

Case 2.

(λx.A)B → A[x := B]
↓ ↓

(λx.A′)B → A′[x := B]

where the vertical reductions are induced by a given β-reduction A→ A′.
QED

Definition 6.3 The diagram appearing in the statment of the above propo-
sition is called the elementary diagram determined by σ and ρ, and the
reduction σ/ρ is called the projection of σ over ρ (similarly for ρ/σ).

Note that an elementary diagram can split on at most one side, i.e. either
σ/ρ or ρ/σ is a one-step or empty β-reduction. To define the projection of
a multistep reduction, we need to recall the notion of development.
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Definition 6.4 A finite or infinite sequence of reductions A→ A1 → A2 →
. . . is called a development if it reduces only residuals of redexes occurring
in A.

Theorem 6.5 (see [2]) If A is finite, then all developments starting from
A are finite.

Proposition 6.6 (see [2]) If A is finite, and B
ρ⇐ A

σ⇒ C are multistep
β-reductions, we can define in a canonical way the projections σ/ρ and ρ/σ
so that we have:

A
ρ⇒ B

σ ⇓ ⇓ σ/ρ

C
ρ/σ⇒ D

Proof. (Sketch) The projection σ/ρ is defined by putting many elemen-
tary diagrams side to side until they “fill the rectangle” and yield the desired
reductions. However since elementary diagrams can split, we need finiteness
of developments to see that this process terminates after finitely many steps.
QED

Since the Church-Rosser property fails for infinite λβ-calculus there is
no hope to define σ/ρ for arbitrary infinite β-reductions σ and ρ. However
in some special cases this can be done.

Definition 6.7 If A is an infinite term and B
ρ← A

σ→ C are single step
reductions, we define σ/ρ as the possibly infinite β-reduction which is ob-
tained by reducing in some fixed order the residuals under ρ of the redex
∆ contracted in A

σ→ C (the precise order is not important: the residuals
are all disjoint and we can reduce them in any order obtaining an infinite
sequence of reductions in which the depth tends to infinity).

The following example shows that σ/ρ can be infinite even if σ and ρ
are finite.

Example 6.8 Let T ≡ λx.x(x(x . . .)) (infinitely many x’s) and let ∆ be a
β-redex with contractum ∆′. Then we have the diagram

T∆
σ→ T∆′

ρ ↓ ↓ ρ/σ
∆(∆(∆ . . .))

σ/ρ→∞ ∆′(∆′(∆′ . . .))
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It is easy to see that σ/ρ is well defined as an infinite β-reduction in the
sense that the depth of the redexes which are reduced tends to infinity.

Another special case in which we can define σ/ρ is the following.

Definition 6.9 If A0 is a finite term and σ is an ω-sequence of multistep β-
reductions A0 ⇒ A1 ⇒ A2 ⇒ . . ., and ρ is a multistep β-reduction A0 ⇒ B0,
we define the ω-sequence of reductions σ/ρ:B0 ⇒ B1 ⇒ B2 ⇒ . . . in such a
way that each Bi ⇒ Bi+1 is the projection of Ai ⇒ Ai+1 under ρ. We thus
obtain

σ: A0 ⇒ A1 ⇒ A2 ⇒ . . .
⇓ ⇓ ⇓

σ/ρ: B0 ⇒ B1 ⇒ B2 ⇒ . . .

It might happen that σ converges to an infinite reduction σ:A →∞
lim < Ai >, while the ω-sequence σ/ρ does not converge to an infinite
reduction (as the depth of Bi ⇒ Bi+1 might not go to infinity). This is
exactly what happens in the example showing the failure of the Church-
Rosser property. However if σ/ρ does converge to an infinite reduction, then
σ/ρ:B0 →∞ lim < Bi > is called the projection of σ over ρ.

7 Depth of redexes

All terms in this section are assumed to be finite. We investigate how the
relation ≡n behaves in connection with β-reduction. The general flavour of
the results of this section is that the depth of a subterm cannot decrease
too much under a finite β-reduction (although it can increase by an arbi-
trary amount). The next proposition shows that deep subterms have deep
residuals.

Proposition 7.1 If T ′ is a residual of T in a β-reduction A→ B, then the
depth of T ′ in B is greater or equal than the depth of T in A minus 2.

Proof. Clear from the tree-representation of β-reduction:

�
�

@
@

λx

A

→β A[x := B]B
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In the above picture the root of A goes up from depth 2 on the left to
depth 0 on the right (provided that A is not a variable in which case it
has no residuals). A case analysis shows that all the other subterms do not
decrease in depth by more than two. This clearly holds even if the reduction
takes place inside a context. QED

Note that the depth of B can increase by an arbitrary amount under the
above depicted β-reduction (although it cannot decrease by more than 1).

Definition 7.2 Given a term A a position in A is a finite sequence of
ternary digits which tell us whether to go down, left or right in the tree-
representation of A. Two reductions A→ A′ and B → B′ are called similar
if they are obtained by reducing two redexes ∆ in A and ∆′ in B which
occur at the same position.

Note that similar reductions have the same depth.

Proposition 7.3 If A ≡n B and the two reductions A → A′ and B → B′

are similar, then A′ ≡n−2 B′.

Proof. By Proposition 7.1. QED

We now consider what happens to the depth of a subterm in an elemen-
tary diagram.

Proposition 7.4 Consider two β-reductions B
ρ← A

σ→ C. We have:

1. If σ is strictly deeper than ρ, then ρ and ρ/σ are similar.

2. The depth of ρ/σ is greater or equal than the depth of ρ minus 2.

3. If σ and ρ have depth ≥ n, then also the reductions σ/ρ and ρ/σ have
depth ≥ n.

Proof. By a simple case analysis. QED

16



8 Transitivity of infinite β-reductions

We prove that if A →∞ B →∞ C, then A →∞ C. We begin with a
preliminary result.

Lemma 8.1 If A→∞ B and B → C, then A→∞ C.

