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Preface

This book presents some of the basic topological ideas used in studying
differentiable manifolds and maps. Mathematical prerequisites have been
Kept to a minimum; the standard course in analysis and general topology is
adequate preparation. An appendix briefly summarizes some of the back-
ground material.

In order to emphasize the geometrical and intuitive aspects of ditferen-
tial topology, I have avoided the use of algebraic topology. except in a few
isolated places that can easily be skipped. For the same reason I make no
use of differential forms or tensors.

In my view, advanced algebraic techniques like homology theory are
better understood after one has seen several examples of how the raw
material of geometry and analysis is distilled down to numerical invariants.
such as those developed in this book : the degree of a map. the Euler number
of a vector bundle, the genus of a surface, the cobordism class of a manifold,
and so forth. With these as motivating examples. the use of homology and
homotopy theory in topology should seem quite natural.

There are hundreds of exercises, ranging in difficulty from the routine to
the unsolved. While these provide examples and further developments of
the theory, they are only rarely relied on in the proofs of theorems.

Vil
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Introduction

Any problem which is non-linear in character, which involves more than one
coordinate system or more than one variable, or where structure is initiaily
defined in the large, is likely to require considerations of topology and group
theory for its solution. In the solution of such problems classical analysis will
frequently appear as an instrument in the small, integrated over the whole prob-
lem with the aid of topology or group theory.

—M. Morse, Calculus of Variations
in the Large, 1934

La possibilitée d'utiliser le modéle differential est, 3 mes yeux, la justification
ultime de I'emploi des modéles quantitifs dans les sciences.

—R. Thom, Stabilité Structurelle
et Morphogénése. 1972

In many branches of mathematics one finds spaces that can be described
locally by n-tuples of teal numbers. Such objects are called manifolds: a
manifold is a topological space which is locally homeomorphic to Euclidean
n-space R". We can think of a manifold as being made of pieces of R" glued
together by homeomorphisms. If these homeomorphisms are chosen to be
differentiable, we obtain a differentiable manifold. This book is concerned
mainly with differentiable manifolds.

The Development of Differentiable Topology

The concept of manifold emerged gradually from the geometry and func-
tion theory of the nineteenth century. Differential geometers studied curves
and surfaces in “ordinary space”™; they were mainly interested in local con-
cepts such as curvature. Function theorists took a more global point of view:
they realized that invariants of a function F of several real or complex vari-
ables could be obtained from topological invariants of the sets F~ '{¢); for
“most” values of ¢, these are manifolds.

Riemann broke new ground with the construction of what we call
Riemann surfaces. These were perhaps the first abstract manifolds; that is,
they were not defined as subsets of Euclidean space.

Riemann surfaces furnish a good example of how manifolds can be used
to investigate giobal questions. The idea of a convergent power series (in one
complex variable) is not difficult. This simple local concept becomes a com-
plex global one, however, when the process of analytic continuation is
introduced. The collection of all possible analytic continuations of a con-
vergent power series has a global nature which is quite elusive. The giobal

i



2 Introduction
aspect suddenly becomes clear as soon as Riemann surfaces are introduced:
the continuations fit together to form a (single valued) function on a surface.
The surface expresses the global nature of the analytic continuation process.
The probiem has become geometrized.

Riemann introduced the global invariant of the connectivity of a surface:
this meant maximal number of curves whose union does not disconnect the
surface, plus one. It was known and “proved” in the 1860’s that compact
orientable surfaces were classified topologically by their connectivity.
Strangely enough, no one in the nineteenth century saw the necessity for
proving the subtle and difficult theorem that the connectivity of a compact
surface is actually finite.

Poincaré began the topological analysis of 3-dimensional manifolds. In
a series of papers on “Analysis Situs,” remarkable for their originality and
power, he invented many of the basic tools of algebraic topology. He also
bequeathed to us the most important unsolved problem in differential
topology, known as Poincaré’s conjecture: is every simply connected compact
3.manifold, without boundary, homeomorphic to the 3-sphere?

It is interesting to note that Poincaré used purely differentiable methods
at the beginning of his series of papers, but by the end he relied heavily on
combinatorial techniques. For the next thirty years topologists concentrated
almost exclusively on combinatorial and algebraic methods.

Although Herman Weyl had defined abstract differentiable manifolds in
1912 in his book on Riemann surfaces, it was not until Whitney's papers of
1936 and later that the concept of differentiable manifold was firmly estab-
lished as an important mathematical object, having its own problems and
methods.

Since Whitney's papers appeared, differential topology has undergone a
rapid development. Many fruitful connections with algebraic and piece-
wise linear topology were found; good progress was made on such questions
as embedding, immersions, and classification by homotopy equivalence or
diffeomorphism. Poincaré’s conjecture is still unsolved, however. In recent
years techniques and results from differential topology have become im-
portant in many other fields.

The Nature of Differential Topology

In today’s mathematical sciences manifolds are found in many different
fields. In algebra they occur as Lie groups; in relativity as space-time; in
economics as indifference surfaces; in mechanics as phase-spaces and energy
surfaces. Wherever dynamical processes are studied, {hydrodynamics, popu-
lation genetics, electrical circuits, etc.) manifolds are used for the “state-
space,” the setting for a model of the process by a differential equation or
a mapping.

1n most of these examples the historical development follows the local-
to-global pattern. Lie groups, for example, were originally “local groups”
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having a single parametrization as a neighborhood of the origin in B*. Only
later did global questions arise, such as the classification of compact groups.
In each case the global nature of the subject became geometrized {at least
partially) by the introduction of manifolds. In mechanics. for example. the
differences in the possible long-term behavior of two physical systems become
clear if it is known that one energy surface is a sphere and the other is a
torus.

When manifolds occur “naturaily” in a branch of mathematics, there is
always present some extra structure: a Riemannian metric, a binary opera-
tion, a dynamical system, a conformal structure, etc. 1t is often this structure
which is the main object of interest; the manifold is merely the setting. But
the differential topologist studies the manifold itself; the extra structures
are used only as tools.

The extra structure often presents fascinating local questions. In a
Riemannian manifold, for instance, the curvature may vary from point to
point. But in differential topology there are no local questions. {More precisely.
they belong to caiculus.) A manifold looks exactly the same at all points
because it is locally Euclidean. In fact, a manifold (connected. without bound-
ary) is homogeneous in a more exact sense: its diffeomorphism group acts
transitively.

The questions which differential topology tries 1o answer are global: they
involve the whole manifold. Some typical questions are: Can a given mani-
fold be embedded in another one? If two manifolds are homeomorphic, are
they necessarily diffeomorphic? Which manifolds are boundaries of compact
manifolds? Do the topological invariants of a manifold have any special
properties? Does every manifoid admit a non-trivial action of some cyclic
group?

Each of these questions is, of course, a shorthand request for a theory.
The embedding question, for example, really means: define and compute
diffeomorphism invariants that enable us to decide whether M embeds in
N, and in how many essentially distinct ways.

If we knew how to construct all possible manifolds and how to tell from
“computable” invariants when two are diffeomorphic, we would be a long
way toward answering any given question about manifolds. Unfortunately.
such a classification theorem seems unattainable at present, except for very
special classes of manifolds (such as surfaces}. Therefore we must resort to
more direct attacks on specific questions, devising different theories for
different questions. Some of these theories, or parts of them, are presented
in this book.

The Contents of This Book

The first difficulty that confronts us in analyzing manifolds is their
homogeneity. A manifold has no distinguished “parts™; every point looks
like every other point. How can we break it down into simpler objects?
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The solution is to artificially impose on a manifold a nonhomogeneous
structure of some kind which can be analyzed. The major task then is to
derive intrinsic properties of the original manifold from properties of the
artificial structure.

This procedure is common in many parts of mathematics. In studying
vector spaces, for example, one imposes coordinates by means of a basis;
the cardinality of the basis is then proved to depend only on the vector space.
In algebraic topology one defines the homology groups of a polyhedron
in terms of a particular triangulation, and then proves the groups to be
independent of the triangulation.

Manifolds are, in fact, often studied by means of triangulations. A more
natural kind of decomposition, however, consists of the level sets f ~*(y) of
a smooth map f: M — R, having the simplest kinds of critical points (where
Df vanishes). This method of analysis goes back to Poincaré and even to
Mdbius (1866); it received extensive development by Marston Morse and
today is called Morse theory. Chapter 6 is devoted to the elementary aspects
of Morse theory. In Chapter 9 Morse theory is used to classify compact
surfaces.

A basic idea in differential topology is that of general position or trans-
versality; this is studied in Chapter 3. Two submanifolds A, B of a manifold
N are in general position if at every point of A n B the tangent spaces of
A and B span that of N. If A and B are not in general position, arbitrarily
small perturbations of one of them will put them in general position. If they
are in general position, they remain in it under all sufficiently small per-
turbations; and 4 n B is then a submanifold of the “right” dimension. A
map .M — N is transverse 10 A if the graph of f and M x A are in general
positionin M x N.This makes f ~}(4) a submanifold of M, and the topology
of f~1(A) reflects many properties of f. In this way an important connection
between manifolds and maps is established.

Transversality is a great unifying idea in differential topology; many
results, including most of those in this book, are ultimately based on trans-
versality in one form or another.

The theory of degrees of maps, developed in Chapter 5, is based on
transversality in the following way. Let f:M — N be a map between compact
oriented manifolds of the same dimenston, without boundary. Suppose [ is
transverse to a point y € N; such a point is called a regular value of f. The
degree of f is the “algebraic” number of points in f ~!(y), that is, the number
of such points where f preserves orientation minus the number where f
reverses orientation. It turns out that this degree is independent of y and,
in fact, depends only on the homotopy class of f. If N = §” then the degree
is the only homotopy invariant. In this way we develop a bit of classical
algebraic topology: the set of homotopy classes {M,S"] is naturally iso-
morphic to the group of integers.

The theory of fibre bundles, especially vector bundles, is one of the
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strongest links between algebraic and differential topology. Patterned on
the tangent and normal bundles of a manifold, vector bundles are analogous
to manifolds in form, but considerably simpler to analyze. Most of the deeper
diffeomorphism invariants are invariants of the tangent bundle. In Chapter 4
we develop the elementary theory of vector bundles, including the classifica-
tion theorem: isomorphism classes of vector bundles over M correspond
naturally to homotopy classes of maps from M into a certain Grassmann
manifold. This result relates homotopy theory to differeniial topology in a
new and important way.

Further importance of vector bundles comes from the tubular neighbor-
hood theorem: a submanifold B < M has an essentially unique neighbor-
hood looking like & vector bundle over B.

In 1954 René Thom proposed the equivalence relation of cobordism: two
manifolds are cobordant if together they form the boundary of a compact
manifold. The resulting set of equivalence classes in each dimension has a
natural abelian group structure. In a tour de force of differential and algebraic
topology, Thom showed that these groups coincide with certain homotopy
groups, and he carried out a good deal of their calculation. The elementary
aspects of Thom's theory, which is a beautiful mixture of transversality.
tubular neighborhoods, and the classification of vector bundles, is presented
in Chapter 7.

Of the remaining chapters, Chapter 1 introduces the basic definitions
and, proves the “easy” Whitney embedding theorem: any map of a compact
n-manifold into a (2n + 1)-manifold can be approximated by embeddings.
Chapter 2 topologizes the set of maps from one manifold to another and
develops approximation theorems. A key result is that for most purposes it
can be assumed that every manifold is C*. Much of this chapter can be
skipped by a reader interested chiefly in compact C* manifolds. Chapter 8
is a technical chapter on isotopy, containing some frequently used methods
of deforming embeddings; these results are needed for the final chapter on
the classification of surfaces.

The first three chapters are fundamental to everything else in the book.
Most of Chapter 6 (Morse Theory) can be read immediately after Chapter 3:
while Chapter 7 (Cobordism) can be read directly after Chapter 4. The
classification of surfaces, Chapter 9, uses material from all the other chapters
except Chapter 7.

The more challenging exercises are¢ starred, as are those requiring alge-
braic topology or other advanced topics. The few that have two stars are
really too difficult to be considered exercises, but are included for the sake
of the results they contain. Three-star “exercises” are problems to which [
do not know the answer,

A reference to Theorem 1 of Section 2 in Chapter 3 is written 3.2.1, or
as 2.1 if it appears in Chapter 3. The section is called Section 3.2. Numbers
in brackets refer to the bibliography.
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Chapter 1
Manifolds and Maps

11 faut d’abord examiner la question de la définition des variétés.

—P. Heegard, Disseriation, 1892

The assemblage of points on a surface is a twofold manifoldness: the assem-
blage of points in tri-dimensional space is a threefold manifoldness; the values
of 2 continuous function of # arguments an a-fold manifoldness.

—G. Chrystal, Encyclopedia
Brittgnica, 1892

The introduction of numbers as coordinates . . . is an act of violence . ..

—H. Weyl, Philosophy of Mathematics
and Natural Science, 1949

Differential topology is the study of differentiable manifolds and maps.
A manifold is a topological space which locally looks like Cartesian n-space
®"; it is built up of pieces of R" glued together by homeomorphisms. 1f these
homeomorphisms are differentiable we obtain a differentiable manifold.

The task of differential topology is the discovery and analysis of global
properties of manifolds. These properties are often quite subtle. In order to
study them, or even to express them, a wide variety of topological, analytic
and algebraic tools have been developed. Some of these will be examined in
this book. ’

In this chapter the basic concepts of differential topology are introduced:
differentiable manifolds, submanifolds and maps. and the tangent functor.
This functor assigns to each differentiable manifold M another manifold
TM called its tangent bundle, and to every differentiable map f:M — N it
assigns a map Tf:TM — TN. In local coordinates Tf is essentially the
derivative of f. Although its definition is necessarily rather complicated, the
tangent functor is the key to many problems in differential topology; it reveals
much of the deeper structure of manifolds.

In Section 1.3 we prove some basic theorems about submanifolds, maps
and embeddings. The key ideas of regular value and transversality are intro-
duced. The regular value theorem, which is just a global version of the implicit
function theorem, is proved. It states that if /1M — N is a map then under
certain conditions £ ~'(¥) will be a submanifold of M. The submanifolds

7



8 1. Manifolds and Maps

£ '(y)and of the map f are intimately related; in this way a powerful positive
feedback loop is created: -

Theorems about — | Theorems about
manifolds — maps

This interplay between manifolds and maps will be cxploited in later chapters.

Also proved in Section 1.3 is the pleasant fact that every compact mani-
fold embeds in some R?. Borrowing an analytic lemma from a later chapter,
we then prove a version of the deeper embedding theorem of Whitney:
every map of a compact n-manifold into R*"*! can be approximated by
embeddings.

Manifolds with boundary, or é-manifolds, are introduced in Section 1.4,
These form a natural and indeed indispensable extension of the manifolds
defined in Section 1.1; their presence, however, tends to complicate the
mathematics. The special arguments needed to handle ¢-manifolds are
usually obvious; in order to present the main ideas without interruption we
shall frequently postpone or omit entirely proofs of theorems about
J-manifolds.

At the end of the chapter a convention is stated which is designed to
exclude the pathology of non-Hzusdorff and nonparacompact manifolds.

Running through the chapter is an idea that pervades ait of differential
topology: the passage from local to global. This theme is expressed in the
very definition of manifold; every statement about manifolds necessarily
repeats it, explicitly or implicitly. The proof of the regular value theorem,
for example, consists in pointing out the local nature of the hypothesis and
conclusion, and then applying the implicit function theorem (which is itself
a passage from infinitesimal to local). The compact embedding theorem
pieces together local embeddings to get a global one. Whitney's embedding
theorem builds on this, using, in addition, a lemma on the existence of regular
values. This proof of this lemma, as will be seen in Chapter 3, is a simple
globalization of a rather subtle local property of differentiable maps.

Every concept in differential topology can be analyzed in terms of this
local-global polarity. Often a definition, theorem or proof becomes clearer
if its various local and global aspects are kept in mind.

0. Submanifolds of R"**

Before giviﬁg formal definitions we first discuss informally the familiar
space S" and then more general submanifolds of Euclidean space.
The unit n-sphere is

= {xeR" x| = 1},
. n+1 1/2
where |x| = (z x,z) . We introduce local coordinates in S” as follows.

i=1

0. Submanifolds of R*** 9

Forj = 1,...,n + 1 define open hemispheres
Uzjor = {xe5:x; > 0},
U,; = {xe8:x; < 0}.
Fori = 1,...,2n + 2 define maps
o U — R,
QX)) = (x5, ..o s Kp oo n s Xasy) ifi=2 —-1or2,

this means the n-tuple obtained from x by deleting the jth coordinate.
Clearly ¢, maps U, homeomorphically onto the open n-disk

B={yeR"|y <1}

It is easy to see that ¢, !:B = R**! is analytic.
Each (¢@;,U,) is called a “chart” for §*; the set of all {¢;,l;} is an “atlas™.

In terms of this atlas we say a map f:5" — R* is “differentiable of class C
in case each composite map

fepi:B- R

is ' ie., has continuous partial derivatives of order r. If it happens that
g:S" — R™*1is C"in this sense, and g(S")  §™, itis naturalto callg:S" — S™
a C" map. This definition is equivalent to the following. Let {(¢;, ¥})} be an
atlas for §™,j = 1,...,4 Then g:5" — §™ is C" provided each map

Y90 o (V) - R™

is C'; this makes sense because @,¢~ '(¥}) is an open subset of R".

Thus we have extended the notion of C* map to the unit spheres S*, n =
1,2,....Itis easy to verify that the composition of C" maps (in this extended
sense) is again C.

A larger class of manifolds is obtained as follows. Let f: R*** - R' be a
C'map,r > 1,and put M = f~'(0). Suppose that f has rank k at every point
of f~1(0); we call M a “regular level surface™ Anexampleis M = S* < R*"!

A+l
where f(x) = 1 — ) xZ

i=1
Local coordinates are introduced into M as follows. Fix pe M. By a
linear coordinate change we can assume that the k x k matrix ¢f;/cx;,
1 < i, j € k, has rank k at p. Now identify R*** with R" x R* and put
p = (a,b). According to the implicit function theorem -there exist a
neighborhood U x V of {g,b) in R* x R* and 2 " map ¢g:U — V, such
that g(x) = y if and only if f(x,y) = 0. Thus

Mn (U x V) = {(xg(x)}:x € U}
= graphof g.
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Define
W=Mn{Ux V),
@ W - R,
(x,g(x))} > x (xe ).

Then (,W) is taken as a local coordinate system on M. In terms of such
coordinates we can further extend the notion of " map to maps between
regular level surfaces.

Exactly the same constructions are made when the domain of fis taken
to be an open subset of R**¥ rather than ail of R***.

A significantly broader class of manifolds comprises those subsets M of
R"*+* which locally are regular level surfaces of C" maps. That is, each point
of M has a neighborhood W < R"** such that

WnM=f'0)

for some C" map f: W - R* having rank k at each point W n M. Local co-
ordinates are introduced and C" maps are defined as before. A manifold of
this type is called an “n-dimensional submanifold of Rt

In each of these examples it is easy to see that the coordinate changes are
C'. These coordinate changes are the maps

?; (pi_l:‘pi(Ui o Uj) - U, n Uj)

where (¢;,U,) and (¢;,U}) vary over an atlas for the manifold in question.
(The domain and range of @, are open subsets of R™, so that it makes
sense to say that o, 1 is C'))

This has an important implication: to verify that a map f:M — NisC,
it suffices to check that for each point x € M there is at least one pair of charts,
(g, for M and (V) for N, with xe U and f(U) = V, such that the map

R™ > p(U) L% y(V) & R°

is C". For suppose this is true, and let (3,0), {%,7) be any charts for M, N; we
must show that #f@ " is C". An arbitrary point in the domain of gfp~!is
of the form @(x) where x € U n f (). Let (¢, U), (§,V) be charts for M, N

such thatxe U, f(U) « Vand yfp~'is C". Thenina neighborhood of §(x)
we have

e~ =@y feo Nep™ ")

Thus §if@ ! is locally the composition of three C" maps, so itis C".

Next we discuss the tangent bundle of an n-dimensional submanifold
M < R™* Let x e M and let (¢,U) be a chart at x (that is, x e U). Puta =
o(x) e R*, Let E, = R"** be the vector subspace which is the range of the
linear map

Do LR - RTK.

Because of the chain rule, £, depends only on x, not on the choice of (¢,U).

1. Differential Structures §

The set x x E, = M, is called the “tangent space™ to M at x. We give
it the natural vector space structure inherited from E,. Notice that Do, !
induces a vector space isomorphism between R* and M,.

If we associate to every (x,y} € M, the point x + y € 8%, we obtain an
embedding M, — R*** The image of this embedding is an affine n-plane in
R"** passing through x. It is tangent to M in the sense that it consists of all
vectors based at x which are tangents to curves in M passing through x.

If f:M — N is a C" map (between submanifolds) and f(x) = z, a lincar
map Tf,: M, - N, is defined as follows. Let {9,U), (¥.V} be charts for M, N
at x, z. Put ¢{x) = a, and define Tf, by

Tf: () 2D o~ 1)),

This is independent of the choice of (o,U) and (y,V), thanks to the chain rule.

The union of all the tangent spaces of M is called the “tangent bundie”
of M. The linear maps Tf, form a map Tf: TM - TN. This map plays the
role of a “derivative” of the map f:M — N.

By means of Tf we can extend the notion of “rank™ to maps between
submanifolds: the rank of f at x € M means the rank of the linear map
Tf:M, - N,

The set TM is a subset of M x R*** hence of R*** x R*** Itis natural
to ask whether TM is a submanifold. In fact, if (¢,U) is a chart for M, we
obtain a natural chart (¢,TU) for TM by identifying

TU = {(x,y)e TM:xe U}
and defining
¢:TU - R x R,
P(x,y) = (p(x){Dp, )" y).
'grhes;e charts make TM into a C" ™! submanifold. The maps Tf are of class
This completes our sketch of the basic notions of manifold, map and

tangent bundle for the special case of submanifolds of Euclidean space. We
now proceed to abstract manifolds.

1. Differential Structures

A topological space M is called an n-dimensional manifold if it is locally
homeomeorphic to R*. That is, there is an open cover # = {U;}; , of M such
that for each i € A there is a map ¢;: U; - R" which maps U; homeomor-
phically onto an open subset of R". We call (¢,,U,) a chart {or coordinate
system) with domain U,; the'set of charts & = {¢;,U;},., is an atlas.

Two charts (9,,U;), (¢;,U,) are said to have " overlap if the coordinate
change

o LiodUin Uy = oU; 0 Uy
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is of differentiability class C’, and @;9; ' is also C". See Figure 1-1. Here r
can be a natural number, oo, or @ (meaning real analytic). This definition
makes sense because @ (U, n U;) and ¢,(U; n U,;) are open sets in R".

