SULLE FUNZIONI ELEMENTARI CONTINUE

Indichiamo con

$$\mathcal{F} = \{ f : D \to \mathbb{R} \ D \subset \mathbb{R}, \ D \neq \emptyset \}$$

l'insieme di tutte de funzioni a valori reali, definite su qualche sottoinsieme non vuoto D di \mathbb{R} . Ricordiamo la definizione di funzione continua:

Sia $f: D \to \mathbb{R}$ un elemento di \mathcal{F} . Diciamo che f è continua su D se per ogni $a \in D$, per ogni $\epsilon > 0$, esiste $\delta = \delta(\epsilon, a) > 0$ tale che per ogni $b \in D$ tale che $|b - a| < \delta$ si ha che $|f(b) - f(a)| < \epsilon$; in modo equivalente si può dire che: $f((a - \delta, a + \delta) \cap D) \subset (f(a) - \epsilon, f(a) + \epsilon)$.

Ricordiamo anche che se ogni elemento $a \in D$ è di accumulazione per D allora f è continua su D se e solo se per ogni $a \in D$ si ha che:

$$\lim_{x \to a} f(x) = f(a)$$

 $\lim_{x\to a}f(x)=f(a)\ .$ Indichiamo con $\mathcal{C}\subset\mathcal{F}$ il sottoinsieme formato dalle funzioni continue.

1. Procedure che preservano la continuità

Conosciamo alcune semplici procedure che, a partire da (opportuni) elementi di \mathcal{F} , producono un altro elemento di \mathcal{F} . Elenchiamole.

Procedure. Supponiamo che $f: D \to \mathbb{R}$ e $g: D' \to \mathbb{R}$ siano due funzioni nell'insieme \mathcal{F} .

- (Somma.) Se $D \cap D' \neq \emptyset$, allora definiamo $(f+g): D \cap D' \to \mathbb{R}$.
- (*Prodotto.*) Se $D \cap D' \neq \emptyset$, allora definiamo $(f \cdot g) : D \cap D' \to \mathbb{R}$.
- (Reciproco.) Se f non è costantemente nulla su D, poniamo $D^* = D \setminus f^{-1}(0)$, e definiamo $\frac{1}{f}: D^* \to \mathbb{R}.$
- (Valore assoluto.) $|f|: D \to \mathbb{R}$.
- (*Inversa.*) Se f è iniettiva, poniamo $D^* = \text{Im}(f)$, e definiamo $f^{-1}: D^* \to D \subset \mathbb{R}$.
- (Composizione.) Se $\operatorname{Im}(f) = f(D) \subset D'$, definiamo $g \circ f : D \to \mathbb{R}$.

Indichiamo genericamente con P una di queste procedure.

La seguente proposizione riassume diverse proprietà strutturali delle funzioni continue.

Proposizione 1.1. (1) Se $f: D \to \mathbb{R}$ è continua e $D' \subset D$, allora la restrizione f = f | D' di f a D'è continua, cioè se $f \in \mathcal{C}$ allora anche $f \in \mathcal{C}$.

(2) C è chiuso rispetto alle procedure P, cioè se f è ottenuta applicando una procedura P a partire da funzioni continue, allora anche f è continua.

2. Funzioni elementari

Vogliamo individuare un sottoinsieme $\mathcal{E} \subset \mathcal{C}$ ottenuto nel modo seguente:

(*) Fissiamo un insieme di funzioni "fondamentali" in C. Allora f appartiene ad E se e solo se si ottiene a partire dalle funzioni fondamentali, applicando successivamente un numero finito (che però può essere arbitrariamente grande) di procedure P.

Comunque fissiamo l'insieme delle funzioni fondamentali, certamente $\mathcal{E} \subset \mathcal{C}$ perché \mathcal{C} è chiuso rispetto alle procedure \mathbf{P} . E' chiaro che applicando una procedura \mathbf{P} a partire da funzioni di \mathcal{E} già costruite si ottiene un'altra funzione che sta in \mathcal{E} . E' chiaro anche che l'insieme \mathcal{E} sarà completamente determinato, una volta che avremo dichiarato chi sono le nostre funzioni fondamentali, cosa che andiamo a fare.

Le funzioni "fondamentali". Queste sono:

- Le funzioni costanti definite su $D = \mathbb{R}$.
- Le funzioni inclusione di intervalli, cioè della forma $x \to x$ definite su un arbitrario intervallo $I \subset \mathbb{R}$. In particolare se $I = \mathbb{R}$ abbiamo la funzione identità di \mathbb{R} .

- La funzione esponenziale $x \to e^x$ definita su $D = \mathbb{R}$.
- La funzione $\sin : \mathbb{R} \to \mathbb{R}$

La verifica che queste funzioni fondamentali sono continue è lasciata per esercizio.