Proof. Let A →∞ B be given by the sequence of β-reductions A ≡
B0 → B1 → B2 → . . .→∞ B. This means that the depth of the reductions
σi:Bi → Bi+1 tends to infinity as i→∞, and lim < Bi >≡ B. If we choose
n big enough we can write:

A ⇒ Bn → Bn+1 → Bn+2 → . . . →∞ B
↓ ↓ ↓ ↓
Cn →∞ Cn+1 →∞ Cn+2 →∞ . . . C

where all the vertical reductions are similar in the sense of Definition
7.2 and the horizontal ones, with the exception of A⇒ Bn, are deeper than
the vertical ones. It suffices to show that Cn →∞ C. It is clear that the
reductions Ci → Ci+1 have a depth tending to infinity with i (since those of
the upper row do), but the resulting “reduction” from Cn to C has length
ω · ω (at most) instead of ω. If A is finite, then all the reductions from Ci
to Ci+1 are finite (for i ≥ n), and we have Cn →∞ C. If A is infinite, we
have to reorder the ω ·ω-sequence of reductions in order to get an equivalent
converging sequence of length ω. This can be done as follows. Let ∆ ≡
(λx.S)T be the redex reduced in Bn → Cn. Since for i ≥ n the reductions
Bi → Bi+1 are deeper than the reductions Bi → Ci, ∆ has one and only
one residual ∆i ≡ (λx.Si)Ti in each Bi and Ci is obtained from Bi by
replacing ∆i with its contractum Si[x := Ti]. The reason why the reduction
Ci →∞ Ci+1 can be infinite is that, although Ti+1 is certainly obtained
from Ti by a one-step or empty β-reduction, there might be infinitely many
occurrences of Ti inside Si[x := Ti]. However an important point to notice is
that the various reductions Ti →=β Ti+1 (for the various i’s and the various
occurrences of Ti) do not affect and are not affected in any way by the
surrounding context in the sense that:

1) nothing is substituted inside the Ti’s by the outer context (since the
reductions Bi → Bi+1 have a depth bigger than the one at which ∆i occurs);

2) No Ti is the first half of a redex which is reduced somewhere in the
above diagram (i.e. in the above diagram there are no reductions of redexes
of the form (λx.U)V where λx.U is one of the Ti’s).
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It follows that the reductions affecting the various occurrences of the
Ti’s and the outer context are independent of each other and they can be
performed in any order. All these reductions can then be reordered in a
converging ω-sequence yielding the desired reduction Cn →∞ C. QED

Theorem 8.2 If A→∞ B →∞ C, then A→∞ C.

Proof. Let A→∞ B be given by A ≡ A0 → A1 → A2 → . . .→∞ B, and
let B →∞ C be given by B ≡ B0 → B1 → B2 → . . .→∞ C. By a repeated
application of the proof of the previous lemma we can construct a diagram
of the form

A ⇒ D0 . . . →∞ B0

↓ ↓
C1 ⇒ D1 . . . →∞ B1

↓ ↓
C2 ⇒ D2 →∞ B2

↓ ↓
C3 →∞ B3

... ↓∞
C

where each vertical reduction Di → Ci+1 is similar to Bi → Bi+1 and
the depth of the reductions Ci ⇒ Di →∞ Bi is bigger or equal than the
depth of Bi−1 → Bi mimus two. It follows that the depth of the reductions
Ci ⇒ Di and Di → Ci+1 tends to infinity with i and therefore A→∞ lim <
Ci >≡ lim < Bi >≡ C. QED

9 Unicity of infinite β-normal forms

If a (possibly infinite) term A has no β-redexes, we say that A is in β-normal
form, written A ∈ NF . We say that A has an infinite β-normal form if there
is an infinite β-reduction A→∞ A′ with A′ in β-normal form. Some terms,
for instance the mute terms, do not have an infinite β-normal form. In this
section we prove that if a finite term A has an infinite β-normal form, then
it has a unique infinite β-normal form.

The next proposition shows that we can bound the depth of a develop-
ment just looking at the starting term. The proof is easy and left to the
reader.
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Proposition 9.1 If A is a term and F is a set of redex occurrences in A
each of which has depth ≥ n, then every development A⇒ B which reduces
only the residuals of the redexes in F has depth ≥ n.

Lemma 9.2 If A is a finite term and C ← A →∞ B with B ∈ NF , then
C →∞ B.

Proof. Since A is a finite term, we can use Definition 6.9 to contruct a
diagram of the form

A ≡ B0 → B1 → B2 → . . . →∞ B
↓ ⇓ ⇓

C ≡ C0 ⇒ C1 ⇒ C2 ⇒ . . .

where each subdiagram

Bi → Bi+1

⇓ ⇓
Ci ⇒ Ci+1

is defined by taking projections. All the vertical reductions in this dia-
gram are developments since they contract only the residuals of the redex
∆ contracted in A → C. Since B ≡ lim < Bi > is a normal form (hence
it has no redexes), the minimal depth of the residuals of ∆ in Bi tends to
infinity with i, and therefore also the depth of the reduction Bi ⇒ Ci tends
to infinity by Proposition 9.1. But then lim < Ci > exists and it is equal to
lim < Bi >, i.e. lim < Ci >≡ B.

Since the depths of Bi ⇒ Bi+1 and Bi ⇒ Ci tend to infinity with i, by
Proposition 7.4 also the depth of the reductions Ci ⇒ Ci+1 tends to infinity,
hence C0 →∞ B. QED

The notion of zero term has been defined in terms of finite β-reductions.
The next lemma and the more general result of Lemma 10.5, show that zero
terms are well behaved with respect to infinite reductions.

Lemma 9.3 If A is finite and A →∞ B ∈ NF , then A is a zero term if
and only if B is a zero term.

Proof. If A is not a zero term, then there is an abstraction term λx.T
such that A ⇒ λx.T . Since B ∈ NF by the previous lemma λx.T →∞ B.
But then B must be of the form λx.T ′ and therefore B is not a zero term.

Conversely if B is not a zero term, then being a normal form it must be an
abstraction term. Since A→∞ B, in this reduction there is an intermediate
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finite step A⇒ A′ →∞ B where A′ coincides with B up to depth 1. Hence
A′ is an abstraction term and A is not a zero term. QED

Lemma 9.4 Let B be a normal form and for every i let Bi →∞ B be
a reduction of depth ≥ i with Bi a finite term. If for each i we have a
reduction Bi →∞ Ci, then the depth of the reductions Bi →∞ Ci tends to
infinity with i.

Proof. It is enough to show that the depth of Bi →∞ Ci is greater than 0
if i is big enough, for then we can apply the same reasoning to the subterms
of Bi, B and Ci.

Case 1. For some i, Bi is a variable or an abstraction term λx.U . Then
the result is clear: every multistep β-reduction starting from Bi has depth
> 0 (if we work in the expanded language with ⊥ we can treat ⊥ as a free
variable, since so far we have not introduced any special rule concerning ⊥).

Case 2. Bi is an application term, say Bi ≡ UiVi. We can assume i > 0,
so the depth of Bi →∞ B is greater than 0. It then follows that B is of
the form UV with Ui →∞ U and Vi →∞ V . Clearly U is a zero term and
a normal form, otherwise UV cannot be a normal form. Since Ui →∞ U ,
by Lemma 9.3 Ui is also a zero term. It follows that any reduction starting
from UiVi has depth > 0. QED

Theorem 9.5 If A is finite, B∞ ← A →∞ C and B,C are normal forms,
then B ≡ C.