@, @

! :
/@ -
9

R!l
Figure 1-1. Overlapping charts.

An atlas @ on M is called (7 if every pair of its charts has C" overlap. In
this case there is a unique maximal C" atlas ¥ which contains ®. In fact ¥ is
the set of all charts which have C” overlap with every chart in .

A maximal C" atlas x on M is a C" differential structure; the pair (M,x) is
called a manifold of class C'. A manifold of class > 1 is called smooth.

To determine a C” differential structure it suffices to give a single C” atlas
contained in it. Thus R" has a unique C differential structure containing the
identity map of R". More generally every open set U < R has a unique C’
differential structure containing the inclusion map U < R".

Suppose a is a C* differential structure on M and r is an integer such that
1 €.r < s. Since a also a C" atlas, it belongs to a unique C* differential struc-
ture on M, obtained by adding to a all charts having C” overlap with every
chart in a. In this way every C* manifold may be considered a ¢ manifold.
In Chapter 2 we shall prove the converse.

Let r be fixed until further notice; we omit the term “C".”

t. Diflerential Structures 13

If(M,®) and (N,¥) are manifolds their Cartesian product is the manifold
(M x N,8), where € is the differential structure containing all charts of the
form

(@ x U x Vhi(pUed, (. e V.

Here ¢ x y maps U x Vinto R* x R which we identify with R="*.
1f (M,®) is a manifold and W < M is an open set the induced differential
structure on W is

W = {(p,U)e :U = W},

A differential structure @ on M is often obtained by the collation of
differential structures &@; on open sets U; covering M. This means that

U NnU; =|UnU; forall ij

and @ is the unique differential structure on M containing each &, as a subset.

Let M be a topological space, (N,#) a manifold and i: M — N a homeo-
morphism of M onto an open subset of N. The induced differential structure
on M is

B = {(ohh Ui, lhed  and U < MAD).

The n-sphere S is given the €™ differential structure defined by the atlas
given in the preceding section.

Real projective n-space P" is the C* manifold whose underlying space is
the identification space of S" under the antipodal map: we identify x e 5"
with —x, If p:S* — P"is the natural projection, p maps each open hemisphere
homeomorphically. Let {U,, ..., Uy} be a covering.of $" by open hemi-
spheres. If we give each set p(U;} = V; the differential structure @; induced
by (p|U,) ™1, it is easy to see that ®; and &; agree on ¥, 1 V. Thus P* is given
a differential structure by collation. -

More examples of manifolds are given in the exercises at the end of the
section.

Some manifolds are contained in other manifolds in a natural way; thus
§" < R"*!. A subset 4 of a C" manifold (M,®) is a C" submunifold of (M.®)
if for some integer k = 0, each point of A belongs to the domain of a chart
{¢,U) € & such that

UnAd=¢ '(RY

where R* < R" is the set of vectors whose last n — k coordinates are 0.' We
call such a (p,U) a submanifold chart for (M,A). It is evident that if 4 is a
submanifold of M then the maps

plUnAUNnA- R

form a C" atlas for 4, where (¢,U) varies over all submanifold charts. Thus
A is a C’" manifold in its own right, of dimension k. The codimension of A is
n— k.

! For r = 0 this is sometimes called a focally flar C® submanifold.
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Let W c R"beanopensetand f: W — R?aC"map,| € r £ w.Suppose
v e f(W) is a regular value of £ this means that f has rank g at every point
of f~'(»). (Therefore g < n.) Then the subset f~'(y) is a C" submanifold
of R of codimension g. This follows from the implicit function theorem, as
explained in Section 1.0.

Exercises

1. The Grassmann manifold G, , of k-dimensional linear subspaces or k-planes of R" is
given an atlas as follows. Let £ = R" be a k-plane and E* its orthogonal complement.
Identify R" with E x E*. Every k-plane near enough to E is the graph of a unique
linear map E — E*. In this way a neighborhood of E € G, , is mapped homeomorphi-
cally onto an open set in the vector space of linear maps E — E*. This makes G, , an
analytic manifold of dimension kin — k).

2. Complex projective n-space is the manifold CP" of (real) dimension 2n obtained as
follows. An element of CP* is an equivalence class [zg, ..., 2,] of (n + 1}tuples of
complex numbers not all 0. The equivalence relation is: (2o, . - -, 2,] = [WZg, ..., W2,]
il w is a nonzero complex number. The topology is the natural quotient space topology.
An atlas {o, U}, i = 0,...,n is defined as follows. Let U; be the set of equivalence
classes whose i'th entry is nonzero. Map U, into C" by

[209' e zn} i (ZO/Zh o '!m" AR Z,./‘Z,-),

where ~ indicates deletion. Under the natural identification of complex n-space C
with B?", these maps form a C* atlas on CP(n).

3. Quaternionic projective n-space is a 4n-dimensional manifold constructed as in
Exercise 2, using quaternions instead of complex numbers.

4, The group O(n} of orthogonal n x n matrices is a compact submanifo!d of the vectot

a=1

space R™ of all n x n matrices; its dimension is Y. k. The component of the identity
k=0
is the subgroup SO(n) of orthogonal matrices of determinant 1.

5. Let & = {¢;,U;}; 4 be an atlas on an n-dimensional manifold M. Put ¢;(U;) =
¥, = R, and let X be the identification space obtained from { },., ¥; x i when (x,) is
identified with (@@ 1(x),/). Then X is homeomorphic to M.

6. If A is a submanifold of M, then A is a (relatively) closed submanifold of an open
submanifold of M.

7. Let G, « R x Rbethegraphofy =[x}, 0< A< . lfreZandr< il <r+1
then G, is a submanifold which is €7 but not C*!. What if 4 is an integer?

8. An atlas of class C" on a set X is sometimes defined as a collection of bijective maps
from subsets of X to open subsets of R” such that all coordinate changes are C". Given
such an atias @, there is a unigue topology on X making & a C" atlas (as defined in
the text) on the space X.

9, Let C be the set of countable ordinal numbers. Let M = C x [0,c01\{0,0}. Give
M the total ordering

e <@ty if a<a or a=ao and t <t

Endow M with the order topology. Then AM is a 1-manifold which is Hausdorff but not
paracompact, called the long line. M has a C* differential structure but no Riemannian
metric. (See Koch and Puppe [ 1], Kneser and Kneser [1].)

10. Let L be the quotient space obtained from (R x 1) w (R = 0) by identifving (x.D)
with (x,0)if x # 0. Then L is a nonHausdorff 1-manifold. called the line with rwo origins,
It has a C* differential structure.

*1l. Let U c R? be a nonempty open set. Suppose given a (7 (r > 0} vector field
on U without zeros, such that each integral curve is closed in L. Let M be the identi-
fication space obtained by collapsing each integral curve to a point. Then M isa C
1-manifold, which can be non-Hausdorfl. [Hint: Use small intervals transverse 10 the
integral curves to construct charts.]

**12. A manifold is metrizable, and has a complete metric. if and only if it is paracompact
and Hausdorfl. A connected metrizable manifold has a countable base. But there is a

gonnectqd separable Hausdorfl 2-manifold which is not paracompact, (the double of M
in Exercise 7, Section 4.6).

**13. A paracompact manifold is an absolute neighborhood retract (see Hanner [

2. Differentiable Maps and the Tangent Bundle

From now on we shall frequently suppress notation for the differential
structure on a manifold M.

Let M and N be " manifolds and f:M — N a map. A pair of charts
(@,U) for M and (y, V) for N is adapted to fif f{U) < V. In this case the map

Yo~ lip(U) = (V)

is defined; we call it the local representation of f in the given charts. at the
point x if xe U.

The map f is called differentiable at x if it has a local representation at x
which is differentiable. This definition makes sense since a local representa-
tion is a map between open sets in Cartesian spaces. Similarly, f is differen-
tiable of class C” if it has C” local representations at all points. —

If f is C" then every local representation is C". To see this, let (p.U) and
{,V) be a pair of charts adapted to f, and suppose f is C". To prove yfo ™',
let y € @(V) be any point; put x = ¢~ '(y). Let (9,.L7) and (¥,.¥,) be an
adapted pair of charts giving f the C local representation o f 5! at x. By

replacing U, and ¥, by smaller open sets, if necessary. we can arrange that
Uy « Uand ¥, = V. Then '

Yo ' = s e Ses Neor ')

in (U ). The first and third maps on the right are C” since they are coordinate
changes. Hence yif o~ '|(U,) is the composition of " maps and so is C".

This proves that f¢ ' is C’ in some neighborhood of every point. and so
itis C".
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Let f:M — Nandg:N — P be C" maps between (" manifolds. It is easy
to verify, using local representations, that the composition gf:M — P is
also C". The identity map and all constant maps are C". There is evidently a
category of C" manifolds and C" maps.

An isomorphism in the C” category is called a C* diffeomorphism. (Ifr = 0
this means a homeomorphism.) Explicitly, a C* diffeomorphism .M — N
is a C" map between C” manifolds M and N which is a homeomorphism, and
whose inverse f ~1:N — M is also of ctass C". If such a map exists we call M
and N C’ diffeomorphic manifolds and write M =~ N. This is the basic equiv-
alence relation of differential topology.

Lest the reader lose heart at the prospect of an infinite sequence of equiv-
alence relations, one for each r, we hasten to point out that there is no essential
difference between C"and C*for 1 € r < 5 < oo (oreven s = o, but that is
much more difficult). In Chapter 3 we shall see that every C" manifold is
diffeomorphic to a C* manifold, and the latter is unique up to ¢ diffeo-
morphism; and any C” map can be approximated by C* maps.

There is, however, an unbridgeable gap between €° and C!. In fact one
of the most fascinating topics in differential topology began with the dis-
coveries by Kervaire {1] and Smale [1] of compact manifolds having no
differential structure whatever. (It is known that such a “nonsmoothable”
manifold must have dimension at least 4; explicit examples are known in
dimension 8.)

A basic task of differential topology is to find methods for deciding
whether two given manifolds diffeomorphic. Of course diffefomorphic mani-
folds are homeomorphic, and have the same homotopy type. Therefore the
diffcomorphism problem usually takes the form: what more do we need to
know about two manifolds, in addition to their having the same homotopy
type, to guarantee that they are diffeomorphic?

Often a differential invariant turns out to be a topological or homotopy
type invariant. (The classic example is the sum of the indices of zeros ofa
vector field on a compact smooth manifold, which turns out to equal the
Euler characteristic.) Such an invariant cannot distinguish between non-
diffeomorphic manifolds which are homeomorphic. On the other hand,
when a differential invariant is a homotopy invariant as well, it is easier to
compute.

One of the most important differential invariants is the tangent bundle.
In later chapters we will study the tangent bundle in some detail; here we
merely give its definition (as a manifold) and the definition of the tangent
of a map. '

Let (M,®) be a C*! manifold, 0 < r € w, where 0 + 1 = % and
o + 1 = w, with @ = {@;,U;};.,. Intuitively speaking, a “tangent vector”
to M at x € M is simply a vector in R" together with a chart which identifies
each point near x with a point of R". '

A tangent vector should be an object independent of any particular chart,
however, so we make the following definition. A tangent vector to M is an
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equivalence class [ x,i,a] of triples

(xigleM x A x R"
under the equivalence relation:
[xi,al = [»jb
ifand only if x = y and (/4]
Digoi Nedx))a = b.

In other words, the derivative of the coordinate change at ¢,(x) sends a to b.

That thi.s.is an equivalence relation follows from the rules for derivatives of
compositions and inverses. '

The set of all tangent vectors is TM, the tangent bundle of M. The map
P=py:TM =+ M,
[xja]— x

is well defined. For any subset A = M we put p~(A) = T, M: also p it =

M, forxeM IfTU « M is open then (U,®|U) is also a ¢ ** manifold. and
we make the harmless identification T,M = TU.

For any chart (¢,,U,) € ¢ there is a well defined bijective map

To:TU;, > oU;) x B"c B x R,
[x.i.a] — (@i(x).q).
The map l
(TeXTe)™ " :dU;n Uy x B > U, x U)) x R"
is the homeomorphism

(v.a) = (@0 '(9),Dle 7 M.

It follqws that TM has a topology making each Te, a homeomorphism.
and thgs topology is unique. Moreover, since (T, Tp;)"" is a € diffeo-
morp_hnsm, the set of charts {Ty, TU,},. , is a C" atlas on TM. In this way
TM is a C" manifold. The projection map p: TM — M is C". The charts
(Tg;, TU,} are called natural charts on TM.

Let x € U;. The map Ty,,: M, — R", defined as the composition
M, = TU D g(U) x B = R

is a bijection; hence it induces an n-dimensional vector space structure on
M,. This structure is independent of i, since if xe U,

(To;XTow) ™" = Do Neox)

which is a linear automorphism of R*. In this way M, becomes a vector space,
the tangent space to M at x. Thus TM is the disjoint union of the vector spaces

M_x. It is a bundle of vector spaces, or “vector bundle.” This aspect of TM
will be emphasized in later chapters.
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The simplest kind of tangent bundle is that of an open set W < R4 In
this case we identify TW with W x R? via the inclusion chart ¢: W — R?
'fmd the corresponding natural chart on TW. The projection TW — W is
just the natural projection W x RY —» W. If M is a submanifold of R we
can think of tangent vectors to M as arrows and M, as a plane, as in

] igl.ll'e l“ 2.
D’
/ \/

Figure 1-2. Tangent vectors to M = §2 < B3

Let ffM - NbeaC* ' map,0<r<wA C'map Tf:TM - TN is
defined as follows: a local representation of Tf in natural charts on TM and
TN .is the derivative of the corresponding local representation of f. More
explicitly, let @,: U, - R™, ;. V; = R be charts for M, N with FHUARSRA
An application of the chain rule shows that the " map

{Tf)ij:TUi =TV,
[X,i,a] = [f(t)sjaD('lefq)t_ 1)((,9,-)(}{1]
is independent of i, j. Thus there is a well defined map Tf: TM — TN which
coincides with (Tf)ijon TU,
If f(x) = y then Tf maps M_ into N »» and the restriction of Tf is a linear
map: T, /"M, - N,.
In the natural charts this is just the derivative at x of the corresponding

local representation of f. Thus T, f may be thought of as the derivative of
S at x. Note, however, that its domain and range depend on x.

Using natural charts one sees that the diagram

™ Ul > TN
M PN
L3 J,
M : »N
/
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is commutative, that is, f < pyy = py© Tf. Likewise.if f:M — Nandg: N — Q
are C"*! maps then the diagram

TN
T/, Tg
T™M a1 >TO
commutes: in other words
Tlg - )y = (Tg) = (Tf}.
And clearly
T 15[ = ITM'

(The identity map of any space S is denoted by 15.) These last two properties
may be summarized by saying that the assignments M — TM, f— Tf
define a covariant functor T from the category of C"** manifolds to the
category of C" manifolds.

IfMc Nisa C*! submanilold, r 2 0, let j:M — A be the inclusion
map. Then 7j:TM — TN is a (" embedding and the image of TM isa C
submanifold of TN; this is seen by using natural charts derived from sub-
manifold charts. Thus we identify TM with a " submanifold of TXN.

In the special case M — R*, TM is a submanifold of T3¢ = R? x Re.

A tangent vector to M is sometimes defined as an equivalence class of
C! maps f:[0,a) - M, where f is equivalent to g:[0,b) — M if f(0) = g{0)
and for some (and hence any}) chart (¢;,U;) at f(0),

D(e; f)0) = D{ig)0).

To such an equivalence class we associate the tangent vector (as defined
previously)

[£10)i.D{e; S HO}.

Conversely, to a tangent vector [x.i,a] we associate the equivalence class of
the C' map

J:[0a) - M,
S0 = o Hedx) + 1a),

which is defined lor sufficiently small ¢ > O.

These processes are inverse to each other; the two definitions of tangent
vector are equivalent. But the first definition works better for manifolds with
boundary.

We introduce two special notations which extend standard usage from
calculus, If J < R is an interval and f:J — M is a C! map. for each xe J
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we denote by f'(x) the image under Tf of the tangent vector
(xDeTJ=J xR

If U< R"is open and f:M — U is C, for each x e M we define the
linear map

Df, = Df(x): M, - R"
to be the composition
MYETU=Ux R > Rr"

Fxercises

L. Let M, N be C manifolds. A map f:M — N is C" il and onlyif fog:W = NisC
for every C" map g: W — M where W is open in some Euclidean space.

'.2. Let M be a C" manifold, r > 1, and A © M a connected subset, Suppose that there
isal” retraction f:M — A, ie. f|A = identity. Then A is a C" submanifold. (A con-
verse 1§ proved in Chapter 4.} [Hint: / has constant rank near Al

3. Let A4, M, M, be C" manifolds. Amap f:4 - M, x M = i
if and only if each map f;: 4 -+ M, is C. l » /6 = S s €

4. The map G, , - G, ,_,, E s E* (Exercise 1, Section 1.1} is a C* diffeomorphism.

5. Let f:R" - R* be any continuous map. There exists a C* differential structure ¢
on B” x R* such that the map
g:R" - (R* x R* o),
x =+ {x,f(x)),
is a C* embedding,

‘_6. A connected, paracompact Hausdorfl I-manifold is diffeomorphic to the circle if it
1s compact, and to the line if it is not compact.

7. Let Q be a positive definite quadratic form on R". Then @~ '(y) is diffeomorphic to
S 'orally > 0.

"'8. Every nonempty starshaped open subset of R is C= diffeomorphic to R*. (M < R"
is starshaped about some x € R” if it contains the entire closed interval in R* from x
to each point of M)

9. A C" map which is a C' diffeomorphism isa diffeomorphism.
10. (a) The manifold G, , of 2-dimensional subspaces of R? is diffeomorphic to real
projective 2-space P2,

*(b) SO(3) = P3.
) ‘.(c) The manifold of oriented 2-dimensional subspaces of R* (supply the definition)
is diffeomorphic to §? x §2.

*11. A subset of R? which is homeomorphic to 5! is a €° submanifold. (This requi
Schoenflies’ theorem.) ( e

12. For each n = O there is a diffecomorphism
(TS x R~ 5" x R,

(Hint: there are natural isomorphisms T.5" @ R ~ R+

3. Embeddings and Immersions M|

13. There is a natural diffeomorphism
TM x Ny~ TM x TN.

14. Let G = R x R be the graph of ¥y = |x|". Then G has a C* differential structure
making the inclusion G — R x R a C* map.

**15. (M. Brown [1]) Let M be an n-manifold of the form | | M,. where cach M, = R*

k=]

and M, =« M,,,. Then M = R".
3. Embeddings and Immersions

Let f:M — N be a C' map (where M and N are " mantfolds. r > 1).
We call f immersive at x € M if the linear map T, f: M, — N, is injective,
and submersive if T, f is surjective. If f s immersive at every point of M it is
an immersion; if it is submersive at every point, [ is a submersion.

We call f:M — N an embedding if f is an immersion which f maps M
homeomorphically onto its image. To indicate this we may write f:M & N,

3.1, Theorem. Let N be a C" manifold. r 2 1. A subset A c N is a 7
submanifold if and only if A is the image of a C" embedding.

Proof. Suppose A is a " submanifold. Then 4 has a natural (7 differ-
ential structure derived from a covering by submanifold charts. For this
differential structure the inclusion of 4 in N is a C* embedding.

Conversely, suppose f: M < Nisa " embedding. f(M) = A, The prop-
erty of being a C" submanifold has local character, thatisitistrueof 4 = N
if and only if it is true of 4; < N, where | A4;] is an open cover of A and each
N; is an open subset of N containing A,. It is also invariant under C diffec-
morphisms, that is. 4 < N is a " submanifold if and only if gild) = N isa
C submanifold where g:N — N’ is a " diffleomorphism (or even a
embedding).

~ To exploit local character and invariance under diffeomorphism. let

¥ = {¢;:N; - R"};_, be a family of charts on N which covers A. Then find
an atlas @ = {¢;:M; - R™},., for M such that f(M)) = N, (re-indexing ¥
if necessary). Since [ is an embedding, ¢ and ¥ can be chosen so that
fIiM) = A n N, By invariance it is enough to show that J, fiM,) = T 15
a C" submanifold. Put

Ui, = @ilM)) =« R,

fi=vifor U - R
Then f; is a C" embedding and f(U,)) = ¢, f(M,). Thus we have reduced the
theorem to the special case where N = R”, M is an open set U < B™, and
[:U S R"is a C" embedding. In this case a corollary of the inverse function
theorem implies that there is a (7 submanifold chart for (R* f(L')) at each
point of f{U).

QED
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The theorem just proved exhibits the interplay between local and global.
The statement of the theorem asserts that an object defined by local
properties—a submanifold—is the same as an object defined in global terms,
namely the image of an embedding. The first part of the proof just collates
the local submanifold charts (restricted to A) into a differential structure on
A; this makes the inclusion map of A4 into an embedding.

In the second part of the proof a new idea appears: the passage from
infinitesimal to local. The condition that f:M — N be an immersion is an
“infinitesimal” condition in that it refers only to the limiting behavior of f
at each point. The inverse function theorem is a link between an infinitesimal
condition and a local condition (by which we mean a statement about the
behavior of f on whole neighborhoods of points).

Before stating the next theorem we make some important definitions.
Let f:M — N be a C! map. We call x € M a regular point if f is submersive
at x; otherwise x is a critical point and f(x} is a critical value. If y € N is not
a critical value it is called a regular value, even if y is not in f(M).2If y € f(M)
is a regular value, f ~'(y) is called a regular level surface.

The following regular value theorem is often used to define manifolds.

3.2. Theorem. Let f:M — N be a C" map,r 2 1. If y € f(M) is a regular
value then { ~(y) is a C" submanifold of M.

Proof. By using local character and invariance, as in the proof of
Theorem 3.1, we reduce the theorem to the case where M is an open set in R™
and N = R". Again the theorem follows from the inverse function theorem.

QED

Theorems 3.2 and 3.1 are somewhat dual to each other under the vague
dualities immersion-submersion and kernel-image, regarding f~'(y) as a
“kerne!” of f. The duality is flawed because in Theorem 3.2 the implication
is only in one direction. In fact, it is not true that every submanifold is the
inverse image of a regular value; see Exercise 11.

An important extension of the last resuit concernsa map f: M - N which
is transverse to a submanifold A = N. This means that whenever f{x) =
y€ A, then

A, + T f(M) = N,;

that is, the tangent space to N at y is spanned by the tangent space to A at y
and the image of the tangent space to M at x.

3.3. Theorem. Let f*M — N bea C" map,r > 1 and A < N a C" sub-
manifold. If f is transverse to A then f~*(A) is « C" submanifold of M. The
codimension of f ~(A) in M is the same as the codimension of A in N.