L'insieme $\mathcal{E} \subset \mathcal{F}$ ottenuto secondo quanto prescritto in (*), a partire da questo insieme di funzioni fondamentali, viene detto l'insieme delle *funzioni elementari continue*. Vediamo alcuni esempi notevoli di funzioni elementari.

• (Funzioni polinomiali.) Sono le funzioni, definite su $D = \mathbb{R}$, della forma

$$p(x) = a_0 + a_1 x + \dots a_n x^n, \ a_i \in \mathbb{R} \ .$$

Sono elementari perché si ottengono applicando ripetutamente le procedure "somma" o "prodotto" a partire dalle funzioni costanti e dalla funzione identità.

- (Funzioni razionali.) Sono le funzioni della forma $r=\frac{p}{q}$, dove p,q sono funzioni polinomiali, q non è la funzione polinomiale costantemente nulla, r è definita su $D=\{q(x)\neq 0\}$. Sono funzioni elementari perché si ottengono applicando ripetutamente le procedure "somma" o "prodotto" a partire dalle funzioni costanti e dalla funzione identità, per ottenere sia p sia q, concludendo poi con una applicazione di "reciproco" seguita da "prodotto".
- La funzione logaritmo naturale log, definita su $D = \{x > 0\}$, è elementare perché "inversa" della funzione esponenziale.
- Per ogni a > 0, la funzione esponenziale in base $a \ x \to a^x = e^{\log(a)x}$ è elementare perché è composizione di funzioni elementari.
- Per ognia>0, la funzione logaritmica in base a $\log_a=\log/\log(a)$ è elementare.
- Per ogni $a \in \mathbb{R}$ la funzione potenza di esponente a, definita su $D = \{x > 0\}, x^a = e^{a \log(x)}$ è elementare.
- La funzione coseno $cos(x) = sin(x + \pi/2)$ è elementare perché composizione di funzioni elemtari.
- Le funzioni trigonometriche $\tan(x) = \sin(x)/\cos(x)$, $\cot(x) = \cos(x)/\sin(x)$, (definite rispettivamente su $D = \mathbb{R} \setminus \{(2m+1)(\pi/2); m \in \mathbb{Z}\}$, $D = \mathbb{R} \setminus \{m\pi; m \in \mathbb{Z}\}$) sono elementari perché ottenute applicando "reciproco" seguito da "prodotto" a partire da funzioni elementari già costruite.
- (Funzioni trigonometriche inverse.) Componendo, per ogni $m \in \mathbb{Z}$, la funzione di inclusione di intervallo $(2m+1)(\pi/2), (2(m+1)+1)(\pi/2) \to \mathbb{R}$, con la funzione tan si ottiene una funzione bigettiva a valori in \mathbb{R} . Possiamo allora considerare la corrispondente funzione elementare inversa, definita su \mathbb{R} , che viene detta un ramo dell' arcotangente. Prendendo l'intervallo $(-\pi/2, \pi/2)$ si ottiene il cosiddetto ramo principale, che viene indicata con arctan. In modo analogo si trattano le altre funzioni trigonometriche inverse, che sono quindi tutte elementari.
- (Funzioni iperboliche.) Definiamo su $D = \mathbb{R}$:

$$\sinh(x) := \frac{e^x - e^{-x}}{2}, \ \cosh(x) := \frac{e^x + e^{-x}}{2}.$$

Si noti che $\cosh^2(x) - \sinh^2(x) = -1$ cioè il punto $(\sinh(x), \cosh(x))$ appartiene ad una iperbole in \mathbb{R}^2 . Per analogia con le funzioni trigonometriche, queste due funzioni si chiamano rispettivamente il seno iperbolico e il coseno iperbolico. Poiché per ogni $x \in \mathbb{R}$, $\cosh(x) \neq 0$, possiamo definire su $D = \mathbb{R}$ la funzione $\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$ che è detta la tangente iperbolica; $\sinh(x) = 0$ solo se x = 0. Dunque su $D = \{x \neq 0\}$ possiamo definire la cotangente iperbolica $\coth(x) = \frac{\cosh(x)}{\sinh(x)}$. Applicando opportunamente la procedura "inversa" possiamo definire anche (i rami) delle funzioni iperboliche inverse $arc \sinh, arc \cosh, arc \tanh$ ecc.

Le funzioni elementari possono essere molto complicate (quindi "plastiche"), ma hanno anche un carattere "costruttivo" (a partire da pochi mattoni fondamentali) che le rende particolarmente appetibili, e sono infatti spesso utilizzate per modellizzare comportamenti presenti nella realtà (fisica, economica, biologica). Bisogna però tenere presente che ci sono funzioni anche molto semplici e naturali, che non

sono elementari (secondo la definizione data sopra). Per esempio la funzione "parte intera" $x \to [x]$, definita su $D = \mathbb{R}$ non è elementare (perché non è continua).