Proof. Let A →∞ B be given by A ≡ B0 → B1 → B2 → . . . →∞ B.
Since C is a normal form, by Lemma 9.2 the reduction B0 →∞ C induces
reductions Bn →∞ C for every n and we can construct a diagram

B0 → B1 → B2 → . . . →∞ B
↓∞ ↓∞ ↓∞
C ≡ C ≡ C ≡ . . .

In order to show that B ≡ C it suffices to show that the depth of the
reductions Bi →∞ C tends to infinity. Here we use the fact that B is a
normal form and Lemma 9.4. QED
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10 Head reductions

We recall the well known notion of head-redex and internal redex and we
extend it to infinite terms. An important warning is that an infinite term
can have a redex without having a left-most redex.

If a term T is of the form T ≡ λx1, . . . , xk.∆M1 . . .Mn where k, n ≥ 0
and ∆ has the form (λx.A)B, then we say that the displayed occurrence of
∆ in T is the head-redex of T . An internal redex is a redex which is not the
head-redex. An head-reduction is a β-reduction A ⇒h B where only head
redexes are reduced. An internal reduction is a β-reduction A ⇒i B where
only internal redexes are reduced.

Infinite internal reductions A→i∞ B are defined in the obvious way and
we will see that if A →i∞ B, then A is a top normal form if and only if B
is such.

The main result of this section is that if a (possibly infinite) term has
a top normal form, then it can be reduced to a top normal form by an
head reduction. For finite terms this would be an easy consequence of the
standardization theorem of Curry and Feys that says that internal reductions
can always be postponed, but for infinite terms the problem is more delicate
because if we try to postpone a one-step internal reduction, then we might
generate an infinite internal reduction (see Example 6.8).

Let us recall the situation for finite terms:

Theorem 10.1 If A is finite, then every β-reduction A⇒ B can be factored
as an head-reduction followed by an internal reduction.

Proof. See [2] Lemma 11.4.6. p. 299. QED

The next lemma says in particular that we can posptone a single inter-
nal reduction after an head reduction at the expense of getting an infinite
internal reduction. The result holds for infinite terms. Note that if U →i V ,
then U has an head redex if and only if V has an head redex.

Lemma 10.2 If U →i V and U has an head redex, then by taking projec-
tions we can construct a diagram of the form

U →i V
↓h ↓h
V ′ →i∞ W
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Proof. Define V ′ →i∞ W as the converging sequence of reductions ob-
tained by reducing in some fixed order the residuals of the redex ∆ contrated
in U →i V . Example 6.8 gives an idea of the general situation. QED

Lemma 10.3 Any diagram C h← A →∞ B can be extended to a diagram
C →∞ B =h← B.

Proof. Let A ≡ A0 and C ≡ C0. The result follows by constructing the
diagram:

A0 → A1 → A2 → . . . →∞ B
↓h ↓=h ↓=h ↓=h
C0 →∞ C1 →∞ C2 →∞ . . . →∞ D

where each square is defined by taking projections and Bi →=h Ci is the
empty reduction if and only if the sequence B0 → . . . → Bi contains some
head reductions. Reasoning as in Lemma 8.1 we get C0 →∞ D. QED

We can now extend to infinite terms a result which is well known for
finite terms:

Theorem 10.4 If A is not a zero term, then there exists an head-reduction
of the form A⇒h λx.T .

Proof. Given a reduction of the form σ:A⇒ λx.S, we prove by induction
on its length that there exists a term T and an head-reduction A⇒h λx.T
such that the length of A ⇒h λx.T is less or equal than the length of
A⇒ λx.S.

If σ consists of a (possibly empty) head-reduction A ⇒h B followed by
a non-empty internal reduction B ⇒i λx.S, then B has the form λx.T for
some T and therefore we can take ρ to be A⇒h B.

Otherwise σ can be factored as A ⇒ U →i V →h W ⇒i λx.S. Since
V has an head redex and U →i V is an internal reduction, U has an head-
redex. Hence there is V ′ and an head reduction U →h V

′. By Lemma 10.2
we can write A ⇒ U →h V

′ →i∞ W ⇒i λx.S. But then V ′ has the form
λx.S′ for some S′ and therefore we can apply the induction hypothesis to
A⇒ U →h V

′. QED

We can now strengthen Lemma 9.3 as follows:
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Lemma 10.5 If A→∞ B is an infinite β-reduction, then A is a zero term
if and only if B is a zero term.

Proof. If B ⇒ λx.T , then A→∞ λx.T by transitivity, hence there is T ′

such that A⇒ λx.T ′. This shows that if B is not a zero term, then A is not
a zero term.

Conversely if A is not a zero term, then by Theorem 10.4 there is an
head-reduction of the form A ⇒h λx.S. By Lemma 10.3 there is a term D
and reductions B ⇒h D and λx.S →∞ D. Hence D has the form λx.S′ and
B is not a zero term. QED

Corollary 10.6 If A→i∞ B, then A is a top normal form if and only if B
is a top normal form.

Proof. The only non-trivial case is when A and B are application terms.
But then we can write A ≡ UV and B ≡ U ′V ′ with U →∞ U ′ and V →∞ V ′.
By Lemma 10.5 U is a zero term if and only if U ′ is such. Hence A is in top
normal form if and only if B is in top normal form. QED

We can now prove:

Theorem 10.7 If a term A has a top normal form, then there exists an
head-reduction A⇒h T with T in top normal form.

Proof. Given a reduction σ:A⇒ B with B in top normal form, we prove
by induction on the its length that there exists an head-reduction ρ:A⇒ T
with T in top normal form and the length of A⇒ T less or equal than the
length of A⇒ B.

If σ consists of a (possibly empty) head-reduction A⇒h B
′ followed by

a non-empty internal reduction B′ ⇒i B, then by Corollary 10.6 B′ is a top
normal form and therefore we can take ρ to be A⇒h B

′.
Otherwise σ can be decomposed as A ⇒ U →i V →h W ⇒i B. Since

V has an head redex, U has an head-redex. Hence there is V ′ and an head
reduction U →h V

′. By Lemma 10.2 we can write A ⇒ U →h V
′ →i∞

W ⇒i B. By Corollary 10.6 (applied twice), V ′ is a top normal form and
therefore we can apply the induction hypothesis to A⇒ U →h V

′. QED

23



11 Substitution instances of zero terms

All terms and contexts in this section are possibly infinite terms and contexts
in the expanded language with ⊥. A substitution instance of a zero term
is not necessarily a zero term, take for instance a zero term of the form
xT1 . . . Tk where x is a variable. In this section we characterize those terms
A such that every substitution instance of A is a zero term and we prove
some related results.