2 This is in accordance with the principle that in mathematics a red herring does not have
to be either red or a herring.

Proof. It suffices to prove the theorem locally. Therefore we replace the
pair (N,A) by (U x V,U x 0) where U x ¥ = R? x R!is an open neigh-
borhood of (0,0). it is easy to see that the map f:M — U x V is transverse
to U x 0 if and only if the composite map

gMLluxvivy

has O for a regular value (Figure 1-3). Since f~ YU x 0) = g~ '(0) the
theorem follows from Theorem 3.2,

QED
S(M}
f. /\\/-\ A
w v amv.y —
UxV V
Figure 1-3. =xf = 4.

We shall see in the Chapter 3 that any map can be approximated by maps
transverse to a given submanifold.

The next result makes the abstract notion of manifold somewhat more
concrete.,

3.4. Theorem. Let M be a.compact Hausdorff manifold of class C,
1 < r < . Then there exists a C embedding of M into B for some q.

Proof. L.et n = dim M be the dimension of M. Let D*(p) = R* denote
the closed disk of radius p and center 0.% Since M is compact it has a finite

atlas, and one easily finds an atlas {g,,U;}7=, having the following two
properties: for ali i

U} o DY),
and

M = ] Int o] (DY1)).

Let A:R" — [0,1] be a C* map equal to 1 on D*(1) and 0 on R* — D*2).
(Such a map is constructed in Section 2.2.) Define C* maps

M = [0,1],

Ao @ on UI'
A‘- =
0 on M- U

* This means that D*{p) = {x e R*:|x| & p}; the unit disk is D* = D).



It follows that the sets
B, = A7) e U

cover M.
Define maps
fiiM = R,
Ai(x)p;(x) if xeU;

Jix) = {0 it xeM-U,
Put

g = (fA)M >R x R = R"*!,
and

g= (9’1,--.,9,,,):M—> R x . x T — Rmn+ 1)

Clearly g is C". If x € B, then g;, and hence g, is immersive at x, so g is an
immersion. To see that g is injective, suppose x % y with yeB. If xe B,
then g(x) # ¢(y) since f|B; = @B, If x ¢ B; then 4(y) = 1 # A(x), so0
g(x) # g(y). Therefore g is an injective C" immersion. Since M is compact
g 18 an embedding,

QED

The preceding proof follows a globalization pattern that is typical in
differential topology: a global construction (the embedding) is made by
piecing together local objects (the charts ¢,). In this case the local embedding
is implicit in the definition of manifold, but often the local construction is
the more difficult part.

In most problems one runs into an “obstruction” to globalizing. If that
happens, a successful theory consists of first formalizing the obstruction as
a number, or other algebraic object, and then relating it to other invariants.
We shall see many examples of this process.

The rest of this section is devoted to the following sharpening of Theorem
3.4, known as the “easy Whitney embedding theorem™;

3.5. Theorem. Let M be a compact Hausdorff C" n-dimensional manifold,
2 <1 < 0. Then there is a C" embedding of M in R*"*!,

Proof. By Theorem 3.4, M embeds in some R If ¢ € 2n + 1 there is
nothing more to prove; hence we assume g > 2n + 1. We may replace M
by its image under an embedding. Therefore we assume that M is a C' sub-
manifold of R? It is sufficient to prove that such an M embeds in R?~!, for
repetition of the argument will eventually embed M in R2"*!,

Suppose thenthat M < RY, ¢ > 2n + 1. Identify R*~ ! with {xe R%:x, = 0).

IfveR? — B! denote by £,:R* » R~ ! the projection parallel to v. We
seek a vector v such that

SIM:M o R

is a C* embedding. See Figure 1-4. We limit our search to unit vectors.

o
71 .
- /

Figure 1-4. Projecting M < R into R*"".

-1

What does this require of »? For £|M to be injective means that o is not

parallel to any secant of M. That is, if x, y are any two distinct points of M,
then

) .

More subtle is the requirement that £ |M be an immersion. The kernel of the
linear map f, is obviously the line through v. Therefore a tangent vector.
ze M, is in the kernel of T, f, only if z is parallel to v. We can guarantee that
/.|M is an immersion by requiring, for all nonzero z € TM:

z
{2) v#E—=

J2
Here 2 is identified with a vector in R® as explained in Section 1.2; thus |2
makes sense.

Condition (1) is analyzed by means of the map
oM xM—4-8""
x—Y
oxy) = ——
PR
where 4 (or M} is the diagonal:

4= {ab)eM x M:a = b}.

Clearly v satisfies (1) if and only if v is not in the image of 6. We consider
M x M — 4 as an open submanifold of M x M; the map ¢ is then C.
Note that

dim(M x M — 4) = 2n < dim S*" .
The existence of a v satisfying (1) follows from the following result:

Lemma. Letg:P — Q beaC' map. Ifdim Q > dim P then the complement
of the image of g is dense in Q.



The proof of the lemma, which involves a different set of ideas, is post-
poned to Chapter 3. In the case athand P = M x M — dand @ = §771.
Assuming the lemma, we know that every nonvoid open subset of st
contains a point v which is not in the image of 6.

To analyze condition (2) we note that it holds for all ze TM provided
it holds whenever |z| = 1. Let

T\M = {ze TM:|z| = 1}.

This is the unit tangent bundle of M. 1t is a C"~! submanifold of TM. To see
this, observe that

T M= vy }{1)
where
viTM - R,
v(z) = \z]z.

Since v is the restriction to TM of the C* map

TR? - [,
P |z|2,

itis C"~'. 1t is clear that 1 is a regular value for v; for if v(z) = 1 then

d

o v(tz) » # 0.
Hence v~ (1) is a C"~! submanifold by Theorem 3.2. It is easy to see that it
is compact because M is compact,

Definea ¢! map 1: T,M — 577! as follows. Identify TM with a subset
of M x R%; then T\M isasubsetof M x $97!, Define t to be the restriction
to T, M of the projection onto 577 '. Geometrically 1 is just parallel transla-
tion of unit vectors based at points of M to unit vectors based at 0.

Clearly 7 is C"~!. Noting that

dim T, M = 2n — 1 < dim §%7!,

we apply the lemma to conclude that the image of 7 is nowhe_re dense. Sipce
T, M is compact, it follows that the complement W of the image of 7 1s a
dense open set in 8771, Therefore W meets $4 n (R* — R*™ ') in a nonempty
open set W,. As we saw previously W, contains a vector ¢ whic_h is not in t.he
image of a. This vector v has the property that fiM:M — R?isan injective
immersion. Since M is compact and Hausdorfl, f;|M is also an embedding.

QED

There are some remarks to be made concerning the theorem just proved.
It is easily converted to an approximation theorem: given any C' map
g:M - R k= 2n + 1, and any & > 0, there is a " embedding f:M — R*
such that |f(x) - g(x)| < ¢ for all x e M. To prove this, let h*M — R*bea

C" embedding for some s. Then the map
H=gx h:M -+ R x 5

is a " embedding, and g is the composition of H with the projection
R x R — R* Identifying M with H(M) c RB***, we see that it suffices
to approximate = by a C" map which restricts to an embedding of M. Now
= is the composition of linear projections

R BT REx R oo o R x R - RE

By induction on s it suffices to prove thatif M = R*** any linear projection
into R***~? can be approximated by a linear projection which embeds M.
provided k + s > 2n + 1. This is exactly what was proved.

Whitney [4] showed that Theorem 3.5 can be improved: for n > 0. every
paracompact Hausdorff n-manifold embeds in R**: moreover it immerses in
R**~!if n > 1. However, the approximation version cannot be imprgved:
if ' is mapped into R? so that the image curve crosses itself like a figure 8,
no sufficiently close approximation can be injective.

- The requirement r = 2 in Theorem 3.5 can be weakened to r = 1. This
follows from the result in the next chapter that every €' manifold has a com-
patible C* differential structure. In fact Theorem 3.5 is true for C°® manifolds,
and even for compact metric spaces; see for example, the books by Pontryagin
[2] or Hurewicz and Wallman [1]. in the other direction. Theorem 3.5 is
also true for real analytic manifolds; see Chapters 2 or 4. Our proof shows

_that if M has a C* embedding in some RY, it has one in R2"* 1.

We conclude this section with the observation that Theorem 3.5 can be
improved by one dimension if we want only an immersion. For we may
assume M < R**! and can then find v € $** — 8" satisfying (2). Thus we
see that every compact Hausdorff C* n-manifold, r > 2, has a C" immersion
into R*". In fact every C" map M — R?" can be approximated by immersions.

More refined approximation theorems of this type are given in Theorems
3.2.12 and 3.2.13. More sophisticated proofs are given in Section 2.4 and at
the end of Chapter 3.

Exercises

1. An injective immersion might not be an embedding, since there is an injective immer-
sion of the line in the plane whose image is 4 figure 8. However. an injective immersion
of a compact Hausdorff manifold is an embedding.

*2. Let M be a connected Hausdorfl noncompact ¢ manifold. r 3 0. Then there is a
closed C" embedding of the half line [0.x) into M.

3. (a) There is an immersion of the punctured torus ' x §' — !point} in B [Hint:
spread out the puncture.]

*(b) There is an immersion of the punctured n-torus. {$'" — 'point!, in B
4. Any product of spheres can be embedded in Cartesian space of one dimension higher.

*5. There is no immersion of the Mdabius band in the plane.



6. The line with two origins {see Exercise 10, Section [.1) immerses in R.
7. T,5% (the unit tangent bundle of §) is diffeomorphic to P*.

8. Let M be a compact C ! manifold. Every C' map M — R has at least two critical
points.

9. Let f:5' -+ Rbea C' map and v € R a regular value.
{a) f~'(y)has an even number of points
(b) If ™ *(y) has 2k points, f has at least 2k critical points.
*(c) Let g:5* — R be a C' map and y € g(S?) a regular value. If g~ (y) has k com-
ponents then g has at least k + 1 critical points. [Use the Jordan curve theorem.]

*10. Every C* map f:T? — R has at least 3 critical points. [T? = §' x S'is the torus,

If f has only a maximum p, and a minimum p_ let U be a simply connected neighbor-
hc;od of p_. Let ,:T? > T2, t € R, be the gradient flow of f. Then one can show that
T? - p, = {Ji>0 @AU). This makes T — p, simply connected.]

11. (a) Reparding 57 as the equator of §2, we obtain P* as a submanifold of P2. Show
that P! is not a regular level surface of any C' map on P2. [Hint: no neighborhood of

P! in P? is separated by P'.]
(b) Generalize (a)10 P" < P** 1,
12. A surface of genus p is a 2-dimensional manifold homeomorphic to the space

obtained by removing the interiors of 2p disjoint 2-disks from $* and attaching p
disjoint cyclinders to their boundaries (Figure 1-35).

*(a) For each nonnegative inte§er p there is a polynomial map f,:R* — R having
0 as a regular value, such that £, *(0) is a surface of genus p. For example:

Solxp2) = x* + 2 + 22 — 1
Sy =+ -4 + 22~ 1
Sl pz) = [4x%(1 — x) - P + 2 - L

=%

Figure 1-5. Orientable surfaces of genus p = 2.

[Consider functions of the form (F(x,y))? + z* — £ where Fix,y) = 0 defines a closed
curve in R? with p — 1 crossings, p > 1.]
*#**(b) What is the minimal degree of £,?

*13. A C! surface of genus p has a C! map into R which has exactly 3 critical points.
forallp = 0.

*14, The proof of the compact embedding Theorem 3.4 can be adapted to show that
every paracompact Hausdorff manifold is homeomorphic to a closed subset of a Banach
space. It follows that such a manifold has a complete metric.

*15. P2 embeds in R*. [Think of P? as the union of a Mobius band M and a disk D.
Embed M and D in R with 2 common boundary circle $*; then push them out into
opposite sides of R* in R* leaving 5* fixed.]

16. Embeddings of P* in S*** can be constructed as follows {Hopf [1]. James [1]1
Let h:R"*! x R"™! —» R"***! be a symmetric bilinear map such that hix.y) # 0 if
x # Oand y # 0. Define g: 5" — §7** by gix) = h(x.x)/}h(x.x)).

(@) gi(x) = g(v)ifand onlyif x = +y.[Hint:consider h(x + iy.x — Zy)ilhix.x) =
ihiy,y).] _

{b) g induces an analytic embedding P* — S"*%.

{¢) P"embeds in 57" for all n. [Hint: let 1:R** 2 x R**P . R0

M‘tOH'--vxm}‘O’"‘s."n)=(:0!"":2l)

wherez, = ¥ xy;.]

i+j=k

4. Manifolds with Boumdary

Our definition of manifold excludes many objects on which differentiable
maps and tangent vectors are naturally defined; the closed unit ball in
D" < R"is an example. Many such objects are “manifolds with boundary.”
a concept we now explain.

A halfspace of R", ot an n-halfspace, is a subset of the form

H = {xeR:ix) = 0}

where 2:R" — R is a linear map. If 1 = 0 then H = R"; otherwise H is
called a proper halfspace. If H is proper, its boundary is the set ¢H = kernel /.
this a linear subspace of dimension n — 1. If H = R" we set cH = (J.

We now extend the definition of chart on a space M to mean a map
@:U — R" which maps the open set U < M homeomorphically onto an
open subset of a halfspace in R". This includes all charts as defined eartier.
since R"is itselfa halfspace; and many new charts as weil. Using this definition
of chart, we systematically extend the meaning of atlas, C” atlas. (7 differential
structure, and finally, C" manifold.

Let (M,®) be a C" manifold (in the new sense). Suppose (¢,U)e @ and

- @(U)is an open subset of a proper halfspace H « R". Ifxe ¢~ YE&H) we say

x is a boundary point for the chart (o,U). This condition is independent of the
chart. This is the same as saying that a coordinate change cannot map an
interior point of a halfspace onto a boundary point. If r > 1 this follows
from the inverse function theorem. If r = Q it follows from “invariance of
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domain”. This is the classical and difficult topological theorem which states
that a subset of R” is open if it is homeomorphic to an open set; see Hurewicz
and Wallman [1] for example.

The boundary of the manifold (M,®) is defined to be the set of points
x € M which are boundary points for some (hence any) chart; the boundary
is denoted by oM.

If (M,®) is a C’ manifold, a C" atlas for M is obtained as follows. Let
(,U)e®and UN M # . Let H c R be a halfspace containing @(U)
such that U n 8M = ¢~ 1(0H). Let L:dH — R"~" be any linear isomorphism;
then (Lo,U n dM) is a chart on oM. The set of all such charts is a C” atlas
on &M. In this way 8M is a C" manifold of dimension n — 1.

If 3M # & we call M a d-manifold. 1f OM = & we call M a manifold
without boundary.

The definition of C" map between C” manifolds is unchanged, as are
the definitions of tangent vectors and the tangent bundle (if r = 1). The
concepts of immersions, submersion, diffecomorphism and embedding go
through as before.

Some care is necessary in defining “submanifold.” We want, for example,
a closed disk to be a submanifold of the plane. But what what about a
closed disk contained in a halfspace in R®, whose boundary meets the
boundary of the halfspace at one point? Or even worse, in a Cantor set?
These are images of embeddings, and should be “submanifolds.”

We first redefine C° submanifold of R" of dimension k. This is now to
mean a subset ¥ c R" such that each point of V belongs to the domain
of a chart : W — R" of R, such that

Vo W=y '(H)

for some k-halfspace H ¢ R* < R".

Now let M be a C" manifold, with or without boundary. A subset A = M
is a C* submanifold if each point of A belongs to the domain of a chart
@:U - R" of M such that (U n A) is a C" submanifold (in the sense just
defined) of R".

It is useful to have a term for a submanifold 4 « M whose boundary
is nicely placed in OM. We call A a neat submanifold if 84 = 4 n dM and
A is covered by charts (@,U) of M such that

AnU = 'R

where m = dim A. (See Figure 1-6.) A neat embedding is one whose image
is a neat submanifold.

4. Manifolds with Boundary k)|

Figure 1-6. A, is neat; A; and 4, arc not.

If A is a submanifold of M and 84 = & then A is neat if and only if
A~ M = @. In general, A is neat if and only if 84 = A ~ dM and {for
r > 1) A is not tangent to M at any point x € $4; that is, A, ¢ (@M),.

The regular value theorem for d-manifolds takes the following form:

4.1. Theorem. Let M be a C d-manifold and N a C manifold, r > 1.
Let f:M — N be a C map. If ye N — 3N a regular value for both f and
J|éM, then f~'(y) is a neat C submanifold of M.

A generalization of Theorem 3.3 to d-manifolds is:

42. Theorem. Let A = N be a C submanifold and f:M — N a C map.
Suppose A = (& and f, f|{OM are both transverse to A. Then f~ MisaC
submanifold with boundary (f~'A) 0 OM.

The proofs of Theorems 4.1 and 4.2 are left to the reader.

The embedding Theorems 3.4 and 3.5 go through with only minor changes.
With some care one can prove:

4.3. Theorem. Let M be a C n-dimensional manifold, r > 1, which is

compact Hausdorff, Then there is a neat C embedding of M into a halfspace
Of R2n+ l-

The remarks following Theorem 3.5 are applicable here as well.

Exercises
1. The cartesian product of two C® #-manifolds is a £-manifold.
2. A C! map M — N takes regular pointsin M — oM into N — éN.

3. Let M be the closed upper halfplane. For any C! map g:R — R, the map f{x,y) =
y + g(x), from M 1o R, has every point of M for a regular point. Set

o) = e W sin(lyx) i x#0
“lo i x=0

Then f:M — R is C®, 0 is a regular value, but f~ {0} is not a manifold.
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4. Let A © N be a neat C" submanifold, r > 0. Let f:{M,0M) - (N,0N) be a C" map.
Suppose every point of A [respectively 4] is a regular value of f[resp. f:0M — GN].
Then f~{4) is a neat C" submanifold of M.

5. Let f:M — R be C*, r > 0. Suppose f is constant on each component of dM. Let
a and b be regular values. Then the sets £~ Ya), £~ '[ab), /™ '(ab], and £~ [a,c0)} are
' submanifolds of M.

*6. Therc is a C* map f:D° — D? with 0 € D?* as a regular value, such that f~1(0}) is
a knotted curve (Figure 1-7).

Figure 1-7.

7. (a) The double ofa d-manifoid M is the identification space obtained from (M x 0) v
(M x 1) by identifying (x,0} and (x,1) if x € M. The double is a C* manifold without
boundary, of the same dimension, in which M is embedded.

8. If JM = (¥ then M is a boundary, ie, M = ¢N for some d-manifold N. However,
if M is compact, it may be impossible to choose N compact. [Suppose M has dimension

0]

9. A l-dimensional connected paracompact Hausdorff -manifold of class C,0 € r €

=

o, is € diffeomorphic to ¢ithet a closed, or a half open, finite interval. (This is also
true, but hard, for r = w.)

10. Diffeomorphic manifolds have diffeomorphic boundaries.

11. A C! manifold is orientable if it has an atlas such that all coordinate changes have

positive Jacobian determinants at every point. If M is orientable so is OM; but the
converse can be false.

12. A subset Q of a Cartesian space R" is an orthant if there is a linear isomorphism
L:R* =~ R™ x --- x R" and halfspaces H; « B" such that L{Q) = H, x -+ x H,.
There is a category of “C’ manifolds with convex corners” whose charts are homeo-
morphisms onto open subsets of orthants. This category contains all C" manifolds,
with and without boundaries, and is closed under Cartesian product.

5. A Convention

Manifolds that are not paracompact are amusing, but they never occur
naturally. What is perhaps worse, it is difficult to prove anything about
them. Non-Hausdorff manifolds occasionaily turn up (see Exercise 11,
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Section 1.1) but again it is hard to prove anything interesting. It is convenient
to deal only with manifolds having a countable number of ¢omponents.
We therefore adopt the following convention:

All manifolds appearing henceforth are assumed to be paracompact, with
a countable base, and all spaces Hausdorff, unless there is an explicit statement
to the contrary.

Of course any space or manifold we construct must be shown to have
these properties; the proof is usually trivial,



Chapter 2

Function Spaces

The statement sometimes made, that there exist only analytic functions in
nature, is in my opinion absurd.

—F. Klein, Lectures on Mathematics,
1893

Many problems in differential topology can be rephrased as questions
about function spaces; this often leads to new insights and greater unity.
For example, in Chapter 1 we constructed “by hand” an embedding of any
compact manifold M in some R; in this chapter we shalf exploit the topology
of a space of maps of M to N to prove that any map M — N can be
approximated by embeddings if dim N > 2 dim M.

The most useful topology on the set C(M,N) of C" maps from M to N
is the strong topology. Roughly speaking, a neighborhood of f in the strong
topology consists of all maps g which are close to f together with their
derivatives of order r. The degree of closeness is specified by arbitrary
positive numbers controlling the closeness of derivatives of local repre-
sentations of fand g.

The weak (or “C" compact-open™) topology on C(M,N) controls the
closeness of maps only over compact sets. When M is compact it is the
same as the strong topology.

Section 2.3 briefly indicates the changes needed to extend the approxi-
mation theorems to d-manifolds and manifold pairs.

In Section 2.4 jets are defined and used to give an indirect definition of
the weak and strong topologies. The density of embeddings is proved again
by exploiting the Baire property. The last section discusses, without proofs,
various results on analytic approximations.

As deeper approximation and globalization techniques are developed
they are used to improve the Whitney embedding and immersion theorems
of the preceding chapter. Thus the density of immersions and embeddings
is re-examined in Sections 2.1 and 2.2 and again in Section 2.4. The final
form of the density of embeddings is Theorem 2.13.

1. The Weak and Strong Topologies on C"(M,N)

If M and N are C" manifolds, C"(M,N) denotes the set of C" maps from
M to N. At first we assume r is finite,

The weak or “compact-open C™ topology on C'(M,N) is generated
by the sets defined as follows. Let f € C"(M,N). Let (p,U), (,V) be charts

14

15

on M, N;let K = U be a compact set such that f(K) = V:let0 < ¢ < co.
Define a weak subbasic neighborhood

(n (S5 (@ U)W, V).K 6)
to be the set of " maps g:M — N such that g(K) < V and

[D*6ife ™ Hx) — DMbge™'Xx)| < &

for all xe @(K), k = 0,...,r. This means that the local representations
o: fand g, together with their first k derivatives, are within ¢ at each point
of K.

The weak topology on C'(M,N) is generated by these sets (1); it defines
the topological space Cy(M,N). A neighborhood of f is thus any set con-
taining the intersection of a finite number of sets of type (1).

If the proof of the easy Whitney embedding theorem (Theorem 1.3.5)
is reexamined one sees that it proves the following approximation result:

1.0. Proposition. Let M be a compact C manifold, 2 < r < . Then
embeddings are dense in Copd{M,R?} if q > 2 dim M, while immersions are
dense if g = 2 dim M.

It can be shown that Cjy has very nice features: for example it has a
complete metric and a countable base; if M is compact it is Jocally con-
tractible, and C3(M,R™) is a Banach space.

If M is not compact the weak topology does not control the behavior
of a map “at infinity” very well. For this purpose the strong topology is
useful. (This topology is also called the fine or Whitney topology) A base
consists of sets of the following type. Let @ = {g,, U}, , be a locally finite
set of charts on M; this means that every point of M has a neighborhood
which meets U, for only a finife number of i. Let K = {K;},_, be a family
of compact subsets of M, K; = U;. Let ¥ = {§;,},, , be a family of charts
on N, and ¢ = {¢};., 2 family of positive numbers. If f ¢ C'(M,N) takes
each K, into ¥, define a strong basic neighborhood

@ H'(f; 8,9.Kye)
to be the set of &" maps g:M — N such that for all ie A, g(K;) = ¥, and
IDX: for Hx) — DHYger ' Wx)|| < &

for all xe @{K)), k = 0,...,r. The strong topology has all possible sets
of this form for a base.

It must of course be verified these sets (2), as f, P, P, K, ¢ vary, actually
form a base for a topology. We leave this to the reader as an exercise; it
also follows from alternative description of the topology given in Section 4.

The topological space Cy(M,N} resulting from the strong topology is
the same as Cp{M,N) if M is compact. If M is not compact, however, and
N has positive dimension, it is an extremely large topology: it is not
metrizable and in fact does not have a countable base at any point; and it
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has uncountably many components. It does have one saving grace, however:
the category theorem of Baire is valid in Cy(M,N), as will be proved in
Section 2.4.

We now define the spaces C{M,N) and CF(M,N). The weak topology
on C=(M,N) is simply the union of the topologies induced by the inclusion
maps C*(M,N} - Cy(M,N) for r finite, while the strong topology on
C®(M,N) is the union of the topologies induced by C*(M,N} —» C{M,N}.

We give C*(M,N) the weak and strong topologies induced from C*(M,N).

The strong topology is very convenient for differential topology in
that many important subsets are open. For example:

1.1, Theorem. The set Imm"(M,N) of C* immersions is open in Cg(M,N),
rzl

Proof. Since
Imm (M,N) = Imm'{M,N) n C"(M,N)

it suffices to prove this for r = 1. If M — N is a C! immersion one can
choose a neighborhood A7!(f; @,%,K.e) as follows. Let ¥° = {y5.Vs}se5
be any atlas for N. Pick an atlas ¢ = {¢,,U;};., for M so that each U;
has compact closure, and for each i€ A there exists f(i) € B such that
SIU) < Vi Put Vay = Vig gy = i and ¥ = WiVitier Let K = {K;}ic 4
be a compact cover of M with K; c U,.

The set

A; = (D for 1)(x)]x € pdK)}

is a compact set of injective linear maps from R™ to R". Since the set of all
injective linear maps is open in the vector space L{R™,R"} of all linear maps
R™ — R, there exists g > Osuch that T e L(R™R") is injective if | T — §|| < ¢
and Se A;. Set £ = {g}. It follows that every element of A"'(f; ®,¥ K,)
is an immersion.

QED
A similar argument, which we leave to the reader, proves:
1.2. Theorem. The set of submersions is open in CZ{(M,N), 1 € r € 0.

Our next goal is the openness of the set of embeddings. We shall need
the following fact:

1.3. Lemma. Let U < R™ be an open set and W < U an open set with
compact closure W < U. Let f:U — R" be a C' embedding. There exists
¢ > O such that if g:U - R is C' and

|Pg(x) — Df()|| < & and g{x) — [l <e
for all x € W then g|W is an embedding.

Proof. By Theorem 1.1 {or rather, its proof) and compactness of W,
there exists &, > 0 so small that if g € C'(U,R") and ||Dg(x) — Df(x)|| < &9
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for all x e W then g|W is an immersion. Therefore if the lemma is false
there is a sequence g, € CY{(U,R") such that

|Dgu(x) — Df(x)|| - O
and

(3) lgdx) — fix}) = 0

uniformly on W, while for each n there exist distinct points a,, b, in W with
gda,) = g.{b,). By compactness of W we may assume a, » ac U, b, > be U
as n - o. Then f{a) = f(b) by (3), so a = b. Choosing subsequences if
necessary we may assume that the sequence of unit vectors

__an_bn
vn—ian—b-J

converges to a unit vector v € S™~'. By uniformity of Taylor expansion
(with remainder in integral form) we have

|gu(an) - gn(bn) - DG(bI}(al - bn)l/lan - bn'| - 0.

Hence Df{(b, v, — . But this sequence also goes to Df(b)r, which therefore
is 0. This contradicts the assumption that f is an immersion.

QED
We can now prove:

1.4. Theorem. The set Emb"(M,N) of C" embeddings of M in N is open
in C(M,N),r = 1.

Proof. 1t suffices to take r = 1. Let fe Emb"(M,N). By using the
preceding lemma we can find the following objects:

a locally finite atlas ¢ = {¢;,U;};c 2 of M;

aset ¥ = {y,V;}i 4 of charts for N with f(U)) = ¥};

a family of compact sets K; « U, whose interiors W, cover M;
numbers g > 0 such that if

ge -/Vo = '/V-r(f; ¢,'P,K,8)

then g(W) < V¥, and g|W, is a C” embedding.

Since f is an embedding for each ie A there exist disjoint open sets
Ay, B; in N such that f(K;) = 4, and f(M — U)) < B;. One can find a
neighborhood 4, of f in C{{M,N) (in fact, in CY{M,N)) such thatifge .+,
then

9(K;) = A,
gM — W) < B,
We show that every ge .# 3 n A", is an embedding. By the choice

of A"y, g is an immersion. To see that g is injective suppose x, y are distinct
points of M with x € K,. If y e U, then g{x) # g()) since g|U, is injective;
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while if ye M — W, then g(x)€ A; and g(y)e B,, so again g(x} # g(y).
To see that g: M — g(M) is a homeomorphism, it suffices to show that if
Va is a sequence in M such that g(¥a) = g(x) then y, » x. If x e K; then
g(x) € A;; hence only a finite number of the ¢{¥,) can be in B, so all but
a finite number of y, are in W,. Since g|W:Ww - g(W)isa homecomorphism
it follows that y, — x.

QED
A map f is proper if f ! takes compact sets to compact sets,

1.3. Theorem. The set Prop’(M,N) of proper C" maps M - N is open
in CY{M,N), r = 0,

Proof. For any map f:M - N there is a compact cover {K;};. , of
M and an open cover ¥ = {V}},., of f(N) with JIK) = V. If £ is proper
¥" can be chosen locally finite. There is a neighborhood 4" of f such that
if g € A4 then g(K,) = V for all i. To see that such a g is proper,let Lc N
be compact. Then L meets only a finite number of V. Hence g~ "(L) is a
closed subset of M which is covered by finitely many of the compact sets
K;; therefore g~ (L) is compact.

QED

Since an embedding f:M — N is proper if and only if f(M) is closed
in N, we obtain:

1.6. Corollary. The set of closed embeddings is open in C{M,N), r > L.
Let Diff"(M,N) denote the set of C” diffeomorphisms from M onto N.

L.7. Theorem. If M and N are C" manifolds without boundary then
Diff'(M,N) is open in C{M,N), r = 1.

Proof. A diffeomorphism induces a bijective correspondence from
components of M to components of N. Such a map has a neighborhood
of maps inducing the same correspondence. Therefore we may assume
M and N connected.

A diffeomorphism is simultaneously an embedding, a submersion and
a proper map. Conversely any map g between connected manifolds with
these three properties is a diffeomorphism. For the image of a submersion
is open (by the inverse function theorem) and the image of a proper map is
closed; so g is a surjective embedding, which is a diffefomorphism. Thus
Diff"(M,N) is the intersection of three open subsets of Cy(M,N).

QED

For d-manifolds Theorem 1.6 is false. But one can show that Diff(M,N)
is open in the subspace

Cs(M,0M; N,ON) = { f € C{M,N):f(aM) < aN}.
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Theorem 1.6 is false for r = 0: the set of homeomorphisms is not open
in C3(M,N)(unless itisempty ordim M = 0). There is. however. the following
result:

L.8. Theorem. Let M and N be manifolds without boundary and M N
a homeomorphism. Then f has a neighborhood of surjective maps in CAM.N).

Proof. Let g be near f; then f ~'g is near the identity map of M. Hence
itsufficestotake M = Nandf = 1,,.

Let {¢;,U;} be a locally finite cover of M by charts such that ¢,(U,} > D"
the closed unit ball in R", and M = U@ Y(D"). For each i let B, < o4U,)
be a slightly larger closed ball, 0 e D" < Int B,. It suffices to find ¢ > 0
such that if h;:B; - R" is a continuous map with Jh(x) — X} <g _I'or‘ all
i then h(B;) > D". For if this is true then the set of g:M — M satisfving,
for ail i,

go; '(B) = U,
and
loge '(x) — x| <&, all xeB;,

will consist of surjective maps (put ,g¢; ' = h,).

Let & > 0 be so small that for any z € D, x € ¢B, anq ye u'jth
|x — ¥| < &, it is true that the ray issuing from = through v intersects ¢B;
at a point u such that [u — x| < diam B; (Figure 2-1).

[

Figure 2-1.

Now suppose h:B; - R" and |h(x) — x| < ;.. Suppose z€ D" - h(l%‘,-}.
Define a map H:B; — 3B, by sending x € B; to the intersection of ¢ B, “Hmh
the ray from z through h(x). The choice of ¢ ensures thal‘for X e ¢B;,
H(x) # —x. Then H|0B,:éB; — éB; is homotopic to the identity; the
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homotopy moves H(x) along the shorter great circle path from H(x) to x
(Figure 2-2). A classical theorem of topology, however, says that no map
of an n — | sphete to itself which extends to a map of the n — | ball to
the sphere can be homotopic to the identity. (This will be proved by
Theorem 3.1.4). This contradiction shows that D" < h(B,), proving
Theorem 1.7.

QED

For d-manifolds one can show that any homeomorphism h:M — N
has a neighborhood of surjections in C3(M,6M; N,3N). In fact this follows
from Theorem 1.7 by extending h to a homeomorphism between the doubles
of M and N.

path of homotopy

Figure 2-2.

Exercises

1. The space C5(R,R), r = 0, does not have a countable base at any point and so is
not metrizable. Under the usual operations it is a topological group but not a topological
vector space.

2. Let a sequence { f,} converge to g in Cy(M,N), r = 0. Then there exists a compact
set K — M and m such that f,(x) = g(x}forallr > mandallxe M - K.

3. Are C3* 1(R,R) and C' '(R,R) homeomorphic to C{R,R) x ®& and C){RR) x R
respectively, n = 07

*4. Polynomials are dense in Cip({R,R) but not in C{R,R).

5. The set of closed maps is closed, but not open, in CP(R,R). (A map f is closed il it
takes closed sets onto closed sets.)
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6. The set of closed immersions is open in CAM,N), r 2 1. The set of injective im-
mersions is not open in CH{R!RY).

7. A proper C' immersion f:M — N which is injective on a closed subset K Mis
injective on a neighborhood of K. In fact f has a neighborhood .+° < CHM. N} and K
has a neighborhood U = M such that every g € A7 i injective on U If K is compact 4"
can be taken in C{M,N).

8. The set of proper maps is open and closed in C3(M,N).

9. The set of maps f € CL{M,N) such that M — N is a covering space, is open. If
M and N are compact manifolds of the same dimension, without boundaries, then
every submersion M — N is a covering space.

10. 11 g:R" — B" is a continuous map such that

liminf, ., maxy,-, |x — g(x)}/)x| < 1
then g is surjective.

11. The set of neat embeddings of M in N is open in CyM.2M; N.éN), r 2 1. But neat
embeddings are not closed in C(D,D?),

12, A base for the strong topology on C{M,N), 0 < r < o, is obtained by taking
only those sets A7(f; #,%,K.£) where it is further required that K = {K.)ic bea
covering of M by compact sets.

13. Let Imm{M.N) be the set of C maps M — N which are immersive at each point
of K = M, r 2 1.1If K is compact then this set is open in Cp{M.N).

14. Let Emby(M,N) be the sct of C" maps f:M — N, r 2 1, such that f|U is an em-
bedding for some open set U (depending on f), K c U = M. If K is compact then
Emb}{M,N) is open in Cy{M,N).

15. Let M, N be C manifolds, 0 < r < oo. Let {U:}ie4 be a locally finite family of
open subsets of M. For each i€ 4 let o, « Co{U,N) be an open set. Then the set of
" maps f:M — N such that f|U, e o, for all i is open in CUM N).

16. Let M, N be C manifolds 0 < r € o0. Let ¥ < M be an open set.
(a) The restriction map

8:C(M.N) = C(V.N),
3f)=f|v

is continuous for the weak topologies but not always for the strong. On the other hand:
*(b) ¢ is open for the strong topologies, but not always for the weak.

2. Approximations

In this section all manifolds are without boundary.
Our first job is to find a C* map A:R* — [0,1] with the following prop-
erties, for any givenb > a > 0:

i) Ax)=1 if  |x<a
(i} I>Mx})>0 if a<|x<b,
i) A =0 if |x>b

Such a map is sometimes called a bump function.
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We start with the C* map «:R — R, showing its graph below:

0 if x<0
=1t i x>0

o

Next define :R —+ R:
B(x) = alx — apx(b — x)

Then define y:R — [0,1],

v(x)=fﬁ/fﬁ

Re
T4

Finally define A:R" — [0,1] by
Alx) = y(|x].
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Next we define the support Supp f of a continuous rea! valued function
S to be the closure of f (R — 0}, The complement of Supp f is the largest
open set on which f vanishes.

Let M be a C" manifold, 0 € r € o, and # = tU:}i ., an open cover.
A C partition of unity subordinate to ¥ is a family of " maps 4;: M — [0.1].
i € A such that the following conditions hold:

Supp i, c U, (ieA),
{Supp 4;}; . is locally finite,
and
Yiea Ax) =1 (x € M),

Local finiteness ensures that each point has a neighborhood on which
all but finitely many J; are 0; therefore the sum is locally a finite sum.
The third condition ensures that

M = | J; Int Supp 2.
(The interior of any set § is denoted by Int S.) Therefore {IntSupp 2.}, is

a locally finite open cover of M which is a shrinking of #. (A cover ¥ =
{Vi}iea is a shrinking of % if each V, < U,)

The following remark is often useful. If ¥~ = (¥.},c 4 is an open cover
of M which refines ¥ = {U.};.,, and if %" has a subordinate C* partition
of unity, then so has %. For let {4}z 4 b€ subordinate 10 v . Let AT N |

be such that V, € U,,, and define
wM - [01],
uilx) = Y {Adx); a e £

Then {Supp 4, }; . , is locally finite, for p(x) # Oonlvifi = f(x) with i(x} #
0. Clearly Supp 4; « U;and ¥, pix) = ¥, ifx) = L.

The foliowing theorem, one of the basic tools of differential topology.
is {requently used to reduce global theorems to local form. There can be

no similar theorem for analytic maps, which is why they are so much harder
to handle.

2.1. Theorem. Let M be a C" manifold, 0 < r < «. Erery open corer
of M has a subordinate C" partition of unity.

Proof. Let % = {U,};. , be an open cover of M. There is a locally finite
atlas on M, {9,,V,},c « such that {¥.},_, refines #: and we may assume
that each ¢,(V,) « R" is bounded and each ¥, < M is compact. There is
a shrinking {W,},., of ¥" = {V,},.,, and each ¥, < 1} is compact. It
suffices to find 2 C" partition of unity subordinate to ¥,

For each x € A, cover the compact set ¢,(W,) = R" by a finite number
of closed balls

Ba.1), ..., B(xk(x))
contained in @,{¥,}. Choose C* maps

2 iR = [O0) =1, K,
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such that
Aq %) > 0 ifand only if  x € Int B{a,j).

Put

ki{z)

b= Y 1, iR - [0,00).

i=1

Then
LX) >0 il xeqe W),
Axy=0 if xeR —{}J;Blaj.

Put

Ha: M = [0,00),
[ Adeu(x)) if xel,
W=V it xeM -,

Then g, is C7, y, > 0 on W, and Supp y, < V,. Define v, = pu,/3, p,. Then
{vilae 4 is @ C7 partition of unity subordinate to ¥

QED

A partition of unity is used to glue together locally defined maps ‘ipto
R" to make a globally defined map. For instance, if {1,};,_,i15a C° partition
of unity subordinate to an open cover {U,};. , of M, and g;:U; » R* is C°
for each i, we can define
g M- R,
g(x) = Y A{x)gx),

summed over {ie A:x € U;}. This is a well-defined C* map since each x has
an open neighborhood on which 4; = 0 except for finitely many i.

The following theorem shows how the condition E-‘ A; = 1 can be used
to obtain approximations.

2.2. Theorem. Let M be a C° manifold, 1 < 5 € oo, Then C(M,R") is
dense in CY{M,R".

Proof. Let {V.},. 4 be alocally finite open cover of M and foreacha € A
let ¢, > 0. Let f:M — R" be continuous, and suppose we want a C’ map g
to satisfy | — g|] < & on ¥, for all o For cach xe M let W, <« M be a
neighborhood of x meeting only finitely many V. Set

3, = min {g;:xe V;} > 0.
Let U, = W, be an open neighborhood of x so small that
If(.V) - f(x)l < 5:! ye Ux'

Define constant maps
P goM - R,

gl y) = flx).

Relabeling the cover {U,} and the maps {g,}, we have shown: there is an
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open cover {U.};., = ¥ of Mand C* maps g,: M — =% such that whenever
yeU;n V, then
lg:(3) — 10| < e,
Let {4}, 1 be a C* partition of unity subordinate to #. Define
g:M - R",
gly) = Zi Al ¥)gi(5).
Then g is C* and
l9(3) = SN = [EA0Na3) ~ TA6)] < Tiatwlaul ) = fiml.
Henceif ye ¥,
gy = F»| < Taidre, = &,
QED
Ovur next task is to approximate C* maps by C*maps.s > r = 1, in the
strong C" topology. The preceding argument will not work now because
the derivatives of the ; are involved. We need to uniformly approximate
J|U; not by constants, but by C maps whose derivatives up to order r
uniformly approximate those of f. For maps defined on open subsets of &*
we achieve this by the technique of convolution, discussed next
Let 0:R™ - R be a map having compact support. There is a smallest
g 2 0such that Supp 8 is contained in the closed ball B,0) <« R™ofradius ¢
and center 0. We call ¢ the support radius of 0.
Let U = R" be open and f:U — R" a map. If :R™ — B has compact
support we define the convolution of f by @ to be the map

: O U, - R
given by
(1) frfix) = J-B 0 OV = dy (xel,
where

U, = {xe U:B,{x) = U}.

The integral is the Lebesgue integral, dy denoting the usual measure on E™.
The integrand in (1) is 0 on the boundary of B,(0}; we extend it 1o a con-
tinuous map R™ — R by defining it to be 0 outside B,10). Therefore we have

2 bofix) = [ ONx — dy  (xe U,

For a fixed x € U, we make the measure preserving change of variable
in(l):z = x - y. Then

{3) Befix) = fs.,ix) Hx — 2)ftz)d:
= ,L- Hx - 2)f(2) dz (xe U,

where again the integrand is defined to be 0 outside B,ix).
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A map 6:R™ — R is called a convolution kernel if it is nonnegative, has
compact support, and {gm 0,, = 1. [t is clear that there exist C* convolution
kernels of any given support radius.

We may think of O=f(x) as a weighted average of the vaiues of f near x.
This makes it plausible that &+f will be an approximation to f which will
be smooth if & is smooth.

We introduce the notation

LAl x = sup {||P*flx)||:xe K,0 < k < 1}

if U > R"is C", U < R™ is open, K = U is any subset, and |[[D*f(x)|| is
the norm of the k’th derivative of f at x. Here {D°f(x){| means | f(x)}, while
for k > O the k'th derivative at x is a k-linear map from R™ to R". The norm
iiSl| of any k-linear map

SSR" x - x R" =+ R

is defined to be the maximum of |S(x1, ..., X;)| where the vectors x,, .. ., x,
vary over the unit sphere in R™. The value oo is allowed for || f||, «. If K is the
entire domain of f we write simply || f||,. Note that for all y,, ..., y, in R™

1Sy < |IS| - Iy - Il
We have the following basic result:

2.3. Theorem, Let 6:R™ — R have support radius ¢ > 0. Let U < R™
beanopen set,and f:U — R"a continuous map. The convolution®«f .U — R"
has the following properties:

(a) If 6|Int Supp @ is C*, | < k < oo, then so is 0*f; and for each finite k,

DHO) Yy, -, Yo = [ PHOx = (Vi YOS dz.
onU,.
(b) If f is C* then
DHO*f) = 0%(D*/).