Definition 11.1 We say that M is not active in the β-reduction C[M ]⇒ T
if no redex contracted in this reduction is of the form (λx.A)B where λx.A is
an extended residual of M . We say that M is not touched in the β-reduction
C[M ] ⇒ T if no redex contracted in this reduction is of the form (λx.A)B
where λx.A is a subterm of an extended residual of M .

Note that “not touched” implies “not active”. If a term is not touched
in a reduction, then its residuals coincide with its extended residuals and
they are just substitution instances of the term itself.

If M is not active in a β-reduction we can replace everywhere M and
its “maximal” extended residulas by a free variable x still getting a valid
reduction, where a maximal extended residual is an extended residual which
is not properly included in any other one. Thus we have:

Lemma 11.2 If C[M ] ⇒ T [M1, . . . ,Mn] where M1, . . . ,Mn are all the
maximal extended residuals of M and M is not active, then C[x] ⇒
T [x, . . . , x] where x is free in C[x].

The above lemma holds a fortiori if M is not touched.

Definition 11.3 We say that M goes to the head in a reduction C[M ]⇒ T ,
if the given reduction contains an intermediate step of the form C[M ] ⇒
λy1 . . . yn.M

′Q1 . . . Qk ⇒ T where n, k ≥ 0 and M ′ is an extended residual
of M .

Remark 11.4 1. In any head reduction C[M ]⇒h T , M and its maximal
extended residuals can be replaced by a free variable for as long as M
does not go to the head.

2. From 1. it follows that if M goes to the head in C[M ] ⇒h T , then
there exists a reduction of the form C[x]⇒h λy1 . . . yn.xT1 . . . Tk where
x is free in C[x] and n, k ≥ 0.
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Lemma 11.5 Let M be an arbitrary term and let x be free in A[x]. We
have:

1. If A[M ] is a zero term, so is A[x].

2. If A[M ] is a top normal form, so is A[x].

3. If A[M ] has a top normal form, so does A[x].

Proof. If A[x] is not a zero term there exists a reduction of the form
A[x]⇒ λy.S. Substituting M for x in this reduction we obtain a reduction
of the form A[M ]⇒ λy.S′. This proves 1. For point 2. the only non trivial
case is when the top normal form A[M ] is an application U [M ]V [M ] with
U [M ] a zero term. By point 1. U [x] is a zero term, hence A[x] ≡ U [x]V [x]
is a top normal form. To prove point 3. we use Theorem 10.7. Suppose that
there is a reduction A[M ] ⇒ T with T a top normal form. We can assume
that A[M ]⇒ T is an head reduction. IfM goes to the head in this reduction,
then by Remark 11.4 there is a reduction of the form A[x] ⇒ xT1 . . . Tk,
hence A[x] has a top normal form. If M does not go to the head, we can
replace M and all its maximal extended residuals by x getting again a top
normal form of A[x] (by point 2.). QED

Corollary 11.6 If A[x] is mute, so is A[M ] for every M (x free in A[x]).

We would like to prove some partial converses of the above results. We
need restrictions on M that will ensure that M behaves like a free variable
in any reduction.

Definition 11.7 A term A is a strong zero term, if it is a zero term and
there is no reduction of the form A ⇒ xT1 . . . Tk where x is a variable and
k ≥ 0.

Note that any mute term is a strong zero term. In particular ⊥ is a
strong zero term.

Lemma 11.8 If x is free in A[x] and A[x] is a strong zero term, then A[B]
is a strong zero term for every B.

25



Proof. First we prove that A[B] is a zero term. If it is not, then by
Theorem 10.4 there exists an head reduction of the form A[B]⇒h λy.S. If
B goes to the head in this reduction, then A[x] ⇒h λy1 . . . yn.xT1 . . . Tk for
some n, k ≥ 0 and some T1, . . . , Tk. This is absurd since A[x] is a strong zero
term. Otherwise B is not active in the given head reduction and therefore
its maximal extended residuals can be replaced by x yielding A[x]⇒h λy.S

′

for some S′, which is again a contradiction since A[x] is a zero term.
It remains to show that A[B] is a strong zero term. If it is not then there

exists an head reduction of the form A[B] ⇒h yS1 . . . Sk. If B goes to the
head we reach a contradiction as above. Otherwise B is not touched and we
can replace its maximal extended residuals by x getting a reduction from
the term A[x] to a term beginning with a variable, which is absurd since
A[x] is a strong zero term. QED

Corollary 11.9 A term A is a strong zero term if and only if every substi-
tution instance of A is a zero term.

Proof. By the above lemma if A is a strong zero term, then any substitu-
tion instance of A is a strong zero term. Conversely assume that every sub-
stitution instance of A is a zero term. Then certainly A itself is a zero term.
If it is not a strong zero term, there is a reduction of the form A⇒ xT1 . . . Tk.
By substituting x in this reduction by Uk+1

1 ≡ λy1, . . . , yk+1.yk+1, we obtain
A[x := Uk+1

1 ] ⇒ λyk+1.yk+1 contradicting the fact that any substitution
instance of A is a zero term. QED

Corollary 11.10 1. Any extended residual of a strong zero term is a
strong zero term.

2. A strong zero term is not active in any β-reduction.

Proof. 2. follows from 1. To prove 1. notice that any β-reduct and any
substitution instance of a strong zero term is a strong zero term. Hence
every extended residual U ′ of a strong zero term U is a strong zero term.
QED

We can now prove a converse to Lemma 11.5

Lemma 11.11 Let M be a strong zero-term and let x be free in A[x]. Sup-
pose A[x] 6=β x. We have:
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1. A[x] is a zero-term if and only if A[M ] is a zero-term.

2. A[x] is a top normal form if and only if A[M ] is a top normal form.

3. A[x] has a top normal form if and only if A[M ] has a top normal form.

Proof. We have already proved one direction of the double implication
for an arbitrary term M . Let us prove the other direction.

1. If A[M ] is not a zero-term, there is a reduction of the form A[M ] ⇒
λy.C[M1, . . . ,Mn] where M1, . . . ,Mn are all the occurrences of maximal
extended residuals of M (λy.C[M1, . . . ,Mn] cannot be an extended residual
of M because M is a strong zero term). Replacing all the maximal extended
residuals of M by x we obtain a reduction A[x]⇒ λy.C[x, . . . , x], thus A[x]
is not a zero-term.

2. The only interesting case is when A[x] has the form U [x]V [x] and
therefore A[M ] ≡ U [M ]V [M ]. By the part 1. U [x] is a zero term if and
only if U [M ] is such. Hence A[x] is a top normal form if and only if A[M ]
is such.