{c) Suppose [ is C", 0 <€ r £ ow0. Let K = U be compact, Given g > 0
there exists o > 0 such that K < U,, and if 6 is a C" convolution kernel of
support radius ¢, then 0xf is C" and

HOtf - f”,.'x < g

Proof. To prove (b}, observe that the domain of integration in {1} can be
restricted to Int Supp @; the integrand is then differentiable in x, and (b)
follows by induction on k and differentiating under the integral sign. (a) is
proved similarly using {3). To prove {c) it suffices to take r = 0, by {b). Since
d(K,R™ — U) > 0, we can choose o so small that K = U,. By uniform con-
tinuity of f on a compact neighborhood of K, we can choose o so small that
if xe Kand|x — y| € o then |f(x) — f(y)| < &

Since

0=1

»m
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we have, integrating over R™;

[6+f() = S} = [foKfix - y) — fix)) ay]
< JONIfix = 3) = fro)] dy
< ef(ydy = ¢
QED
From Theorem 2.3 it immediately follows that a map from open subset

of R™ to R" can be C" approximated by C* maps in neighborhoods of com-

pact sets. Using partitions of unity we prove the following stronger approxi-
mation theorem:

24, Theorem, Let Uc R™and V = R” be open sets. Then C=(U.V) i
dense in C{{U,V),0 < r < <. g 0

_ ‘f’r;)of - Since C{{U,V) is open in Cy(U,R"), it suffices to prove the theorem
wit = R

) Let e C(U,R"). A neighborhood base at £ in CHU.R" consists of sets
A (f,K ) of the following form (see Exercise 12, Section 2.1). Let K =
{Ki}ie 4 be a locally finite family of compact subsets of U let ¢ = {g};,

be a family of positive numbers, and let A (f.K,£) be the set of C maps
¢:U — RB"such that forall ie A

) lg = fll.x <.
Fixing f,K and ¢, we must show
CUUR) N A (f,Ke) # &
Let {4;};., bea C* partition of unity on U such that Supp 4; is compact
and K; < Int(Supp i).
Given positive numbers {a,};., there are C* maps g;: U; — R such that
forxeK;andk =0,...,r,
"g‘ - f"?. K < mi‘
Put
glU R
g(x) = F, dfx)gix).
Then g is C®. To estimate ||D*¢(x) — D*f(x)|| we observe that if 2:U — R
and 9: U — R" are C* and y{x) = A{x)p(x), then D*y(x) is a sum of bilinear
funcflons of DPA(x), D*@(x), p,q = 0,.. ., k; this bilinear Junction is universal
and independent of x, A and ¢. Thus there is a universal constant A, > 0such
that
ID*(Ae)x)] < A, max |D?A(x)|| - max |D*(x)|)-
Sct Q=pLk [LESES S

_ A = max {4,,...,4,}.
Fix i € A and set

A ={je A:K;n K; # &}
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This is a finite set; let its cardinality be m;. Put

i = max {4, k€ Ai}
B = max {a;:j€ A}

In the following sums j varies over A;. For x€ K; and 0 < k < r we have

ID*9(x) — D*f()]| = \IZ; DMAm; — 4N
< 35 DMAsg; = MY < mdpfe.
1t is clear that the numbers a; can be chosen so that
mAp, < &.
With this choice of &, we have, for all ie A,

g — filx, <&
QED

A refinement of Theorem 2.4 is needed for the globalization to manifolds.
Suppose we have a ' map f:U — R that we want to-approximate by a "
map h which is C* in a neighborhood of a (relatively) closed set K = U. At
the same time, for technical reasons we want h to equal f outside a certain
open set W < U; of course, we must assume f is already C’ on a neighbor-
hood of K — W. The following relative approximation theorem ensures that
maps such as h approximate f arbitrarily ciosely.

2.5. Theorem. Let U = R™ and V < R” be open subsets, and [:U — V
a C" map. Let K < U be closed and W < U open, such that [ is C* on a
neighborhood of K — W. Then every neighborhood N of f in Cy{U,V) con-
tains a C* map h:U — V which is C* in a neighborhood of K, and which equals
fonlU - W,

Proof. We may assume V = R” (see proof of Theorem 2.4). Let A < U
be an open set containing the closed set K — W such that f|4 is C*. Let
W, < U be open, with

K—AcW,cWcW

Let {4o.4;} be a C* partition of unity for the open cover (WU — Wo}of U.
Thus 1, and A, are C* maps U —~ [0,1] such that 4o + 4, = 1,4 =0Oon
a neighborhood of U — Wand 4; =0 ona neighborhood of W,
Define
G:C{U,R" - C5(U,R"
by
Glg)x) = Lo(x)glx) + A, {x)f(x).
Then Glg) = g in W and G(g) = fin U — W. Clearly G(g) is C° on every

open set on which both fand g are C*. It is easy to prove G continuous. Since
G(f) = f, there is an open set Ao < C4{U,R" containing [ such that
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G(A o) © A7 By Theorem 2.4 thereisa C* mapg e .45 Then h = Gig) has
the required properties.

QED

We now prove the basic approximation theorem for manifolds without
boundary. Later we shall extend it to é-manifolds and manifold pairs.

2.6. Theorem. Let M and N be C* manifolds, | < 5 < x. Then CH(M.N)
is dense in Ce{M\N),0 < r < s.

Proof. Let f:M — Nbe C. Let & = {9,U;};. . be alocally finite atlas
for M and ¥ = {§;,V;};.. a family of charts for N such that for all i€ ..
fU) e V.LetL = {L;};., beaclosedcoverof M, L, = U;. Lete = {g};
be a family of positive numbers, and put 4 = A™(f: D.¥.Le) = C'(\I“::)l

We look for a g € 4" which is C*. The set A is countable; we therefore
assume that A = Z, or, if M is compact, A = {1.....p}. (We denote the
integers by Z, the positive integers by Z,, and the natural numbers by
N=2Z,0{0}) )

Let {W;},. , be a family of open sets in M suchthat L, = W, c W. < U,

We shall define by induction a family of C maps g, .4, ke N havin;z
the following properties: go = f,and fork > 1: 1 )

(5h O =g onM - W
6} gy is C* in a neighborhood of { Jo < ;<1 L,

Assuming for the moment that the g, exist, define g: M — N by g(x) =
Guin(X), where k(x) = max {k:x € U,}. Each x has a neighborhood on which
g = iy This shows that g is C* and g € 4", and the theorem is proved.

It remains to construct the g,. Put g, = f;then(5), and (6), are vacuously
true. Suppose that 0 < m and that we have maps g, e . 0 < k < m, satis-
fying (5), and (6),.

Define a space of maps

% = {heCU,Vp):h =g, onU, — W,
Define
T:% - CYM.N),

h on U

Th) = { "
Im—1 on M- U,

Then T is easily proved continuous. Observe that Tiy,_,|U,) = gu-,.
Hence T™1(A¥) # . "

Let K = |Jiem Li » Un. Then K is a closed subset of U, and
GIm-1:Um = Vo is C* on a neighborhood of K — W, Since U, and V), are C
diffeomorphic to open subsets of R™ and R®, we can apply Theorem 2.5 to
CHU,,.V.,.). We conclude that the maps in % which are C* ina neighborhood
of K are dense in 4. Therefore T~ '(47) contains such a map h. Define g,, =
T(h); then g,, € A" satisfies (5), and (6),.-

QED
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For the following application of Theorem 2.6 let GHM,N) = C¥M,N),

k = [, denote any one of the following subsets:

diffeomorphisms,

embeddings,

closed embeddings,

immersions,

submersions,

proper maps.

2.7. Theorem. Let M and N be C* manifolds, } < s £ oo. Then G(M,N)
is dense in G'(M,N) in the strong C" tapology, | < r < s. In particular, M and
N are C* diffeomorphic if and only if they are C* diffeomorphic.

Proof. This follows from Theorem 2.6 and the openness theorems of
Section 2.1.

QED

We shall need the foliowing lemma for raising differentiability of
manifolds:

28. Lemma. Let U be a C" manifold, 0 € r < o0, and W = U an oPen
set. Let V < R" be open, f € C{U.V), and mu f(W) = V'. Then there is a
neighborhood A~ = C{{W.V") of f|W such that if gy € 4", the map

Tlgy) = g:U = V,

do on w
= o U-Ww

isCyand T: A — C{U,V) is continuous,

Proof. Let{p;U;};. , bealocally finite family of charts of U which cover
the boundary Bd W of W. Let {L,},. , be a family of closed subsets of U and
which cover Bd W, with L, = U,. .

Let N < Cy(W,V') be the set of C" maps h:W — V' such that if i € A,
yeg(l,n W)and 0 < k = r, then

(M (1D"hoi Yy — DX for 'W|| < diyvedU; — W),

Then .4 is a neighborhood of f|W: by paracompactness W has a locally

finite closed cover {K,} such that each K, meets only finitely many L, and

on each K, n L; the map x — d{g;(x),p{U, — W))is bounded away from 0.
If he A define

T =g:U =V,

_h on w
Y= on U-—wW

2. Approximations

Weclaim g is C”. It suffices to prove that each mapz; = (g ~ flo; ipil,) —
R is C". Now

5= Jhert — for'  on  guw)
TT0 en U - W,

Obviously 4; is C" on ¢ (W). By(7),for0 < &k < r:
DAy} =0 as  dyeU, — W) -0,

uniformly in y € ,(W). It follows that #; 18 €7, with all derivatives 0 on
9{(U; — W). Therefore g is C" and the map T:C(W. V') - C(U,V) is well-
defined. The continuity of T is left as an exercise.

QED

Let « be a € differential structure on a manifold M. A C* differential
structure B on M, s > r, is compatible with x if B < x. This means that every

chart of 8 is a chart of 2. Equivalently, it means that the identity map of M
is a C" diffeomorphism M(x) — M(p).

2.9. Theorem. Let a be a C differential structure on u manifold M. r > 1.
For every s, r < s € o, there exists a compatible C* differential structure
B < «, and B is unique up to C* diffeomorphism.

Proof. For convenience we shall denote a differential structure and its
restriction to an open set by the same symbol. By Zorn's lernma there is a
nonempty open set B — M and a C differential structure B on B which is
compatible with a, and such that (B,8) is maximal in this property. We must
prove B = M.

If B # M there is a chart (p,U) for M such that L ~n (M — B) % @.
PutopU)=U cR,UAB = Wand oW) = W,

There are now two differential structures on W: the {7 structure x and
the compatible C* structure B < 2. We shall find a ¢ diffeomorphism
6:U, — U’ such that 9|W:W, - W' is a C* diffeomorphism. In that case
the chart (8,U) has C* overlap with Bithe CCatlas Bu(O.Uyon Bu U is
contained in o and this contradicts the maximality of (B.§).

To construct & we use Lemma 2.8 to obtain a neighborhood .+ <=
CWp. W) ol o|W: W — W' with the following property. Whenever o €.+,
the map T(yo) = y:U — U defined by

v = Yo on W
B ] on U-w

. is C, and the resulting map

T:.CY{W, W) - C{U.UY)

is continuous. Since T(|W) s the diffeomorphism ¢, there is a neighborhood
N'o = A of o|W such that T(A"y) < Difi"(U,U". By the approximation
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theorem 2.6 there is a C* diffeomorphism (1, € A47y; the required map 0 is
then T(0p).

QED

It is amusing that neither paracompactness nor Hausdorffness of M was
used in the preceding proof; these properties were needed only for the co-
ordinate domain U.

From Theorems 2.7 and 2.9 we obtain a fundamental result:

2.10. Theorem.

(a) Let 1 < r < oo. Every C" manifold is C diffeomorphic to a C*
manifold.

(b) Let 1 < r <5< oo. If two C° manifolds are C* diffeomorphic, they
are C* diffeomorphic.

In view of this there is no need to consider C" manifolds for | < r < oo;
and for most purposes C* maps are sufficient. The C* category has several
advantages over the C" categories with  finite. An obvious one is its closure
under derivatives. A more subtle advantage comes from the Morse—Sard
theorem in the following chapter.

Earlier we pointed out the theme of globalization that runs through many
proofs. There is an abstract aspect of the passage from local to global which,
if recognized, can often make a proof obvious; at the least, it provides a clear
strategy for the prool. Since we shall need to globalize several more times,
it is worthwhile to formalize the pattern of proof in the following way.

Let X be a set and 9 a family of subsets. We assume that X € 9 and
that the union of any collection of elements of ¥) is again in 9. (In practice
X is a manifold and 9 is generated by the elements in an open cover, or a
locally finite closed cover.) Suppose we have a contravariant functor from
the partially ordered (by inclusion) set 9 to the category of sets. That is, to
every A € P there is associated a set #(A), and to every pair of sets A, Be 9
with 4 < B there is assigned a map of sets F . #(B) — F(A), denoted by
x -+ x| A, where x € #(B) such that F g F pc = F 4 whenever A ¢ B <
and # ,, = identity map of F(A).

We call (#,9) a structure functor on X. An element of #(A) is thought
of as a “structure” of some kind on A for which “restriction” to subsets of
A makes sense. We wish to prove that X has a structure, that is, #(X) # &.

A structure functor is continuous if the following holds. If {Y,} is any
simply ordered family of clements of 9, and UY, = Y, then the inverse

limit of the maps &y y:#(Y) » #(Y,) is a map F#(Y) — inv lim #(Y,)
which is bijective.

A structure functor is locally extendable if every point of X belongs to a
set ¥V € P such that for all Y € ) the map

Fyoy o FY UV) > F(Y)

is surjective. It is called nontrivial if F(Y) # & for some Y e 9.

2. Approximations

(]

3

As an example, let X be a manifold, 0 < r < . and 9 th ily
of all open sets. Let #(Y) be the set of compatible C* diﬁ”eremi;]l st:u?tl:lrltl‘.}s
on Y for some s > r. Clearly (#,9) is a structure functor which is nontrivial
and cor'ltmuous. If1 €£r<s< oo then #F is locally extendable. as was
shown in the proof of Theorem 2.9. ) .

For another example, let X = ®R* be a nonnull q
erated by a locally finite cover of X by compact se?ie :;c}{-;l) ;)]et:leg es:;
of Y-germs of _analytic maps into R; a Y-germ is an equivalence class of
maps defined in neighborhoods of Y, two maps being equivalent if they

agree in some neighborhood of Y. Then (#.9)) is conti ivi
but is not locally extendable. (yis continuous and nontrivial,

2.11. . Glt_)baliza.tion Theorem. Let (F.9) be a nontrivial structure functor
on X which is continuous and locally extendable. Then FIX)# P In fact if
F(Yo) # & then F(X) - FYy) Is surjective.

Proof. Let ag € #(Y,). Let S be the set of pairs (Y.a) with Yo < Ye 9)

and a € #(Y), a|Y, = a,. Partially order § by (Ya)< (Ya)if Y < ¥ and

a] Y’ = a'. By the closure of 9 under union and th inui i
' e cont
a maximal element (Y »,qs+). ity axiom. S has

We claim Y+ = X. If not, by local extendability there exi
3 e exists Ve 9 and
be?‘('}’* U V? such that b|Y+ = a=. But then (Y* U I'h) > {Y*.a+), con-
tradicting maximality. Hence Y+ = X. o

QED

This method is ofte-n convenient for proving the existence of a global
structure when local existence and extendability are known: Theorem 2.9 is
an example. Another example is: B

.2.12. Theorem. Let M, N be manifolds, ! < r < x. If dim N 2
2 dim M then immersions are dense in Cy M N).

Proof. It isl convenient to assume r = 2. This is no restriction. for if
r < 2, every C! manifold has a compatible C? structure, and if r > 2 every

3 . g .
C* immersion can be approximated by C immersions. Henceforth we
assume all maps are C2.

Let fy:M - N be a map and A", = CHM.N) a neighborhood of fo.
There is a smaller neighborhood A~ « Ao of f, of the following form:

A= Y[y WK g
Y= {y:V - R"ic .
is a family of charts on N;
® = {p;:U, > R",_,
is a locally finite atlas for M with f(U,) = ViK = {K;};. (. where K, = U ;
¢i(K;) = D" c R™;

— I H H
and & = {g},,, is a set of positive numbers.

where
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We now define a structure functor (#,9). For 9 we take the family of
all unions of the disks K, partially ordered by inclusion. If 4 € 9 we define
F(A) to be the set of A-germs of maps f € A such that f is an immersion
of some open set containing 4. 1f 4 = B, every such B-germ is contained in
a unique A-germ; this correspondence defines the map F 5. F(B) = F(A).

It is easy to see that (¥ ) is continuous. Moreover, it is locally ex-
tendable. To see this let W = M be an open neighborhood of 4 € P, and
let f € .4 be a map such that f|W is an immersion. Then f represents an
A-germ a € F(A). If A # M pick K; ¢ A. To extend o over A u K;is to
find a map g € # which agrees with f in some neighborhood of 4, and
which is an immersion of a neighborhood of A u K,. This is done as
follows.

Let B < U, be a disk whose interior contains K;. Now f(B} < Vi, and
¥, is diffeomorphic to an open set inR", n = 2dim M. Therefore by Theorem
1.1 f|B:B — Vi can be C? approximated by immersions.

Let A:M — [0,1] equal O on an open neighborhood Z of A v (M — int B),
and 1 on an open neighborhood Y of K; — W. For each immersion g: B — ¥,
define a map S(g):M — N by

fxy if xeM-B

S(Q)x = {(l _ l{x) )f(x) + l(x)g(x) if X e B.

Here we have identified ¥, with an open set in RB" via ;. The map

S:C¥BV) — C3M.N)
is continuous, and
S(f1B) = 1,
Sgy=f on 2
Sy =g on Y.

From the first equation it follows that S(g) € A if g is sufficiently near f|B.
The second equation implies that S(g) and f have the same A-germ. The
third equation implies that S(g) is an immersion on Y. But in fact S(g} is an
immersion of a neighborhood of K, if g is sufficiently near f|B. For let X be
a neighborhood of K; — Y with X compact in W. Since f|W is an immersion
and X < W is compact, f has a neighborhood 4, such that X is an
smmersion if h € 4. I g is close enough to f then S(g) € A" and so S(g)|X
is an immersion. Such an S(g} is thus an immersion of a neighborhood of
A u K,. This proves that (¥ ) is locally extendable. By Theorem 2.11,
F(M) # J, thatis, & contains an immersion.
Another proof of Theorem 2.12 is given at the end of Section 3.2.

QED

If M is not compact then embeddings may not be dense in CY{M,N), no
matter what the dimensions of M, N. For example let f:Z — R” be a map
of the integers whose image is the set of points having rational coordinates.

2. Approximations
Let g:Z — R" be any map such that

lgtn) ~ fim} < 1

]
for n # 0. Then the image of g i i i
g is dense, so : i
e bogiine se, so g{Z) is not discrete; hence g is
b‘:dT']'u&'. d'lfﬁcult.y is _trying to imitate the proof of Theorem 2.12 for em-
dings 1s_that l_f M is not compact the structure functor defined by A-germs
of embeddlngs_ is not continuous. It is continuous, however, whenbM is
compact; and if Fllm N ; 2dim M + 1 it can be proved locally extendable
More generally, if the neighborhood 4~ ¢ Cy{M,N) consists of proper maps,
.then th:e structure functor of A-germs of maps in 4" which are embeddings
in a neighborhood of A is continuous, and locally extendable if dim N =

2 dim M + 1. In this way one obtains a proof of i
details are left as an exercise: P of the following result: the

2d'2.13. Theorem. I.‘.et M, N be " manifolds, | € r € x, withdim AN 2
: im M + 1. If M is compact then embeddings are dense in Cy(MN). If M
is not compact, embeddings are dense in Propi{ M,N). ’ .

As a corollary we have the following result of Whitney:

2.14. Theorem. Every C7 n-dimensional manifold 0. i
1< r< oo, is C dif-
feomorphic 1o a closed submanifold of R****, if r is C dif

Proof. This foliows from Theorem 2.13 as soo
. . nas apropermap M —
R has been found. If M is compact take f constant. If M is not cmfl‘p{act, let

M; © M, c - - be an increasing family of .
with M, < Int M, ,. g family of compact sets which fill up M,

Let
f(M2k+l "'Mz&)=2k+ l, k? 1

and extend f to a continuous map sendin i
( end f g M, — M, _into[2k —
using Tietze's theorem. Then f is proper. * o [ e 1]

QED
We return to Theorem 2.13 in Section 2.4,

Exercises
*1. (a) Let X = M be a closed subset of a C manifol
0<rg . i
a C map f:M — [0,00) with X = f~}0). o " . Then there exists

(b) If X, Y are disjoint closed subsets of a ¢ manifold ¥ i
C map A:M — [0,1] with 470} = X, A1) = Y. anifold M, 0. < 7% 2. there i 2

2. Any two points in a connected C" manifold, 0 € r € =z, can be joined by a C

path f:[0,1] - M, and for r = 1, be i is i
P e e o f can be chosen to be an embedding. (This is also
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3. Let ppM - Nbea C mapand [:N — M a C section of p (that is, pf = Iy).
{a) If | € r < 5 < o0 then f can be C” approximated by C” sections. In fact if ¢
is sufficiently C close to f then g(N} is the image of a section.
(b) If 0 = r < 5 < o0 and p is submersive, then f can be C' approximated by C*
sections.

4, There are relative versions of theorems 2.6, 2.9, 2.12, and 2.13.

5, What are the bilinear functions 4, in the proof of Theorem 2.47

3. Approximations on d-Manifolds and Manifold Pairs

In this section we extend the approximation results of Section 2.2 to
d-manifolds and manifold pairs.

In constructing a C® differential structure for a C é-manilold, one needs
to know that a C’ map f:(M,0M) — (N,0N) can be approximated by C*
maps. Thus we are led to consider the space C5(M,0M; N,dN) of C" maps
f:M — N such that f(0M) < &N, with the strong topology. More generally
we consider C{{M,M,; N,N,), where My = M and N, = N are closed neat
C submanifolds.

The proofs are quite close to those of Section 2.2. The main change is
an adaptation of the approximation Theorem 2.4 to pairs. The details of this
are given for d-manifolds; other proofs are omitted.

The definition of || f|,, x, where now f is defined on an open subset of a
halfspace, is the same as before.

3.1. Lemma. Let E < R™ and F = R" be halfspaces, U < E an open
subset, and f:U = F a C" map, 0 < r < o0. Let K < U be compact and
¢ > 0. There is an open neighborhood U' = U of K anda C* map g: U’ —» F
such that |lg — f|l,.u- < & Moreover, if X < aU is such that f(X) < OF,
then g can be chosen so that g(X n U’) « éF.

Proof. We may assume that either 83U or éF is nonempty, for if both
are empty Theorem 3.1 is subsumed by previous results. If dU = ¢, first
approximate f by a map

folx) = flx) + ¥

where y € F — F has norm <g¢; then apply 2.4.
If U # @ but 3F = ¥, extend f to a C" map on an open neighborhood
of ¥ in R™, using local extensions and C” partitions of unity, and apply 2.4.
If both U and &F are nonempty, make the natural identifications:

R™ = (JE) x R, ~ E = (3E) x [0,00);
R = 3F) x R, F = (3F) x [0,0).

For (x,y} € (6E) x R write

f(xy) = (folxfi(x. ) e &F x [0,00).
Note that f; =2 0.
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We use a variation of the convolution of Section 2.1. Let §:R™ — R be
a C” convolution kernel of the special form

O(x,y) = Ax)f(3)
where a:6E — R, #:R — R are C® convolution kernels.

Suppose «, § and & have support radius less then & > 0. Let U’ =
{(x.)e Ul(x2)e Uify € z < y + 4. Define

hU - R,
hix,y) = _f o j’ o 5 = %y + Dots)pe) ds de

Then h is C* and || ~ f||,.. — 0 as & - 0. Moreover WU’} < F because
J1 and B are nonnegative. If f{éU) < 4F then f(x,y) 2 f(x,0), which implies
h(x,y) 2 h(x,0). Now define g(x,y) = h(x,y) ~ hx,0). Then g(U) = F and
g(éU") = oF. If 6 is small enough, the map g: U’ — F satisfies the lemma

3.2. Lemma. Let E < R®, F < R" be halfspaces and U c E, V< F

open sets. Then C*(U,V) is dense in Cy{U,V), and C=(U,2U; V.2V) is dense
in CyUoU;, V,aV), 0 € r < .