3. Suppose A[x]⇒ T [x] where T [x] is a top normal form. Then A[M ]⇒
T [M ′] where M ′ is a substitution instance of M , hence a strong zero term
(by Corollary 11.9). By assumption T [x] 6=β x. The result now follows from
part 2. QED

Corollary 11.12 If M1 and M2 are mute, then A[M1] is mute if and only
if A[M2] is mute.

Proof. If A[M1] is mute, then A[x] =β x or A[x] is mute. In both cases
A[M2] is mute. QED

12 Infinite λβ⊥-calculus

We define a ⊥-redex as a mute term different from ⊥. We define ⊥-
reduction→⊥ as the reduction generated (under substitutions and contexts)
by A →⊥⊥ for every ⊥-redex A. Since mute terms are closed under sub-
stitutions, a generic ⊥-reduction has the form C[A] →⊥ C[⊥] where A is
a mute term different form ⊥. A term is a ⊥-normal form is it has not
⊥-redexes and it is a β-normal form if it has no β-redexes. Since every ⊥-
redex contains a β-redex, β-normal forms are also ⊥-normal forms and we
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can simply speak about normal forms without further qualifications. Note
that ⊥⊥ and λx. ⊥ are normal forms.

β⊥-reduction is defined in the obvious way: A →β⊥ B if and only if
either A →β B or A →⊥ B. The infinite reductions →∞⊥ and →∞β⊥ are
defined in a completely similar way than infinite β-reductions →∞ (also
called →β∞).

The notion of residual can be extended to ⊥-reductions by defining ⊥-
reductions with labels in the following way:

(A)n →⊥ ⊥

where A is a mute term with label n (the above reduction can take
place inside a context). So A and all its subterms have no residuals in the
reduction A→⊥ ⊥.

We want to define σ/ρ and ρ/σ for β ⊥-reductions. For one step reduc-
tions we can give the following definition.

Definition 12.1 If ρ:A →β⊥ B and σ:A →β⊥ C are one-step β ⊥-
reductions, ρ/σ:C →β⊥∞ D is the reduction which reduces all the residuals
of σ in C in some fixed order (they are disjoint and if there are infinitely
many of them, their depth must tend to infinity).

Lemma 12.2 If σ and ρ are one-step β ⊥-reductions starting from the same
term, then σ/ρ and ρ/σ end up in the same term.

Proof. We need three facts:
1) mute terms are closed under substitutions;
2) a mute term cannot be of the form λx.T .
3) if U and C[U ] are mute, then C[⊥] is mute (by Corollary 11.12).
Fact 1) is used to construct the following diagram (where U is the ⊥-

redex):

(λx.A[U ])B →β A[U ][x := B]
↓⊥ ↓⊥

(λx.A[⊥])B →β A[⊥][x := B]

Fact 2) is used to ensure that the reduction of a ⊥-redex U does not
destroy those β-redexes that are not contained in U , and so it allows us
to postpone a β-reduction after a ⊥-reduction when this is necessary to
construct the appropriate diagram.
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Fact 3) allows us to construct the following diagram (where U is the
inner ⊥-redex and C[U ] is the outer M -redex):

C[U ] →⊥ C[⊥]
↓⊥ ↓⊥
⊥ ≡ ⊥

Form these special cases the result easily follows. QED

To extend these notions to multistep reductions we need the notion of
β⊥-development.

Definition 12.3 A β⊥-development is a finite or infinite sequence of β⊥-
reductions A0 →β⊥ A1 →β⊥→ . . . which reduce only the residuals of some
redexes of A.

As in the case of β-reduction it can be shown that if A is a finite
term, then every β⊥-development A ≡ A0 →β⊥ A1 →β⊥→ . . . is finite
(⊥-reduction is a very simple collapsing reduction, so it does not pose any
problem for the finiteness of developments).

It follows that if we start from a finite term, we can define σ/ρ also for
multistep β⊥-reductions σ and ρ as we did for β-reductions.

Lemma 12.4 If A is finite and ρ:A⇒β⊥ B and σ:A⇒β⊥ C are multistep
β ⊥-reductions, there is a canonical way of defining a term D and two
multistep β⊥-reductions ρ/σ:C ⇒β⊥ D and σ/ρ:B ⇒β⊥ D.

In particular β⊥-reduction for finite terms is Church-Rosser. For infinite
terms there might be problems to define σ/ρ as in the case of β-reduction.

Theorem 12.5 →β⊥∞ is transitive.

Proof. Completely analogous to the proof of the transitivity of →∞.
QED

The next theorem says that a finite term has at most one infinite β⊥-
normal form:

Theorem 12.6 If A is finite, B β⊥∞← A →β⊥∞ C and B,C are normal
forms, then B ≡ C.
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Proof. Exaclty as the proof of Theorem 9.5. In fact in that theorem
we used only few properties of β-reductions which continue to hold for β ⊥-
reduction: namely the fact that we can define projections σ/ρ for reductions
among finite terms, and the fact that the depth of residuals under one-step
reductions decreases by 2 at most (see section 3). Such properties clearly
hold for β⊥-reductions. QED

Unlike the case of infinite λβ-calculus, for infinite λβ⊥-calculus we also
have existence of infinite normal forms.

Theorem 12.7 NF∞(A) is a normal form of A with respect to infinite
β ⊥-reduction.

Proof. It is clear from the definitions that NF∞(A) is a normal form.
It is also clear that by “unfolding” the definition of NF∞(A) we obtain an
infinite β ⊥-reduction A→β⊥∞ NF∞(A). QED

Thus for infinite β⊥-calculus we have both existence and unicity of infi-
nite normal forms of finite terms.

Corollary 12.8 The Church-Rosser theorem for infinite β⊥-calculus holds,
provided we restrict to finitely generated terms (where B is finitely generated
if there is a finite term A and a reduction A→β⊥∞ B)1.

Proof. The set of finitely generated terms is closed under →β⊥∞ by
transitivity of →β⊥∞. The Church-Rosser theorem follows at once from the
existence and the unicity of infinite normal forms of finite terms. QED

13 A new model of lambda-calculus

We recall that a model of λ-calculus can be defined as a pair (X, ·) where X
is a non-empty set and · is a binary operation on X together with a semantic
map (A, ρ) 7→ [[A]]ρ which associates to every (finite) lambda-term A and
every map ρ:V → X, where V includes the free variables of A, an element
[[A]]ρ ∈ X in such a way that the following conditions are satisfied:

1. [[x]]ρ = ρ(x) if x is a variable.

1Added in proofs: later research with B. Intrigila has shown that the restriction to
finitely generated terms is not necessary.
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2. [[(AB)]]ρ = [[A]]ρ · [[B]]ρ.

3. [[λx.A]]ρ · b = [[A]]ρ[x:=b].

4. If for all d ∈ X we have [[A]]ρ[x:=d] = [[B]]ρ[x:=d], then [[λx.A]]ρ =
[[λx.B]]ρ.

5. [[A]]ρ = [[A]]τ if ρ and τ agree on the free variables of A.

6. [[A]]ρ = [[B]]ρ if A and B differ only by a renaming of bound variables.

Definition 13.1 We define a model of lambda-calculus as follows. Take X
to be the set of all normal forms of (finite) lambda-terms with respect to
→β⊥∞. For A,B ∈ X define A · B as NF∞(AB). This is well defined by
Corollary 12.8. Finally define [[A]]ρ as the infinite normal form of the term
Aρ obtained by performing the substitution ρ on the term A.

Theorem 13.2 The triple (X, ·, [[ ]]) defined above, is a model of lambda-
calculus.

Proof. The crucial condition to verify is the third. It suffices to
show that for every two finite terms A and B, NF∞(A[x := B]) ≡
NF∞(NF∞(A)[x := NF∞(B)]). This follows by the unicity of infinite
normal forms for finitely generated terms, the transitivity of →β⊥∞, and
the fact that A[x := B]→β⊥∞ NF∞(A)[x := NF∞(B)]. QED

We call NF∞(Λ) the model defined above. This model identifies all the
mute terms and more generally all the terms with the same infinite β⊥-
normal form. For instance let A be a (finite) normal form and let X be
a (finite) λ-term such that X ⇒ XA. Then the infinite β ⊥-normal form
of X is uniquely determined by NF∞(X) ≡ (((. . .)A)A)A (infinitely many
A’s). It follows that all the terms X such that X ⇒ XA are identified in
the model NF∞(Λ). On the other hand B. Intrigila remarked, in a private
communication, that the model NF∞(Λ) does not equate all the terms with
X = XA. In fact one can construct many such terms which are in (finite)
normal form (see [7]). This is an example of how the model discriminates
between β-reduction and β-convertibility.
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14 It is consistent to equate all mute terms to an
arbitrary closed term

All terms and reductions in this section are finite. We prove that it is
consistent with the λβ-calculus to simultaneously equate all the mute terms
to a fixed arbitrary closed term M , i.e. the theory λβ + {M = U | U is
mute } is consistent. We prove this by defining a Church-Rosser notion of
reduction which sends all the mute terms to M . The main lemma is the
following.

Lemma 14.1 If U is mute and C[ ] is a context such that C[U ] is mute,
then either C[x] ⇒ x where x is a variable not in C[ ], or for every closed
term N , C[N ] is mute.

Proof. If C[N ] is not mute, then there exists an head reduction
C[N ] ⇒h Q[N1, . . . , Nn] where Q[N1, . . . , Nn] is a top normal form and we
have displayed all the occurrences of maximal extended residuals N1, . . . , Nn

of N . If in this reduction N goes to the head, then there are terms T1, . . . , Tk
(n ≥ 0) and an head-reduction C[x]⇒h xT1 . . . Tk where x is a variable. It
follows that C[U ] ⇒h U

′T ∗1 . . . T
∗
k where U ′, T ∗1 , . . . , T

∗
k are substitution in-

stances of U, T1, . . . , Tk. U
′ is mute by Corollary 11.6. Since C[U ] and U ′

are mute, k = 0. Thus C[x]⇒ x.
On the other hand if N does not go to the head in the head re-

duction C[N ] ⇒h Q[N1, . . . , Nn], then N and all its extended residu-
als can be replaced by x yielding C[x] ⇒ Q[x, . . . , x]. It follows that
C[U ] ⇒ Q[U1, . . . , Un] where each Ui is a substitution instance of U .
Since Q[N1, . . . , Nn] is a top normal form by Lemma 11.5 Q[x1, . . . , xn] is
a top normal form. Since U1, . . . , Un are strong zero terms, by Lemma
11.11 also Q[U1, . . . , Un] is a top normal form. This is absurd because
C[U ]⇒ Q[U1, . . . , Un] and C[U ] is mute. QED

Definition 14.2 Fix an arbitrary closed term M . Define M -reduction by:
C[U ]→M C[M ] for every mute term U and every context C[ ] with exactly
one hole. We say that U is the M -redex of the given M -reduction.

Since mute terms are closed under substitutions and β-reductions, every
substitution instance of an M -redex is an M -redex.

The main difficulty with M -reduction is that there seems to be no sensi-
ble way of defining projections σ/ρ for M -reductions. The next lemma gives
a partial substitute.
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Lemma 14.3 Any diagram C M← A →M B can be extended to a diagram
of one of the following forms:

A →M B A →M B A →M B
↓M ⇓β ↓M ≡ ↓M ↓=M
C ≡ D C ⇒β D C →=M D

Proof. Note that the first two diagrams are one the transpose of the
other. If the two M -redexes are disjoint or coincide the proof is trivial
(and we obtain the third kind of diagram). Consider the case of nested
M -redexes U and C[U ]. By symmetry we can assume that C[U ] is the one
reduced in A →M B. Since U and C[U ] are mute, by Lemma 14.1 either
C[x] ⇒ x, where x is a variable not in C[ ], or C[M ] is mute. In the first
case C[M ]⇒β M and we obtain the following diagram:

C[U ] →M C[M ]
↓M ⇓β
M ≡ M

The result follows by writing A ≡ A1[C[U ]] and inserting the four terms
of the above diagram inside the context A1[ ].

In the second case C[M ] is mute and we obtain an instance of the third
kind of diagram:

C[U ] →M C[M ]
↓M ↓M
M ≡ M

QED

Definition 14.4 The notion of residual is defined for M -reductions
C[U ] →M C[M ] by stipulating that if H[U ] is a subterm of C[M ] prop-
erly containing (the given occurrence of) U , then H[M ] is the residual of
H[U ] under the given M -reduction. U itself has no residuals.

Lemma 14.5 Any diagram C M← A →β B can be extended to a diagram
of the form:

A →β B
↓M ⇓M
C →=β D
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Proof. Let U be the M -redex reduced by A →M C. Since mute terms
are closed under substitutions, every residual of an M -redex under a β-
reduction is an M -redex. So we can define B ⇒M D as the multistep
β-reduction which reduces all the residuals of U from left to right.

Since U is a zero term, it is not the first part of a β-redex. It follows that
M -reductions do not destroy β-redexes, unless the β-redex is contained in
the M -redex. Thus either C ≡ D or we can define C →β D as the one-step
β-reduction which reduces the residual of the β-redex of A→β B under the
M -reduction A→M C. QED

Corollary 14.6 ⇒βM satisfies the weak Church-Rosser property, i.e. given
reductions C βM← A →βM B, there is a term D and reductions C βM⇒
D ⇐βM B.