Proof. This proof is almost the same as that of Theorem 2.4. The details
are left to the reader.

3.3. Theorem. Let M and N be a C* manifolds, 1 < s < «0; M or N

or both may be nonempty. Then CM,N) is dense in CYM,N) and
C(M,OM; N,ON) is dense in C{M,0M; NON),0O < r < s.

Proof. A relative version of Theorem 3.2 is proved in the same way as

Theorem 2.5. The globalization to Theorem 3.3 is just like the proof of
Theorem 2.6.

QED

3.4. Theorem. Every C" manifold M, | € r < 0, is C diffeomorphic to
a C® manifold and the latter is unique up to C* diffeomorphism.

Proof. Similar to the proof of Theorem 2.9, and left to the reader.

By a " manifold pair (M,M,) we mean a C” manifold M together with
a C submanifold M,. The approximation and globalization techniques
developed so far can be combined to yield the following results; the proofs
have the same general outline as the previous ones and are left 1o the reader.

3.5. Theorem. Let (M,M,) and (N,N,) be C* manifold pairs,1 € s < .
Suppose that M is closed in M, and My c M — éM or My < éM or M,
is a neat submanifold. Then C(M,M,; N,N,) is dense in C(M,M,; N,N,),
O<r<sIfl<r<s and(MMy) and (NN,) are C diffeomorphic, they
are also C* diffeomorphic.
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3.6. Theorem. Let (M.M,) be a C manifold pair. If 0 <r < s ®©
then (M, M) has a compatible C* structure (that is, (M, Mg} is C" diffeomorphic
to a C* manifold pair). If also My, is closed in M. and Mg < M ~ &M or
Mg € &M or M, is neat, then the compatible C* structure is unique up to cr
diffeomorphism of manifold pairs.

Theorem 3.6 is of use in parts of analysis (invariant manifoid theory, for
example) where submanifolds of low differentiability occur naturally.

There are counter-examples to the existence of C* structures on C° pairs
{M.,M,), even where M and M, each have C™ structures.

We leave to the reader the adaptation of the proofs of Theorems 2.12,
2.13 and 2.14 to é-manifolds.

Exercises

1. Let | € r < s < co. There are C* manifolds, M, N and closed sets A = M,B< N
such that C(M,A: N.B) is not dense in (5{M.A; N.B). [Hint: let A = M. Suppose
B = N is a C" submanifold which is not C*, and f:M -+ Bisa " diffeomorphism.]

2. Relative versions of Theorems 3.3 through 3.6 are true.

3. Theorems 3.5 and 3.6 extend to maps of manifold n-ads {M;} - {N;} where
M,c-cMycMand Nyc- < Ny N are nested families of closed neat
submanifolds.

4. Let M be a C* manifold and 4 = M a closed neat submanifold. If g > 2dim M
then every C* embedding of #M in R?, or of 4 in R, extends to C* embedding of M.

4. Jets and the Baire Property

It is convenient to redefine the topologies on C'(M,N} in a way which
avoids coordinate charts. C'(M,N) will be identified with a subset of
CO%M,J'(M,N)) where J(M,N} is the manifold of r-jets of maps from M
to N. In this way C'(M,N) becomes a set of continuous maps. Qur first
goal in this section is to define the weak and strong topologies on such sets.

We denote by C(X,Y) the set of continuous maps from a space X to a
space Y. The compact open topology on C(X,Y) is generated by the subbase
comprising all sets of the form

{(feC(X,Y):f(K) = V}

where K = X is compact and V < Y is open. We also call this the weak
topelogy to contrast it with another topology defined below. The resulting
topological space is denoted by Cy(X,Y).

The weak topology is most useful when X is locally compact. When
Y is a metric space the topology is the same as that of uniform convergence
on compact sets. If X is compact and ¥ is metric, Cw(X,Y) has the metric

d(f.g) = sup, d( f(x).g(x)).
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This metric is complete provided Y is a complete metric space. More
generally:

4.1. Theorem. Let each component of X be locally compact with a

countable base: let Y be a complete metric space. Then Cyd X. YV has a complete
metric.

Proof. 1t suffices to construct a complete metric on Cy{ X, Y} for each
component X, of X; therefore we assume X locally compact with a countable
base. Then X has a countable covering by compact sets |.Y,}. Each space
CwlX,,Y) has a complete metric.

Define a map

p:Cul X, Y)Y = []. Gl X Y.
plf) = fXa

Then p is a homeomorphism onto a closed subspace. Since the product
of a countable number of complete metric spaces has a complete metric.
Cwi{X,Y) is homeomorphic to a closed subspace of a complete metric space
and thus has a complete metric.

QED

Now let X and Y be arbitrary spaces. The space Cgl X.Y) is the set C(X.Y)
with the following strong topology. Let I'y © X x Y denote the graph
of the map f. If W< X x Y is an open set containing I, let

A W) = {ge X, YT, c W}

These sets, for all fand W, form a base for the strong topology. The induced
topology on a subset of C(X,Y) is also called strong.

When X is paracompact and Y is metric, C¢(X,Y) has the base comprising
all sets of the form

A(f e} = {g:d(g(x) f(x)) < &(x), all xe X}

where fe C(X,Y) and ¢ € C(X,R.) are arbitrary.

If X is compact the weak and strong topologies are the same.

We cannot expect the strong topology to have a complete metric, since
it may not have any metric. But we shall see that in many cases it is a Baire
space, that is, the intersection of a countable family of dense open sets is
dense.

Let Y be a metric space. A subset of C(X,Y) is uniformly closed i nt
contains the limit of every uniformly convergent sequence in it. Observe
that this concept depends on the metric on Y. A subset which is closed under

pointwise convergence is uniformly closed, as is a subset which is closed
in the weak topology.

4.2. Theorem. Let X be a paracompuct space and Y a complete metric
space. Then every uniformly closed subset Q < C(X,Y} is a Baire space in
the strong topology.
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Corollary. If M and N are C° manifolds, every weakly closed subset
Q © C(M,N) is a Baire space in the strong topology.

Proof. Let {A,},¢n be a sequence of dense open subsets of Q (referring
always to the strong topology), and let U = @ be a nonempty open set.
Then A, U is a nonempty open subset of Q. Therefore there exists
fo € Ap n U and g & C(X,R., )} such that

gn i(foﬁu} c Agn U

where A7 fy.60) = {g:d(fox,g%) < £o(x)}. We may obviously assume g5 < 1.
By recursion there are sequences {£} in @ and {g,} in C(X,R,) such
that foraline N:

Q o A?(.f;l+ 1y8n+l) < An+1 m 'A/‘(f;uen)f

and ¢,,, < &,/2. The sequence { f,} satisfies

d(fyr 1% fx) € 270

and so is uniformly convergent. The limit f is in @ since Q is uniformly closed.
Also f belongs to every A( f,.&,), 50 f € U and also f € nA,.

QED

We now define jets of finite order r, treating first manifolds without
boundary. Let M, N be C" manifolds, 0 < r < c0. An r-jet from M to N
is an equivalence class [x,f,U], of triples (x,f,U), where U c M is an
open set, xe U, and f:U — N is a C" map; the equivalence relation is:
[x.f,.U], = [¥.f,U’'],if x = x" and in some (and hence any) pair of charts
adapted to f at x, f and f’ have the same derivatives up to order r. We use

the notation
[xf.U], = fif = Jfix)

to denote the r-jet of f at x. We call x the source and f(x) the rarget of [x.f.U].
The set of all r-jets from M to N is denoted by J(M,N). There are well
defined source and target maps:

' MN) - M,  o[xf.U] =x
o J(MN)—= N,  ixf.U], = flx).
We put
ﬂ'_l(X) = J;{MvN)’ Th‘(}’) = J'(MVN)J’
and
JUM.N) n JIM,N), = J. (M.N);

this last is the set of all r-jets from M to N with source x and target y.
Consider the special case M = R™, N = R". We write

J(R™"R"} = J(mn).
Suppose U = R™ is open and fe C(U,R"). The r-jet of fat xe U has a
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canonical representative, namely the Taylor polynomial of f of order r
at x. This polynomial map from R™ to R" is uniquely determined by the
list of derivatives of order r of f at x. This list belongs to the vector space

P(mm = R* x [] L}o(R".R"
k=1

where L% (R™R") denotes the vector space of symmetric k-linear maps
from R™ to R". Conversely any element of P"tm.n) comes from a unique
jet in J%(m,n). In this way we have identifications

J{mn) = P{m,n)
and

J(mn) = R™ x P(m,n).

In particular J(m,n) is a finite dimensional vector space (for r finite). If
U < R™and V < R" are open sets then J(U,V) is an open subset of J'(m.n).

Now let M, N be manifolds of dimension m, n respectively. Suppose
at first that M and &N are empty. If (@,U), (V) are charts for M. N the
following map 8:J(U,V) = J{eU.¢V) is a bijection:

0L R0,y =6x.

Thus 8 sends each jet to the jet of its local representation. Now J1eU.¢1)
is an open set in the vector space J'{m,n), which is isomorphic to a Euclidean
space. Therefore we can view (8,J'(U,V)) as a charton JUM.N)Y; the topology
on J(M,N) is of course that determined by these charts. In this way J{M.N)
is a C° manifold. In fact if M, N are C"** manifolds, J'(M,N) has differenti-
ability class C.

For each C" map f:M — N we define a map

Ff:M = J(MN)

by x — 7 f(x). This r-prolongation of f is continuous and in fact C* if M
and N are C'**, We consider ff as a kind of intrinsic r'th derivative of f.
It is clear that f* is injective.

4.3. Theorem. The image of
JiC(MN) = CHMJ(M.N))
is closed in the weak topology.

Proof. We must show that the image is closed under uniform convergence
on compact sets. It suffices to consider convex compact subsets of coordinate
charts. Ultimately we must prove that if U c ®™ is open and {f,} is a
sequence such that for each k = 0, ..., r the sequence ' D*f(x)} converges
uniformly on U to a continuous map g,:U — LYR™ R, then g, = D*g,.
This is proved by induction on k. The inductive step is the same as the
case k = 1. If Df, converges uniformly to g, and f, converges uniformly
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to g,, we have, for x, x + ye U

g(}(x + Y) = limn—*m f;(x + y)
=l fi0x) + lim,g [ DA + ty)y dt

1
= gol¥) + [ gutx + oy e,

by uniform convergence. It follows easily that g, = Dyg,.
QED

If we give C"(M,N) the topology induced by i from the weak or strong
topology on C°(M,J"(M,N)), we obtain spaces which coincide with Cl{M,N)
and Cy(M,N), as the reader can verify.

From Theorems 4.1, 4.2, 4.3 we obtain;:

4.4. Theorem.

(a) CW(M,N) has a complete metric;

(b} Every weakly closed subspace of Cy{M,N) is a Baire space {in the
strong topology).

Suppose M and N are C* manifolds. We define the set J°(M,N) to
be the inverse limit of the sequence

JUYMN) — JYMN) « - -
and J7(M,N) to be the inverse limit of the sequence
JUAM,N) = J{(M,N) - -

An element of JP(M,N) is, by definition, an co-jet at x.
The maps [ fit together to define a map

J°:C*(M,N) - CO (M J=(M,N)).

Again the image is weakly closed, and the weak and strong topologies on
C™(M,N) are the same as those induced by j* from the corresponding
topologies on C(M,J*(M,N)). It follows that Cp(M,N) has a complete
metric and every weakly closed subspace of C§(M,N} is Baire in the strong
topology. In particular, CF(M,N) is a Baire space.

Returning to the density of embeddings, we give an alternative proof
of Theorem 2.13. It suffices to prove that if f;:M — N is a C" proper map
and A" < Prop"(M,N) is a neighborhood of f, then 4" contains an injective
immersion, for a proper injective immersion is an embedding.

We may assume that

N = N (®,¥ Ke),

the notation being as usual, where K = {K},. , is 2 family of coordinate
disks which covers M.
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Foreachie A let
X = {f € #:f|K; is an embedding}.

Then X, is dense and open in .4". To see this let B; < U, be a slightly larger
coordinate disk containing K, in its interior. By Theorem 1.3.5 we can
approximate f|B; by an embedding g,; glueing g; and f together by a C
map A:M — [0,1] which is 1 on D, and 0 on M — K, gives a map which
embeds D; and which tends to f as g, tends to f |B:. Thus X is dense. Openness
follows from openness of embeddings.
A similar argument proves that if (ij) is such that KinK; = ¢, then
the set

Xy = {fe ¥ :f|K; U K; is an embedding}
is dense and open.

Let K%, K'», ... be a family of refinements of K such that each K%'
is a locally finite covering of M by coordinate disks, and such that for any
distinct x, ye M there exist disjoint disks KY', KY' e K with x e K9,
y€ KY). Since M has a countable base, each K™ is countable.

Let X™ be the set of fe 4 such that f K™ K™ is an embedding
whenever K{™, K® are disjoint disks in K™, Then each X", and hence
(x X, is the intersection of a countable family of dense open subsets of
A". Since the Baire property is inherited by open sets, .+ is a Baire space.
Therefore (), X™ is dense in .#. This intersection is precisely the set of
injective immersions in 4. Therefore embeddings are dense.

In our treatment of jets we have assumed that éM = &N = ). We now
consider the general case where M and N are allowed to have boundaries.

The definition of r-jet is unchanged, but the topology on J{M,N) must
be treated carefully. Consider first open subsets U, ¥ of halfspaces £ < R™,

F < R". For each (x,y)e U x V there are canonical identifications (for
r < o)

UV = *]__]1 Lt (B3

= Jo.olmn).
Consequently

JUVy=U x ¥V x Jo.olmn).

If either dU or ¢V is empty, this is an open subset of a halfspace. But if
U # J and dV # (F it is not. It is, however, homeomorphic to an open
subset of a half space; this follows from the same property for U x ¥,
which in turn follows from the homeomorphism

[0,00) x [0,00) = R x [0,cx).

Thus again J(M,N) has a natural C° manifold structure, and the preceding
development goes through. (But if M and N are C"** S-manifolds, J(M.N)
has no natural C* structure.) The treatment of jets of infinite order is the
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same as before, and Theorem 3.4 holds for all manifolds. The proof of
density of embeddings in Prop§(M,N) can be adapted to {-manifolds.

Exercises

1. Let X be locally compact and paracompact. Suppose Y has an open covering by
completely metrizable subspaces. Then every weakly closed subset of Co(X,Y) is Baire
in the strong topology.

*s%3  Under what conditions is the natural map

CdX.Cs(Y.2)) —» CX x Y.Z)
a homeomorphism?

3. Let X be paracompact and Y metric. For each ¢ € C(X,R,) define a metric d, on
C(X, V)
dff.g) = min {1, sup, d{ frgx)/e(x)}.
(a) I Y is complete each metric 4, is complete.
b IfQcCX.Y)is uniformly ciosed and & is bounded then Q is closed in the
metric space {C(X,Y)d,).
(c) The strong topology on C(X,Y} is that induced by the family of metrics

[d,.ee X R}

4. The Baire property for the strong topology on uniformly closed subsets of C(X.Y)
follows from Exercise 3 and the following. Let Q be a space whose topology is defined
by a family A of complete metrics. Suppose that A is a directed set under the partial
ordering:

d, €£d, if dy{x,y) € dix,¥) for all {x, ).

‘Then @ has the Baire property.

5. Let {X,};.4 be a family of complete metric spaces. Let X be the product of the
sets X;, with the following strong product topology: a set is open il and only if its pro-
jection into each X, is open. i Q@ = X is closed in the usual product topology, the
strong product topology on @ has the Baire property.

6. If M is compact then Ci{M,R" is a Banach space for r < oo,

*7. C%(R,R) is a complete, locally convex topological vector space, but it does not have
a norrm. Thus it is not a Banach space. [Hint: let Ebe a topological vector space. Call
X c E bounded if for every neighborhood N < E of 0 there exists + > 0 such that
(X = N.Then E has a norm if and only if there is a bounded convex neighberhood
of 0.

8. C5(M.R) is a separable, complete locally convex topological vector space; but it
does not have a norm. (See Exercise 7.)

9. Let M be a C manifold, 0 < r € w. The set Diff (MY of " diffeomorphisms of M
is a topological group under composition in both the weak and the strong topologies.

10, Let M, N, P be C" manifolds, 0 < r < co.
{a) The composition map

C(N,P} x C'(M,N) = C"(M.P),
(S fog

is continuous in the weak topologies.
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::; ‘l::or 21:3 f = f, composition is continuous in g in the strong topologies.
or fixed g = g, composition is continuous in f in th ies
and oy 1 g & orer S in the strong topologies if

(d) Composition is continuous at { fo.g,) il and only if g, is proper.
11, Compute the dimension of J(M.N).

*++12. Is CJ(R.R) paracompact? (It is not normal; see Van Dovwen [1])

13. The subspace
X = {fe CARR):Supp f is compact}
is closed but does not have the Baire property.

14. The limit set L{f) of f:M — N is the set of y € N such that y = lim x, for some

sequence {x,} in M which has no convergent subsequence. If di .
1 € r € o0 then embeddings are dense in bsequence. I dim N > 2 dim M and

2 = {fe CAMN):fIMyn LL)) = &}.
1 . . .
[ ff'rii;therze.ll;.;n openset N, = N containing f(M) such that f:M — N, is proper;

15. An open set P < J'(mn) is natural if it is closed under compositi ith }
' F sition with jets of
}g)(t;l :’;ﬂeoao:ll‘)hisms of R™ and R" Given such a P and C maf:ﬁfolds M, N J;eﬁnco
1,N) to e set of C” maps from M to N all of whose local resentati
their r-jets in P. Then P(M,N) is open in C{M,N). P tions have

16._'I'he set of.immersiolns is a Baire subset of CL{M N}, 1 € r € @ if dm M <
2 dim N. (A Baire subset is the intersection of a countable family of dense open subsets )

*17. The space C{M,N) is completely regular, 0 < r € 0.

5. Analytic Approximations

Partitions of uqity are of no use for constructing analytic approximations
because an analytic function on R" is constant if it has bounded support.
More subtle globalization technigues are needed.

Using methods from complex analysis, Grauert and Remmert [1] have
proved the following deep result:

5.1. Theorem. Let M and N be C® manifolds. Then C°(M,N) i .
Ci{MN)LO < r < o0, i (M,N) is dense in

_ That this is true is very fortunate, for it means that C* differential topology
is no different from the C* theory for such questions as diffeomorphism
classification of manifolds, existence of embeddings and immersions, etc.
These questions concern open sets of maps, from one manifold to another.
Where closed sets of maps or individual maps are considered, for example
solqtions to differential equations, the degree of differentiability may play
an important role. It is also an important consideration whenever maps
from a manifold to itself are studied. For such maps problems of conjugacy

and itcrz_ttion arise, and high differentiability is sometimes a crucial
hypothesis.
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Oceasionally analytic maps are a useful tool because their level surfaces—
even critical ones—are analytic varieties. More general than manifolds,
analytic varieties still are topologically fairly simple. In particular, they
can be triangulated.

Morrey [1] proved Theorem 5.1 for compact manifolds. An elegant
treatment of this case was given by Bochner [1] under the assumption of
an analvtic Riemannian metric.

Once Theorem 5.1 is known, the existence of compatible C* structures
on C' manifolds can be proved using the maximality argument of
Theorem 2.9. This was first proved by Whitney [2] using the following
easier approximation result:

5.2. Theorem (Whitney [6]). Let U = R™ be open and fU-RacC
map, 0 < r < oo. Let v:R™ - [0,1] be a C* map of bounded support, equal
to | on a neighborhood of a compact set K < U. Set h{x) = v(x)}f(x). Let
5:R™ — R, 8(x) = exp (—|x|?). Let T = 1/fg 8. Let & > 0. Then for x > 0
sufficiently large, the convolution g of h with the function Tk™ 8(x,x) is analytic
and satisfies l|lg — flb.x < &

The proof is straightforward, but in the absence of partitions of unity
it is not easy to pass from Theorem 5.2 to an approximation theorem for
abstract C* manifolds. For C® submanifolds of R", however, Theorem 5.2
works quite nicely once the technique of tubular neighborhoods is available.

We shall use Theorem 5.2 to prove, in Section 4.6, that C* manifolds
have compatible C* structures.

Nash [1] proved that a compact connected C® manifold without
boundary is C* diffeomorphic to a component of a real algebraic variety;
he also proved an algebraic approximation theorem for maps of such
manifolds; sce Shiata [1].

An interesting topological application of Nash's results was made by
Artin and Mazur [1]: if M is a compact connected C* manifold there is
a dense subset of C2(M,M) of maps f:M - M such that the number of
fixed points of f* is bounded above by a function of the form Ae* where
A and 1 are positive constants.

Exercise

1. If U « R™is open, polynomials are dense in CJ(U,R). [Hint: replace the exponential
in Theorem 5.2 by a Taylor polynomial.]

Chapter 3

Transversality

Transversality unlocks the secrets of the manifold.

—H. E. Winkelnkemper

Transversal” is a noun; the adjective is “transverse.”

—J. H. C. Whitehead. 1939

Consider the following statements:
1.
2.
3.

lff:Sf—» Rz iSBCI, then f~'(y) is finite for *most™ points y € R*.
Two lines in R’ do not intersect “in general.™ )

If f:R - Ris C', “almost all” horizontal lines in R x R are nowhere
tangent to the graph of f.

“Generically” a C' immersion §' ~» R” has only a finite number of
crossing points.

4.

‘ These statements illustrate a type of reasoning that is common in differen-
tial topology. Most people would agree they are plausible. Yet there is an
elemen} of uncertainty about them, due to the vagueness of the words in
quotation I!’.lal'kS. Even if these are given precise definitions, it is obvious
that something needs to be proved. The purpose of this chapter is to develo
the mathematics needed to justify such statements. P

The basis of this mathematics is a profound result in analysis. due to
A. P. Morse and A. Sard.! It says that if f:R" - R* is ", where r > max
{Ofn — k}, then the set of critical values has measure zero in R* We prov‘e
this only for the case r = oc. This version is considerably easier and is ade-
quate for differential topology.

Tl_lc rez?der may prefer to accept the Morse-Sard theorem {Theorem 1.3)
on faith, since the method of proof is not used elsewhere. )

In.Sccuon 3.2 the Morse-Sard theorem is used to prove various trans-
ver§ahty theorems. These guarantee the existence of plenty of maps f: M — N
lwhu.:h are transversc to a submanifold 4 = N. Thisisa fundamem.z;l resu.h
in differential topology; analogous statements in the theoty of topological
or polyhedral manifolds are false. )

In this chapter and the remainder of the book, all manifolds and sub-
manifok'is are assumed to be C* unless the contrary is stated. In view ol: the
approximation results of the preceding chapter this is not a serious restriction.