From what we have proved so far the Church-Rosser property for ⇒βM

does not follow because a priori one can imagine diagrams such as:

· →M · →M · →M ·
↓M ↓β ↓β ↓β
· ≡ · →M · ⇒M ·
↓M ↓M ≡ ≡
· ≡ · ⇒β · ⇒M ·
↓M ↓M ⇓M
· ≡ · ⇒β · ·

Fig. 1

This would cause troubles because to complete the diagram we must
find a common reduct for the two multi-steps M -reduction on the lower-
right corner, and these two M -reductions are, a priori, longer than those we
started with.

To avoid the occurrence of such diagrams we need the following.

Definition 14.7 We say that a β-reduction σ:A⇒β B is collapsing, writ-
ten σ:A →c B, if there exist two contexts C[ ] and H[ ] with exactly one
hole, and a closed term N , such that A ≡ C[H[N ]], B ≡ C[N ], and the
β-reduction σ:C[H[N ]] ⇒ C[N ] is induced by a β-reduction H[x] ⇒β x
where x is not in H[ ].

We say that H[N ] (or better the pair N , H[ ]) is the c-redex of the
reduction σ:A→c B.
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As the notation A→c B suggests, we are going to treat→c as a one-step
reduction, even if it actually consists of several β-reductions. When we write
⇒c we mean a sequence of (→c)-reductions (possibly with different H[ ]’s).
The motivation for introducing collapsing reductions is the following:

Remark 14.8 The β-reductions mentioned in Lemma 14.3 are collapsing.

Remark 14.9 If in the definition of collapsing reductions we allow H[ ] to
have several holes, we obtain an equivalent definition (but C[ ] is always
assumed to have exactly one hole). In fact even if H[ ] has several holes, in
the reduction H[x] ⇒ x only one specific occurrence of x has a residual so
we can redefine H[ ] in such a way that only that occurrence is placed inside
the hole.

The above remark will be repeatedly used (without explicite note) in the
following way: in order to prove a result of the form: “if some reduction σ
is collapsing, then some some other reduction σ′ is also collapsing”, we can
assume for σ the one-hole definition, and for σ′ the several-holes definition.

Note that, unlike arbitrary β-reductions, collapsing reductions do not
duplicate subterms (each subterm has zero or one residual under a collapsing
reduction). As a consequence we have:

Lemma 14.10 Any diagram C c← A →β B, can be extended to a diagram
of the form:

A →β B
↓c ⇓c
C →=β D

(The key point to observe is that C →=β D is a one-step or empty
reduction.)

Proof. Let ∆ ≡ (λy.S)T be the β-redex contracted in A→β B, and let
H[N ] be the c-redex of A→c C. So we have H[x]⇒ x for some variable x
not in H[ ] and we can write A ≡ A1[H[N ]]→c A1[N ] ≡ C for some context
A1[ ] with exactly one hole.

Case 1. Suppose that ∆ ⊂ N (here we are implicitly using the assump-
tion that the contexts in the definition of collapsing reduction have exaclty
one hole: so it is clear which occurrence of N we refer to). By contracting
∆ we obtain a reduction N →β N

′. Thus we can write:
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A ≡ A1[H[N ]] →β A1[H[N ′]]
↓c ↓c

A1[N ] →β A1[N
′]

which gives the desired result.

Case 2. Suppose that N ⊂ ∆ ⊂ H[N ] and N 6≡ ∆.
N cannot be the “λx.S” part of the redex ∆ ≡ (λy.S)T , because other-

wise H[N ] ≡ H1[NT ] for some context H1[ ] such that H1[xT ] ⇒ x, which
is impossible since T cannot be erased without erasing x as well. So N is
contained either in S or in T . Suppose N ⊂ T . Then ∆ ≡ (λy.S)T1[N ] and
H[N ] ≡ H1[(λy.S)T1[N ]] for some contexts T1[ ] and H1[ ] (with one hole)
such that H1[(λy.S)T1[x]]⇒ x. It then follows (form the unicity of normal
forms for β-reduction) that H1[S[y := T1[x]]]⇒ x. Hence, by Remark 14.9,
H1[S[y := T1[N ]]→c N and we have:

A ≡ A1[H1[(λy.S)T1[N ]]] →β A1[H1[S[y := T1[N ]]]]
↓c ↓c

A1[N ] →β A1[N ]

The case in which N ⊂ S is similar.

Case 3. Suppose that ∆ ⊂ H[N ] and ∆ is disjoint form N . Then
∆ ⊂ H[ ] and by contracting ∆ we obtain a context H ′[ ] with H ′[x] ⇒ x.
The desired result follows.

Case 4. Suppose that H[N ] ⊂ ∆ and ∆ 6≡ H[N ]. Since H[x] ⇒ x, if
H[N ] ≡ λy.S, then the only possibility is that H[N ] ≡ N ≡ λy.S. In this
case A→c C is the empty reduction and there is nothing to prove.

So we can assume that H[N ] is contained either in S or in T . Suppose
H[N ] ⊂ T . Then ∆ ≡ (λy.S)T1[H[N ]] for some context T1[ ] with one hole.
So we can write:

A ≡ A1[(λy.S)T1[H[N ]]] →β A1[S[y := T1[H[N ]]]]
↓c ⇓c

A1[(λy.S)T1[N ]] →β A1[S[y := T1[N ]]]

This time the vertical reduction on the right is ⇒c rather than →c be-
cause there are several occurrences of H[ ] being erased.

Case 5. If ∆ and H[N ] are disjoint the result is trivial. QED

Lemma 14.11 ⇒β and ⇒M commute, i.e any diagram of the form C M⇐
A⇒β B can be extended to a diagram of the form:
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A ⇒β B
⇓M ⇓M
C ⇒β D

Proof. By induction on the length of A⇒β B and Lemma 14.5. QED

Corollary 14.12 ⇒β and ⇒βM commute.

Proof. Clear form the Church-Rosser property of ⇒β and the previous
lemma. QED

Lemma 14.13 Any diagram C M← A→c B can be extended to a diagram
of the form:

A →c B
↓M ↓=M
C →=c D

Proof. Let U be the M -redex contracted in A →M C and let H[N ] be
the c-redex of A→c B.

Case 1. Suppose U ⊂ N . Then we can reason as in Case 1 of Lemma
14.10 with U instead of ∆.