! The first theorem of this kind was proved by A. B. Brown [1], See also Dubovickii [t].

Fate |
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1. The Morse-Sard Theorem

An n-cube C = R" of edge A > 0 is a product
C=Ix " xLcRx-xR=R
of closed intervals of length 4; thus
I =laja; + 4] = R
The measure (or n-measure) of C is

H(C) = miC) = A"

A subset X = R" has measure zero if for every € > 0 it can be covered
by a family of n-cubes, the sum of whose measures is less than &. A countable
union of sets of measuce zero has measure zero. Therefore X has measure
zero if every point of X has a neighborhood in X of measure zero {by
Lindeldf’s principle).

L1. Lemma. Let U c R" be an open set and f:U — R" a C' map. If
X < U has measure zero, so has f(X).

Proof. Every point of X belongstoanopenbail B = U such that || Df(x)||
is uniform!ly bounded on B, say by x > 0. Then

|fx) — f(0)] < wfx = ¥

for all x, y € B. It follows that if C = B is an n-cube of edge 4, then f(C) is
contained in an n-cube C' of edge less than Jrnxd = LA Therefore ) <
L.

Write X = U X, where each X, is a compact subset of a ball B as
1

above. Foreache > 0,X; © { Ji Cywhereeach Cyisan n-cube and Y u(Cy) <
& It foliows that f(X;} = | Ji Ci where the sum of the measures of the n-cubes
C, is less than L". Hence each f(X;) has measure 2¢ro, and so f(X) has
measure zero.

QED

Now let M be a (C®) n-dimensional manifold. A subset X = M is said
to have measure zero if for every chart {p,U), the set @{U n X) = R" has
measure zero, Because of Lemma 1.1, this will be true provided there is some
atlas of charts with this property.

Notice that we have not defined the “measure™ of a subset of M, but
only a certain kind of subset which we say “has measure zero.” This is in
accordance with the red herring principle (Chapter 1, page 22, footnote).

It can be shown that a cube does not have measure zero. Therefore a
set of measure zero in R" cannot contain a cube: hence it has empty interior.
1t follows that a closed measure zero subset of R", or of a manifold M, is
nowhere dense. More generally, suppose X < M has measure zero and is
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o-compact, that is, X is the union of a countable collection of compact sets.
Each of these is nowhere dense, and so M — X is dense by the Baire
category theorem. The complement of X is residual. that 1s. it contains the
intersection of a countable family of dense open sets. The Baire theorem says
a residual subset of a complete metric space is dense. Note that the inter-
section of countably many residual sets is residual.

1.2. Proposition. Let M, N be manifolds with dim M < dim N_1If fM-
Nisa C! map then N — f(M) is dense.

Proof. Itsuffices to show that f(M) has measure zero. This follows from:
g(U) © R" has measure zero if U < R™ is open and g:U — 1" is C'. with
m < n. To prove this assertion, write g as a composition of C' maps

U=Ux0cUxR™SUSIR
Clearly U x 0 has n-measure zero in
UxR"cR"x R™™=R"
hence the proposition follows from Lemma 1.1 applied to ng.

QED

Recall that a point x € M is critical for a C' map f:M — N if the linear
map T.f:M, = N, is not surjective. We denote by Y/ the set of critical
points of f. Note that N — f(3 /) is the set of regular values of f.

1.3. Morse-Sard Theorem. Let M, N be manifolds of dimensions m. n
and f-M — N a C" map. If

r > max {0m — n;

then f(3 ;) has measure zero in N. The set of regular values of f is residual
and therefore dense.

The differentiability requirement is strange but necessary. We shall prove
the theorem only in the C* case. Before beginning the proof let us examine
the implications of the theorem in particular instances.

Let f:R — R be C'. If y is a regular value. then the horizontal line
R x y « R x R is transverse to the graph of { (Figure 3-1). Thus the
theorem implies that “most™ horizontal lines are transverse to the graph.

Consider next a map f:R? — R'. In this case the theorem says that most
horizontal planes R?* x z = R* x R are transverse (o the graph of f if I is
C? (Figure 3-2). This seems plausible. In fact it seems plausible that this
should hold even if f is merely C'; but Whitney [1] has found a counter-
example! In fact Whitney constructs a C' map f %2 —» R! whose critical
set contains a topological arc 1, yet |1 is not constant, so that f (Y ;) contains
an open subset of R. This leads to the following paradox: The graph of f
is a surface S — R® on which there is an arc 4, at every point of which the
surface has a horizontal tangent plane, yet 4 is not at a constant height. To
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Figure 3-1.

Horizontal plane

Figure 3-2.

m_ak_e this more vivid, imagine that S is a hill and A a path on the hill. The
hill is level at every point of the path, yet the path goes up and down.

Proof of the Morse—Sard Theorem for C” Maps. 1t suflices to prove a
local theorem: thus we deal with a C™ map f:W — R" where W < R™ is
ope;\. If m < n then f{W) has measure zero. We assume from now on that
mz=n

A differential operator of order 1 means a map C*(W.R) — C=(W R} of
the form ’
e

ox),
for some k € {1, .. ., m}. The composition of v such operators is 2 differential
operator of order v.

We express the critical set 3 as the union of three subsets as follows.

Write f(x) = (fi(x), ..., fulX).

g

1. The Morse  Sard Theorem

! is the set of points p € S, such that 4f.(p) = 0 for all differential
operators A of order < minand alli =1, ..., m

Y2 is the set of points p€ Y, such that 4f{p) # 0 for some i and some
differential operator 4 of order 22;

32 is the set of points pe Y7 such that % (p} # O for some i, j.
Xy

Clearly ¥, = T v v’

We now show that (') has measure zero. Let v be the smallest integer
such that v > m/n. The Taylor expansion of f of order v about points of
$'! shows that every point of )" has a neighborhood U in W such that if
peY!n Uandge U then

lf@) - fi@l<Blp —ql.B=0.

We take U to be a cube. It suffices to prove that f(U ~ 3 has measure zero.
Let A be the edge of U and s a large integer. Divide U into s™ cubes of
edge As. Of these, denote those that meet ¥.! by Cp. k= 1,.... % where
t < s
Each C, is contained in a ball of radius (3/s)/m centered at a point of
U ~ X. Therefore f(C;) is contained in a cube Cy = B whose edge is not

more than
A Y A\
Bl- =Al-].

Hence the sum a(s) of the n-measures of these cubes Cj is not more than

A (%) = A

Since m — vn < 0 it follows that o(s) — 0 as s — . Thus fiU YY) has
Mmeasure zero.

Note that }.! = Syin=m= 1. Therefore the Morse-Sard theorem
is proved for this case. We proceed by induction on m. Thus we take m > |
and we assume the truth of the theorem for any C* map P = Q where
dim P < m.

We prove next that f (3.2 — ¥.*) has measure zero. ForeachpeY? —2°
there is a differential operator @ such that

of{p) = 0,
(h 3
'(.,Iefi(!’) #0

)

for some i, j. Let X be the set of such points, for fixed 6. L J. It suffices to
prove that f(X) has measure zero.

Formula (1) shows that ¢ € R is a regular value for the map 8f: W — R.
Because f, is C*, so is 8f;. Therefore X is a C* submanifold of dimension
m — 1.Clearly ¥ ; n X & 3 six- By the induction hypothesis, f(3 ;) has
measure zero. Hence f(}.2 — 3) has measure Zero.
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It temains to prove that S(3%) has measure zero. Every point pe y7?
has an open neighborhood U ¢ W on which, for some i, j, efifox; # Q.
By the implicit function theorem we may choose U so that there is an open
set A x BeR"! xR and 3 C* diffecomorphism #:4 x B = U such
that the following diagram commutes-

AxBAy
l 1
B R

In other words fx,,. .. s Xmo ) = tfor {xte A x B,
For notational convenience we reorder the coordinates in R so that
Ji = fo- We identify U with 4 x B via fi; now f|U has the form

R™!'xRoAdx BLR-t x g
S8 = (ufx),0)

where for each r ¢ B, A -+ R lisa C® map. It is easy to see that (x,r}
is critical for f if and only if x is critical for u,. Thus

Yrn(A x B = Uien Y., x 1.
Since dim A = n — 1, the inductive hypothesis implies that
tn- () = 0

where i, _, denotes Lebesgue measure in "~ ! Fubini's theorem now implies
that

Hy (UreB f(zu, X f)) = fﬂ lun*l(ul(Zu,))dt
= J'BOdr =0.

Therefore, reverting to the original notation, we see that f(3* A U) has
measure 0,

QED

As the first application of the Morse-Sard Theorem we prove the
following topological result, equivalent to Brouwer's fixed-point theorem:

1.4. Theorem. There is no retraction p* — §*1.

Proof. Suppose f:D" - §7°-1 s a retraction, ie., a continuous map
such that fI§"~! = identity. We can find a new retraction g:D" — g1
which is C* on a neighborhood of §*~ ! in D", for example

xfix if 2< x| g1
g = PJOOED i 125
f2q) it o<y <12

Approximate ¢ by a C* map h:D" — s~ which agrees with ¢ on a
neighborhood of $"~1; then / is a C* retraction.
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By Theorem 1.3 there is a regular value ye S of h {All we need is
one regular value!) Then h~'(y) is a compact one-dimensional submanifold
V< D" and

V=Vns!

Therefore y is a boundary point of ¥. The component of ¥ which contains
¥ is diffeomorphic to a closed interval; it must have another boundary point
zeS"7 ! z £ y. But i(z) = contradicting z e h~!(1).

QED

The same argument proves that if M is any compact smooth manifold,
there is no retraction M — @M. This is true even without smoothness,
but the proof requires algebraic topology.

Brouwer's fixed-point theorem says that any continuous map f:D" — D"
has a fixed point, that is, f(x) = x for some x. This follows from 1.4: for
if f(x) # x for all x, a retraction 9:D* —+ 71 is obtained by sending x
to the intersection of $"~! with the ray through x emanating from f{x}):
sce Figure 3-3.

This proof that D* does not retract to §*-! illustrates the interplay
between maps and manifolds. The final step of the proof is the observation
that a compact 1-dimensional manifold has an even number of boundary
components. Thus the very simple topology of 1-manifolds leads to a
highly nontrivial result about maps.

This method of studying maps is used frequently in differential topology.
Its basic pattern is: approximate by a C* map, find a regular value, and then
exploit the topology of the inverse image of the regular value,

An important extension of the method uses not a regular value but a
submanifold to which the map is transverse. To achieve transversality,
further approximation theorems are needed. These are developed in the
next section.

gix)

Figure 3-3,
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Exercises

*1. Let f:R — R be differentiable (not necessarily C 1), Then the set of critical values
has measure 0.

2. (a) For every yq € N, the set
{f € C'(M,N): v, is a regular value}

is open and dense in CE{M.N),1 < r < o0,

(b} Given yg € N, fo:M — N, aneighborhood 4" © Ci(M N} ol fo, and a neighbor-
hood W < M of f§ %y}, there exists g € 4" such that yp is a regular valueand g = f;
onM - W.

3. Let M be a manifold without boundary and K < M aclosed set. Every neighborhood
U = M of K contains a ciosed neighborhood of K which is a smooth submanifold of
M.[Consider 1~ '[0,y] where .: M -+ [0,1]is 1 on K, hassupportin U, and yisaregular
value of 1.]

4. (a) Let M be a connected manifold and f:M — N an analytic map. Let z oM
be the set of critical points. If ¥ # M then £~ 'f(})) has measure zero.
(b} 17 f is merely C*, the conclusion of (a) can be falsc.

+x+5, Lot U = R® and V = R? be open sets. If {:U —» V is C' and surjective, does f

necessarily have rank 2 at some point of U?

2. Transversality

Let f:M — N be a C' map and A = N a submanilold. If K < M we
write f (\x A to mean that [ is transverse to A along K, that is, whenever
x€ K and f(x) = ye A, the tangent space N, is spanned by A4, and the
image T, f(M,). When K = M we simply write f h A.

In Sections 1.3 and 1.4 it was shown that if f 4 4 then f~}(4) is a sub-
manifold (under certain restrictions on boundary behavior). This is one of
the main reasons for the importance of transversality.

Define

M (MN; A) = {f € CMNY:S (N A},

M (M,N; A) = My (M.N; A).

The main result of this section is the following theorem. Recall that a
residual subset of a space X is one which contains the intersection of count-
ably many dense open sets. (Remember that all manifolds and submanifolds
are tacitly assumed to be C*.)

2.1. Transversality Theorem. Let M, N be manifolds and A = N a suh-
manifold. Let 1 € r < . Then:

(a) m’ (M,N; A) is residual (and therefore dense) in C(M,N) for both the
strong and weak topologies.

(b) Suppose A is closed in N. If L « M is closed [resp. compact], then
M (M,N; A) is dense and open in CHM.N) [resp. in Cl{M,N}].

The proof is based on the Morse-Sard theorem for the local result, and
on the same globalization that was used for openness and density of immer-

and

2. Transversality 4

N

sions in Chapter 2. Since this technique will be used more than once. we first
develop it abstractly. .

Let M and N be " manifolds, 0 € r < x. By a (" mapping class on
(M,N) we mean a function & of the following type.'The domain of 4 is the
set of triples (L,U,V) where U c M, ¥ < N are open. L < M is closed.
and L < U. To each triple  assigns a set of maps .#(U.¥) c C(L.V)
In adfiition 3!‘ must satisfy the following localization axiom: -

' Gm;n triples (L,U,V) a map fe C(U,V) is in (U1 provided there
exist triples (L;,U,V)) and maps f;€ & (U..}) such that L c UL, and
f = f; in a neighborhood of L,, for all i. l

An example to keep in mind is:
FUUVY = MUV VA A,

A mapping class 2 is called rich if there are open covers %, ¥ of M, N
such that whenevc?r open sets U « M, V < N are subsets of elements of
%, ¥ and L < U is compact, then & ,(U,V) is dense and open in G L. 1),

2.2. Globalization Theorem. Let ¥ be a rich C" mapping functor on{M.N),
0 < r < oo. For every closed set L =« M:

(@) T (M,N) is dense and open in C{M N):
(b) ' (M,N} is dense and open in Cp{M,N) if L is compaci.

. Pr‘oaf . Fix L and f € C(M,N). In what follows i runs over a countable
indexing set A. Let @ = {¢,U;} be a locally finite atlas on M, K, < L,
compact sets such that L = UK;, and ¥ = {y,.¥;] a family of chart; on .\:
such that f(K;} < V.. Because X is rich we can choose U and V, so that
Ak (E,V) is dense and open in Cy{(E,V)) for every open set £ (‘I which
contains K,. l

Define # <= C'(M,N) to be the set of all g € C"(M.N) such that
glU;e Iy (UV)  forall  ie.l

The localization axiom implies .# = Z,(M.N).

Supppse feZ(M,N). Then fe .# by the localization axiom. Our
assumption t'hat each Z' (U, V) is weakly open implies that when L is
compact .# is weakly open (since A is then finite), while in general . # is
strongly open (because @ is locally finite). This proves the two openness
statements in Theorem 2.2.

We now drop the assumption that fe & (M.N) and proceed to the
density part of Theorem 2.2.

'For each i let &, > O be given. Then there is defined the strong basic
neighborhood N
A= A B K )

when:: K ={K}i.,ande = {g};.,-
Fixje A.LetE = U; n f7!(V};then K; < E. Since A is rich, £ (E.}))

is dense. Let 1:E — {0,1] be a C" map with compact support. such that
4 = 1l near K;.
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To simplify notation, identify V; with an open subset of a halfspace via
¥, 50 that vector operations make sense on elements of V_, _

If g € CW(E,V)) is sufficiently close to f |E, the following map I'(g) =
h e C"(M,N) is well-defined:

F) + Ux)[efx) — f(x)] if =xeE
hlx) = fix) if xeM — E.

Moreover, as g tends to f|E in the weak topology, h - f in the strong lopoz
ogy. Since Z'g (E,V)) is dense, we can choose g € Xk (E,V}) so close to f}
that he 4. Since h = g near K it follows that he R"KJ(M,N).

This shows that for all i € A, the set 'y (M,N) if; dense in Cy(M,N); an_d
we already know it is open. It follows from Baire th.at i X (M,N) 11s
strongly dense; since this set contains Z';(M,N), the latter is therefore strongly
dense. ‘ o

The proof that Z,(M,N) is weakly dense when L is compact, 1s similar.

QED
The proof of Theorem 2.1 will be based on the following semilocal result.

2.3. Lemma. Let K be a compact set in a manifold U, R* < R" a linear
subspace, and V < R" an open set. Then

My (UVR V)
is dense and open in Cy(U.V), 1 < r £ 0.

. Si C,(U,V) is open in Ch(U,R" it suffices to take V = R".

ftr:foﬁ:{lg"mje R"7ﬂ§i“ bc) the %erojection. If f € C(U,R" and x€ U, thlen
f (O, B if and only if: either (i) f(x) ¢ R?, or (i) x € R" and x is a regular

i U - RYRe
pouélug)goi fUm K [R“{Then each y € K has a.(':ompact neighborhood K, = K
such that either (i) holds for all x € K, or (i) ho_lds for' all x € K,. Let such
a K. be chosen. It is easily seen that whether (1) or (i1) holds p, the .sel of
fe :L‘;v(U,IR") such that f T\, R” is open. Since K is cov::red‘l by a finite set
of neighborhoods K, ..., K,,, it follows that {l\x (U.R ; B is open.

We now prove denseness. Since C* maps are dense in Cy(U ,IF&r ), it suﬁces
to show that an arbitrary C® map g: U — R"is in the closure of (h K (UR"; E).
Let {y,} be a sequence in R" tending to 0, such that each n{y,) is a regular
value of ng: U — R"/R". Define

g U - R
adx) = g(x) — ye

Then g, — g in Cu(U,R). Since g, 4 R, this shows that ([ (U,R") is dense
in Cu(U,R",
QED
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Proof of the Transversality Theorem 2.1. First we assume that 4 is a
closed submanifold and prove Theorem 2.1(b). We begin with the case
N = .
It is easy to verify that for 1 < r < oc the function

ZALUV) N (UV; 4 A V)

is a C" mapping class on (M,N}. Under the assumption that éN = & and
A is closed, & is rich. This follows from Lemma 2.3 by taking # 1o be any
open cover of M and ¥ to be an atlas of coordinate domains on N that
come from submanifold charts for (N,A). It follows from Theorem 2.2 that
m; (M,N; A) is strongly dense and open, and weakly dense and open if L
is compact.

Suppose now that A is still closed, but N # . Wemay assume N < R¢
as a closed submanifold. Then the weak and strong topologies on C(M.\)
are those it inherits from the weak and strong topologies (M, RY). We have

already proved that (h’ (M,R; A) is strongly open, since A = R is closed
and 0R? = ¢¥; therefore the equation

(N (M,N; 4) = C(MN) A ([ (M.R*: A)

shows that m’ (M,N; A) is strongly open in C'(M.N). A similar argument
shows that mi (M,N; A} is strongly open, and weakly open if L is compact.
For density put N, = N — &N, Ay = A — ¢N, so that N, = & and
Ao <= Ny is a closed submanifold. Then N (M.N,: A,) is strongly dense
in C'(M,N,), and weakly dense when L is compact. Now CT(M,Ng) is a
subset of C{M,N) which is both strongly and weakly dense. Therefore

L (M,Ng: Ay is a subset of fh;_ (M,N; A) which is strongly dense. and
weakly dense when L is compact. This proves Theorem 2.1(b} in full
generality.

To prove Theorem 2.1(a) when A4 is not closed, let A, be a countable
family of compact coordinate disks on A. Then

M MN; ) = () N (MN: A,
k=1

Since A, is closed, m’ (M.N; 4,) is strongly dense and open which proves
{h’ (M,N; A) strongly residual. Write M = O M where cach M ; 15 com-
pact. Then !
(Y (M,N; 4,) = ﬁ‘ M MAM.N: A,).
i=

This makes each [\ (M,N; A,) weakly residual; hence each " (M.N: 4,

is weakly residual. Finally, m' (M,N; A} is weakly residual. The proof of
Theorem 2.1 is complete.

QED
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Transversality is often used to put submanifolds A, B = N in general
position; this means that the inctusion map B — N is transverse o A, or
equivalently, that A, + B, = N, when x € A4 n B. Note that this condition
is symmetric. If 4 and B are in general position then A n B is a submanifold

of both A and B.

2.4. Theorem. Let A, B be C" submanifolds of N, 1 < r < <. Every
neighborhood of the inclusion ig:B = N in C¥(B,N) contains an embedding
which is transverse to A.

Proof. From the approximation results of Chapter 2 we may assumer =
0. The theorem follows from Theorem 2.1 and the openness of embeddings.

QED
Frequently one wants a map M — N to be transverse not just to one
submanifold, but to each of several submanifolds Ag, . - ., A If each 4, is

closed, the set of such maps is open and dense; this follows [rom openness
and density of m' (M,N; A,). Butifthe 4;arenot closed we may lose openness.
(But see Exercises 15 and 8.)

2.5. Theorem. Let Ag, ..., A, be C' submanifolds of N, 1€r< oo
The set m' (M,N; Ag, ..., Ay} of C" maps M = N that are transverse Lo
each A, i=10,...,4q,18 residual in Cy{(M,N).

Proof. Since each set ([ (M,N; A,) is residual, k = 0, .. ., g, their inter-
section is residual.

QED

The following typical application of transversality is frequently used.
For integers n = k = 0, let V, ; denote the Stiefel manifold of linear maps
R* - R" of rank k. It is an open submanifold of the vector space L{R*,R").
An element of V, , can be thought of as a k-frame, that is, a k-tuple of in-
dependent vectors in R": the image of the standard basis of R*.

2.6. Theorem. Let M be a g-dimensional manifold and K = M a closed
set. If ¢ < n — k then every map K — V, , extends to a map M-V,

Proof. Weassume n > k > 0, the other cases being trivial. By covering
M with a locally finite family of coordinate disks and making successive
extensions, one reduces the theorem to the case M = D*. By Tietze's theorem
f extends to g:D* =» LRRM. Let A= L{R*R"} — V,,. Then g~ '{A) is
closed and Kng Y (4)= . By the relative approximation theorem
(Theorem 2.2.5) we assume: g is C* on an open set My <= D7 containing
g~ '{(A), such that K is disjoint from the closure of Mg, and g = fon K.

The subset A = L(RY,R") is the union of the subsets

Likna: p) = {Te LR RY):irank T = ol

2. Transversality
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p=0,...,k ~ |. Each of these is a submanif i

0 . ‘ e old. To see this fix Te Lik.n:
L_eﬂt%" iiRf —; R‘i be a hqear_ injection transverse to the kernel of T an’:i. ;::'t
p:R" = R a linear surjection whose kernel is transverse to the imz;ae of T.