Case 2. Suppose that N ⊂ U ⊂ H[N ] with N 6≡ U . We can then write
U ≡ U1[N ] and H[N ] ≡ H1[U1[N ]] for some contexts U1[ ] and H1[ ] with
one hole, such that H1[U1[x]]⇒ x, where x is a fresh variable. Since U1[N ]
is mute, it is in particular a zero term. Hence U1[x] is also a zero term.
But then the only possibility to have H1[U1[x]] ⇒ x is that U1[x] ⇒ x and
H1[x]⇒ x. It follows that N is mute because U1[N ]⇒ N . Thus we have:

H1[U1[N ]] →c H1[N ]
↓M ↓M

H1[M ] ≡ H1[M ]

and the result follows.

Case 3. Suppose that U ⊂ H[N ] and U is disjoint from N . Then we can
write H[N ] ≡ H1[U,N ] for some context H1[ , ] such that H1[U, x] ⇒ x.
Since U is mute, it behaves as a free variable in any reduction and therefore
it cannot give any contribution to this reduction. Hence H1[M,x]⇒ x and
H1[M,N ]→c N . Thus we have:
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H1[U,N ] →c N
↓M ≡

H1[M,N ] →c N

and the result follows.

Case 4. SupposeH[N ] ⊂ U andH[N ] 6≡ U . We can write U ≡ U1[H[N ]].
Since U1[H[N ]] is mute and U1[H[N ]] ⇒ U1[N ], U1[N ] is mute. Hence we
have:

U1[H[N ]] →c U1[N ]
↓M ↓M
M ≡ M

and we are done. QED

Lemma 14.14 Any diagram C c⇐ A⇒βM B can be extended to a diagram
of the form:

A ⇒βM B
⇓c ⇓c
C ⇒βM D

where the length of C ⇒βM D is less or equal than the length of A⇒βM

B.

Proof. By induction on the length of A ⇒βM B by Lemma 14.13 and
Lemma 14.10. QED

Lemma 14.15 Any diagram CM⇐ A⇒βM B can be extended to a diagram
of the form:

A ⇒βM B
⇓M ⇓βM
C ⇒βM D

Proof. By induction on the length of A⇒βM B. If the first step of the
the reduction A⇒βM B is a β-reduction we can use Lemma 14.11 and then
we apply the induction hypothesis. If the first reduction of A⇒βM B is an
M -reduction, then there are three cases corresponding to the three diagrams
of Lemma 14.3. In the first case (using Remark 14.8) we can write:
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A →M B′ ⇒βM B
↓M ↓c ⇓c
C ′ ≡ C ′ ⇒βM E
⇓M ⇓M
C ≡ C

where C ′ ⇒βM E is obtained using Lemma 14.14 and has length less or
equal than the length of B′ ⇒βM B. We can now find a common reduct to
the diagram CM ⇐ C ′ ⇒βM E by applying the induction hypothesis.

The other two cases are similar. QED

Lemma 14.16 ⇒βM satisfies the Church-Rosser property.

Proof. By Lemma 14.15 and Corollary 14.12,⇒βM commutes both with
⇒β and with ⇒M , hence with ⇒βM . QED

Theorem 14.17 For every closed term M , the theory T = λβ + {M =
U |U is mute } is consistent.

Proof. If T derives a contradiction, say T ` 0 = 1 (where 0 and 1 are
the Church numerals for zero and one), then 0 =βM 1 where =βM is the
transitive closure of ⇒βM . This is absurd since ⇒βM is Church-Rosser and
0 and 1 are normal forms. QED

15 Zero terms of finite degree are easy

All terms and reductions in this section are finite. We recall that an easy
term is a term U such that for every closed term M the theory λβ+{M = U}
is consistent. In the previous section we have shown that the class of mute
terms has a much stronger property: all mute terms can be simultaneously
equated to an arbitrary closed term. In this section we prove that all strong
zero term (in particular all closed zero terms) of finite “degree” are easy,
thus strengthening some results of [15].

Definition 15.1 Let U be a strong zero term. We say that U has degree
0 if it is mute (i.e. it is not β-convertible to VM with V a zero term). We
say that U has degree n+ 1 if it is β-convertible to a term of the form VM
where V is a strong zero term of degree n. We say that U has infinite degree
in the remaining cases.
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Lemma 15.2 ([15, 16]) If U is easy, then for every M , UM is easy.

Proof. If UM = Q is inconsitent, then so is U = KQ where K ≡ λx, y.x.
QED

Since mute terms are easy it follows:

Theorem 15.3 All strong zero terms of finite degree are easy.

This is a strengthening of a theorem of [15] which says that all recurrent
closed zero terms are easy, where “recurrent” is defined as follows:

Definition 15.4 A term A is recurrent if whenever A ⇒ B, there is a
reduction B ⇒ A.

Lemma 15.5 Every recurrent closed zero term A is a strong zero terms of
finite degree (hence it is easy).

Proof. Let k be the number of subterms of A. If A is not of finite
degree, there is n > k and a reduction A ⇒ BT1 . . . Tn where B is a zero
term and each Ti ∈ Λ0. But then every reduct of BT1 . . . Tn has the form
B′Q1 . . . Qn so it has at least n subterms, and therefore cannot coincide with
A, contradicting the fact that A is recurrent. QED

The problem of classifying the closed zero terms which are easy has thus
been reduced to the case of those of infinite degree. Ω3 is an example of a
zero term of infinite degree which is not easy. In [12] there is an example of
an easy term of infinite degree. The fixed point YtΩ3 has infinite order and
it is not known to be easy (see [15, 16]). In [4] it is shown that YtΩ3 can be
consistently equated to every closed normal form.

16 Related work

Infinite reductions and unicity of normal forms are considered in [9] and
[17] in the context of term rewriting systems for infinite first order terms.
I was not initially aware of this fact, which was pointed out to me by M.
Venturini Zilli. In particular the notion of infinite β-reduction, based on
the assumption that in an infinite β-reduction the depth or redexes tends to
infinity, correspond exaclty to the notion of strongly converging reduction in
[17]. The use of residues under an infinite reduction can also be found there.
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It should be noted however that we work with infinite terms with lambda-
abstractions, while [9] and [17] work with infinite first order terms, i.e. they
do not allow binding of variables. The notion of non-top-terminating in [9]
resembles very closely the notion of mute. In [17] we find the idea that
such terms, which are there called terms without head-normal form, are
meaningless from an operational point of view. This idea is there formalized
in a Church-Rosser theorem “up to hypercollapsing terms” (Theorem 7.4).
In [17] we also find a counterexample to the infinite Church-Rosser property
for combinatory logic. In [9] there is a theorem about the unicity of ⊥-
normal forms for ⊥-converging semi-⊥-confluent rewrite systems (Theorem
8). This is reminiscent of our theorem on uniqueness of infinite β-normal
forms. However λ-calculus seems to be neither ⊥-converging nor semi-⊥-
confluent if we extend the notions in the natural way.
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These de doctorat, Universite de Paris VII, 1991.

43