For any S € L(k,n; p) i i i
il ) in a sufficiently small neighborhood U of T, the linear

' pSi:R* - R®
is an isomorphism. Define

(p:U - Gk-'t‘ﬂ x uR.ﬂ'RP) x Gn.P"
S+ (Ker S, pSi, im 5);

l;ere G, is the Grassmann manifold of {-planes in R™: its dimension is
"-(lm — ?). Then ¢ maps U homeomorphically onto an open set. All possible
m:ps. ot t}sztype f(f)rm an atlas on L{k,n; p). Since the inverse of ¢ is a ™
p into n), it foll W P 1
rap into J ) ows that L(k,n; p) is a C* submanifold of L(R*R") of
dy=(k—plp + p* + pln — p)
= nk ~ (n — p)ik — p).

and codimension (n — p)(k — p). Thi .
that d, increases with p. ( p)- This holds for 0 < p < min (k). Note

Put A = Likn:
A, Now » = L{k.n; p}. The map g can be assumed to be transverse to each
de—y = (k = )(n + 1).

Thereforeifp < k — 1,

dmLRRY —d, Z2hkn—(k—Dn+ D=n—k + 1.

It foliows that ifdim M < n — k + 1, the | i
andso oM o er , the image of g misses Ao L U A, ;

QED
Frequently one deals not with all C m
: . aps M — N but only with
?mvlly oér r(nﬂz/}p;Jr parametrized by another manifold ¥. Thus one has ;lmag
V- ,N) and 1 i1 1
i the ) a submanifold A = N; it required to find ¢ € V such
Foy=F, M- N

is transverse to A. Of course restrictions must be placed on F. We call the

following result the i i
- parametric transversality theorem. For simplicity w
state it only for manifolds without boundary. plicty we

2.7. Theorem. Let V, M, N be C" manifolds wi

2 orem. M, s without boundaryand A = N
a C" submanifold, :Let F:V = C'(M,N) satisfy the following conditions:

(a) the evaluationmap F**: V x M = N, (v,x)— Fix). is C"; .

(b) F™ is transverse to A; o ’

{c} r > max {0,dim M + dim A — dim N}.



%0 , 3. Transversality

Then the set
: MF; 4) = {ve ViF, th A}

is residual and therefore dense. If A is closed in N and F is continuous for
the strong topology on C'(M,N) then MF,A) is also open.

Proof. The last statement follows from openness of (]Y (M,N; 4). To
prove the rest of the theorem et W = (F") {4) = V x M.By(a),Wisa
r submanifold of ¥ x M.Letm:V x M — V be the projection. It is readily
verified that F, f\ 4 is and only if ve V is a regular value for the C" map
|W:W — V. The dimension of W is dim V + dim M — dim N + dim A.
The theorem follows from Morse—Sard.

QED

In many situations parametric transversality is not sufficient; instead of
a map from a manifold to a function space, one must deal with a map defined
on another function space. Often the domain of the map is an infinite dimen-
sional manifold; in this case there is a generalization of Theorem 2.7 due to
R. Abraham [1].

A common situation concerns the jet map

F:CY{M,N) = C* (M J'(M.N)).

Here | < r < 5 < oo. One is given a submanifold 4 < J(M,N) and tries
to approximate a C* map g:M - N by another C* map h whose prolonga-
tion j'hi:M — J(M,N) is transverse to A. Denote the set of such maps h by
M (M.N: A

2.8. Jet Transversality Theorem. Let M, N be C® manifolds without
boundary, and let A = JAM,N) be a C® submanifold. Suppose 1 £ r <5 <
co. Then (' (M,N; J',A) is residual and thus dense in CUM,N), and open if
A is closed.

Proof. Suppose A is closed. Openness follows from openness of
(s~ (M, J(M,N); A). To prove density let U = M, ¥ = N be open sets
and let L « U be closed in M. Define

2 UV = {feCWYFf M A}

One verifies easily that ¥ is a C mapping class on (M,N). By the
globalization Theorem 22 it suffices to prove Z rich. For the coverings
g, ¥ in the definition of rich choose any open coverings by coordinate
domains. It now suffices to prove that if U « ™ is an open subset and
A < J(URY is a closed submanifold, then ﬂ\’{U,R”; j",A) is open and
dense in C%(U,R”). Moreover it is enough to prove this for s fimte, s > r.
Fix fe C(U.R". Openness is obvious. The strategy for denseness is to
find a € manifold X and a map «: X — 3, (U R with f e alx), and then
apply parametric transversality to the composition

FiX 5 CURY S C(UJURY).

2. Transversality

This requires that the evaluation map of F,
FrX x U= JMUEY

f ct l“ be a C

- Put. R{n= J;S.IR'",R"). Every ‘element of X is the s-jet at 0 of a unique
ap g:R™ — R" whose coordinate maps g,.....g, are polynomials of

degree < 5 in the coordinates of R™. We i ifv i
e . We identifv the elements of X with

Define a: X ~ Cj{(U,R"), g f + g|U and
F=foX - C(UJIUR.
Then F(0) = f. To compute F™ make the natural identification

JIUR" = JH(R™R" x U,

Then
Fﬂ:Ja(Rm’R. U - Jr .
is given by ° ) x JHR™RY) x L
(folghx)— oy
The map Jighx) = (elg + f)x)

IR R - JHR".RY)
flgy—jolg + N
is affine, hence F is C*. Moreover the derivati int 1
ol et o € erivative of § at any point is the
ol R™R") — JHR™,R"),
Jolg) = fol g

which is surjective. Thus F<* §\ 4; by Theorem 2.7 it follows that
{x e X:f(ax)} h A}

is dense in X. Since
a:X - Cy(URY
is continuous it follows that f is in the closure of

{he CRURY):fh 4 A

This proves that Z is rich; hence for closed A, Theorem 2.8 follows from

Theorem 2.2. If A is not closed write A = | ] A, where each IA, is a com-

) o k=1
Pactscoordmate dls_k in A. Then each m’ {M.N;j" A} is dense and ¢pen
in C{M,N). By Baire their intersection, which is (\* (M,N; 7,A). is dense.

QED
J.ust as w1‘t!1 ordinary transversality, jet transversality extends to sub-
manifold families; we leave the proof of the following result to the reader.
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2.9. Theorem. Let A, ..., A, be C* submanifolds of JAM,N). Ifl1<r<
5 < oo then the set
1]
{fe C(MN:Jfh Ak =0...,49]
is residual in C3{M,N). y .
icati i i { density of immersion
lication consider anew the question o mer
i CQ(SA:nNa)pEet A, = J{M,N)bethe set of 1-jets of rapk k. Let m = dim M,
S im N, Then Ae.... A, is a C* submanifold family. A map
f —ﬂ_vi - N 'is an immersion if and only if the lm‘altgc_ of j'f misses
fA. u--uA,_,. The set of fe CHM,N) such that j'f is transycrs: to
A0 LA _,m is dense in CZ(M,N). 1f, for i=_ 0,...,m - 1,‘ dim ‘io:
di(;‘l-f.\ff ,< ':lim JY(M,N), such transversality implies that f is an immersion.
As in the proof of Theorem 2.5 one computes that (assuming m < n)

dim A, < dim A,_, = 2m + mn — 1,
dim JU M N)=mn + m + n.

Denseness of immersions in thus implicd by
Cm+mn—DN4+m<mn+m+hn

which is the same as n = 2m, exactly the con-dition t.'our‘\d prevu})ll.lslty.as .
This proof is not very satisfying geomel;ui,ally;_tll E;v\:: 1:;)6 ;:)wer o
i ion i d. Nevertheless it s
ow the immersion is constructe ! the |
tlransversality: the existence and even the denseness of immersions 1S proved

by merely counting dimensions!

Exercises

d ints if whenever x, y are distinct points
i i ‘M — N has clean double points if w s
:)'f 1?4"\:1?;1“}{;0: ff{ ¥), they have disjoint neighborhoods U, V such that flU and f}

i 1 position (as defined in
i d the submanifolds f{U), f(V) are in general posk
;?ct?g‘nbgd;)m'l%ls;ea:et of immersions that have clean double points 13 dense and open

in Immi{M,N), I €< r € . ‘ N
i i : is in general position if for any integer k 2 2, W
j{ A}n 1mmersnc}?xﬁ.i/l ; a::l ltbh::np%ims X,.. .., X are distinct, then N, 15 spanned by
X y=r = W) =
d
/M) e TAM,) - o TAM,, ).
The set of proper immersions which are in general position is dense and open In
Imm§(M,N),1 £ r £ .
3. If f:M — N is transversc to a submanifold complex Ao, ..., A, then
f.‘ ‘(Ac., U -+ U A,) is a submanifold complex (see Ex. 15).

4. There is a dense open set ¥ < Cy¥(M",N”) such that il f € &, then:
(a) foreach p = 0,..., min {mn) the set

R(f,p) = {xe M™rank T,f = p}

is a submanifold of M, .
(b) R(f.p) = @illm — pln — p} > m;

Exercises

{c) ilim — pXn — p) < mthen

codim Ri(f,0) = (tm — pin — p):

{d) the submanifolds
R(f,0).....R(fmin{mn))

form a submanifold complex {see Ex. 15).

S. Generically, a C' map f:M™ - N1 has rank > m —
where f has rank m — 1 is a closed O-dimensional subm

*6. Amap f:R* - R? has a cusp a1 x € R? if (if Df, has rank 1, rii) 'f is transverse at
X to the 1-jets of rank 1. and (iii) Ker DY, is tangent to Ri f.1) (see Exercise 4).
(a) (0,0) is a cusp of the map gix, 1) = (x? — X, ¥

by If U < R?is any neighborhood of (0,0), there is a weak 2 neighborhood . +°
of ¢ such that every map in .4 has a cusp in U,

2 everywhere, and the set
anifeld (perhaps empty).

*7. A k-fold point of a map f:M = N

_ is a point x € M such that there are & distinct
pomnts x = x,,..., x, with fix,) = --

© = fixy). Let M and N be manifolds such that
k+l<dimN< k ko
k dimM ~k -1’ o

(a) There is a dense open set of maps in C{M. N, 1 < r
fold points, and whose set of k-fold points is a closed € s
km ~ (k — 1}n (possibly empty).

{b) There is a nonempty open set of maps in CyM.N). each having a nonempty
set of k-fold points.

< x. having no (k + 1
ubmanifold of dimension

8. The transversality Theorems 2.5, 2.8, 2.9, combined with Ex. 15, take the following
forms for weak topologies:

{a) In Theorem 2.5 the set of maps M — N transverse to Ao ..., A is residual in
Cw(M.N), and open if U A, is compact and |{.4;} is a submanifold complex,

{b} In Theorem 2.8. h* (M.N; j*,4) is residual in Ci M.N), and open if 4 is compact,

{c) In Theorem 2.9, the set of maps whose F-jels are transverse 10 A, ... . 4, is
residual in C(M, N), and open if A, is compact and | 4;! is a submonifold complex.

9. Consider G, , embedded in Giiyaer by identifying a k-plane P < Z* with
PxRcR xR=PR""IfdimM <k, every map f:M — G, . ., is homotopic

toamapg:M - G, . Ifdim M < k, the homotopy class of ¢ is uniquely determined
by that of f.

10. Let F:V — C{M,N) be such that F*:V x M —
versality Theorem 2.7). Then F is continuous for the
or, more precisely, if and only if F is constant outside

N is (7 isee the parametric trans-
strong topology if V is compact:
a compact subset of I,

11. In the jet transversality Theorem 2.8, the assumption that 4 = JIM N bea C*

submanifold can be relaxed to: A is a ¢* submanifold. for a certain k < o depending

onr, 5, dim M, and dim N. Compute k.

**+*12. Are the parametric and jet transversality Theorems 2.7 and 2.8 true when FOMON,
and A4 are allowed to have boundaries? (The proof of Theorem 2.8 uses Theorem 2.7,
In Theorem 2.7 there are 1wo difficulties: the first is that }* x A is not a manifold if
V and M are ¢-manifolds; the second, and more troublesome. is that (F™} "4} might
not be a submanifold if N and 4 are ¢-manifolds.)

I3. Letp:V — Mbea C' submersion,and {1 M — 1" a " section of pithatis. pf = 1,1,
1 <r< o Let 4 < I bea ¢ submanifold. Then every neighborhood of f in Cy(M.1)
contains a C” section transverse to A. (See Ex. 3. Section 2.2)
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14, Letg:4 — N beamap. A map f: M — Nis transverse (o g, written f h g if, when-

= = z, the images of T, fand T,g span N,. '
BVCI(J;(}X} rl\?g()l? and only if the map f x g:M x 4 N x N is transverse to the

d&%ﬁ;‘;a}s it true (as scems likely) that the set {fe C*(M.N):f t g} is residual in

e ]
C2(M,N) and open if g is propet? B |
15s Submanifolds Ag, ..., A, € N form a submanifold complex if {i}do 18 closed and
Z:H"AiHCAOU"'UA.-; }

i i< .put d = dim A,. Il a sequence {x,

Y dim A._, < dim A; (i) Let 0 S i <j< ¢; P ; X
E:)Acilgmferlges to yin IA‘. there is a sequence £, of d-planes, E, < T, A; converging

© T(’zgi.'l'he set of O maps M — N transverse to all the A,, is dense and open.

*(b) The submanil

folds A, in the proof of Theorem 2.5 form a submanifold complex.

Chapter 4
Vector Bundles and Tubular Neighborhoods

The paradox is now fully established that the utmost abstractions are the
true weapons with which to control our thought of concrete fact.

—A. N. Whitehead, Science and
the Modern World. 1925

The Committee which was set up in Rome for the unification of vector nota-
tion did not have the slightest success, which was only to have been expected.

—F. Klein, Elementury Mathematics
Sfrom an Advanced Standpoint, 1908

Deux surfaces fermées, par example de genre 0, situées dans une variété a 4
dimensions, sont toujours equivalentes, mais, comme nous le vovons. leurs
entourages ne le sont pas nécessairement.

—Heegard, Dissertation. 1898,

Although the concept of tangent bundle was defined in the first chapter,
until now we have made only minimal use of it. In this chapter we abstract
certain features of the tangent bundle, thus defining a mixed topological -
algebraic object called a vector bundle. Most of the deep invariants of a
manifold are intimately linked to the tangent bundle; their development
requires a general theory of vector bundles.

A vector bundle can be thought of a family {E,}, . g of disjoint vector
spaces parameterized by a space B. The union of these vector spaces is a
space E, and the map p:E — B, p(E,} = x is continuous. Moreover p is
locally trivial in the sense that locally (with respect to B), E looks like a
product with R"; there are open sets U covering B and homeomorphisms
p UU) &~ U x R", mapping each fibre E_linearly onto x x R*. A morphism
from one vector bundle to another is a map taking fibres linearly into fibres.

A vector bundle is similar to a manifold in that both are built up from
elementary objects glued together by maps of a specified kind. For manifolds
the clementary objects are open subsets of R”; the gluing maps are diffeo-
morphisms. For vector bundles the elementary objects are “trivial” bundles
U x R"; the gluing maps are morphisms U x R" —» U x R" of the form
{x,)) = {x.g(x)y) where g: U — GL{(n). '

In Section 4.1 the basic definitions are given and the covering homotopy
theorem is proved. This basic result is the link between vector bundles and
homotopy.

In both manifolds and vector bundles, linear maps play a crucial role.
But whereas linear maps enter into manifolds in a rather subtle way. as
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derivatives, the linearity in vector bundles is closer to the surface. This makes
the category of vector bundles far more flexible than that of manifolds; as a
consequence, vector bundles are considerably easier to analyze. Many
natural constructions can be made with vector bundies which are impossible
for manifolds, such as direct sum, quotients and pullbacks. These are dis-
cussed in Section 4.2.

In Section 4.3 we prove an important classification theorem for vector
bundles. This theorem says that for given integers k, n > O there is an
explicitly defined k-plane bundle £ —~ G which is universal in the following
sense: for every k-plane bundle p — M where M isa manifold of dimension
<n, there is a map f:M — G such that { is isomorphic to f* i (the pullback
of # by f), and f is unique up to homotopy. This means that isomorphism
classes of k-plane bundles over M are in natural one-to-one correspondence
with homotopy classes of maps M — G. In this way all questions about
vector bundles over M are translated into questions about homotopy classes
of maps M — G.

Section 4.4 introduces the important concept of orientation for vector
spaces, vector bundles and manifolds. The orientability or nonorientability
of a manifold is an important invariant. As applications some nonembedding
theorems are proved.

In Sections 4.5 and 4.6 a new connection between vector bundles and the
topology of manifolds is introduced: the tubular neighborhood. If M < N
is a neat submanifold, M has a neighborhood in N which looks like the
normal vector bundle of M in N; moreover, such neighborhoods are essen-
tially unique. Thus the study of the kinds of neighborhoods that M can have
as a submanifold of a larger manifold, is reduced to the classification of
vector bundles over M. For example, the problem of whether the inclusion
M o N can be approximated by embeddings M o N — M is equivalent to
the problem of whether the normal bundle of M in N has a nonvanishing
section.

Section 4.7 exploits tubular neighborhoods to prove that every compact
manifold without boundary has a compatible real analytic structure.

1. Vector Bundles

Let p:E — B be a continuous map. A vector bundle chart on (p,E,B) with
domain U and dimension n a homeomorphism @:p~(U) = U x R where

U « B s open, such that the diagram
hY

Pwl(U)_._(.‘D_—)U x R?

I. Vector Bundles 87

commutes; here n,(x,y) = x. For each x € U we defin )
; ’ the h
@, to be the composition e the homeomorphism

@p N x) = x x R* - R~
Thus if y € p~!(x) we have the formula

o(1) = (x.@.(»))

A vec{or bundle qt[as @ on (p,E,B) is a family of vector bundle charts on
(p.E,B) with values in the same R®, whose domains cover B, and such that
whenever (o,U) and (V) are in @ and xe U ~ V, the homeomorphism

o V.o, R - R
is linear. The map

UnV - GLn),
x= Yot

is required to be continuous; it is called the transition function of the pair of

charts = . .
functio((nf,U), (‘JI;V)- If P = {(pivui}ied we obtain a famliy {gij} of “‘ansition

gu:Ui ] Uj g GL(").
These maps satisfy the identities

gi{x)gu(x) = gulx) (xeU;nU;n Uy,
gu(x) = L e GL(n).

The _famlly {g:;} is also called the cocycle of the vector bundle atlas &. A
maximal vector bundie atlas @ is a vector bundle structure on ( p.E.B) We
then call { = (p,E,B,®) a vector bundle having ( fibre) dimension n, ;,Jr;)je‘ction
p, total space E and base space B. Often ¢ is not explicitly mentioned. In
fact we may denote ¢ by E, or E by & Sometimes it is convenient to put
E = E&, B = B¢, etc. An atlas for & will mean a subatlas of &

The fibre over xe B is the space p~'(x) = &, = E_. We’gjve £, the
vector space structure making each ¢,:¢, -+ R"an isomojlr'phism' this sxtruc-
ture is independent of the choice of (p,U) e @. Thus Eis a ‘“bundl;“ of vector
spaces. To indicate the dimension n we sometimes call ¢ an n-plane bundle

If A = Bis any subset we may denote p~'(4) by ¢, |4, E,, or E|A. The

restriction of £ 1o A is the vector bundle
‘ﬂA = (PIEmEA-A;‘pA)
where ®, contains all charts of the form

@l AN UXEAnU = (A~ U) x B,
where (¢, U) e &.

The zero section of £ is the map Z:B — E which to x assigns the zero
element of {,. Often we call the subspace Z(B) — E the zero section. It is
frequently useful to identify B with Z(B) via Z.
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Let & = (p, Ei.B@;) be a vector bundle. i = 0. 1. A fihre map Fily— &,
is a map F:E, - E, which covers a map [:B, - B, that is, there is a
commuting diagram

E, F >E,
Po {Pi
B, 7 >B,

Thus if x € By and f(x) = y, then F maps the fibre over x into the fibre
over y by a map F,: &, - &,

If each map F, is linear we call F a morphism of vector bundles. If F is
a morphism and each F, is injective. F is a monomorphism; if each F, is
surjective, F is an epimorphism; while if each F_ is bijective we call F a
bimorphism or vector hundle map. 1f F is a bimorphism covering a homeo-
morphism f:B, — B, then F is an equivalence. If B, = B, = Band f = I,
then F is an isomorphism, and we may write &, = &,.

The trivial n-dimensional vector bundle over B is

e = (p.B x R".B.9)

where p:B x R" — B is the natural projection and @ is the unique maximal
vector bundle atlas containing the identity map of B x R". More generally,
a vector bundle ¢ is called trivial if it is isomorphic to ). Such an isomor-
phism is a trivialization of &,

Fix a differentiability class (7, | < r € w. The above definitions make
sense if all spaces involved are required to be ¢ manifolds, and maps are
tequired to be (" maps. In this way we obtain €* vector bundles, mor-
phisms and bundle maps. We also interpret (" vector bundle to mean
vector bundle as originally defined: similarly for C® morphisms, etc. We
denote (" isomorphism by =

The prime example of a €7 vector bundle is the tangent bundle pTM -
M of a C"'' manifold M. For each chart ¢:U — R" we define a vector
bundle chart

pTN U U xR

by sending the tangent vector X e T .M to (Do X)) I M Nisa
C"*! map then Tf:TM — TN is a C” vector bundle morphism. Note that
Tf 1s a monomorphism, epimorphism or equivalence according as f is an
immersion, submersion or diffeomorphism.

If TM is trivial M is called parallefizable.

There is evidently a category of (" vector bundles and * morphisms.
An isomorphism in this category is an equivalence of vector bundles, For

1. Vector Bundles %9

each C" manifold M there is the subcategory of T vector bundles over M
and C" morphisms over I, (for r = 0, M can be any spacei. An isomorphism
in this subcategory is an isomorphism of vector bundles. The tangent functor
T is a covariant functor from the category of C"* ! manifolds to the category
of C7 vector bundles.

The following lemma is the first step in the proof of the covering homo-
topy theorem.

L.1. Lemma. Let £ = (p.E.B x I) be a (" vector bundle, 0 € r € x.
Then each b € B has a neighborhood V < B such that S|V x [ is trivial.

Proof. By compactness of I and local triviality of { we can find a neigh-
borhood ¥ = B of b and a subdivision of I into intervals I, = [1,_,.;].
0 =1t < <1, =1such that { is trivial over a neighborhood of ¥, x
[ti-nt] i=1,...,m Put ¥ = nV¥,; then I, has a neighborhood U, < I
such that £|V x U; s trivial.

We proceed by induction on m; if m = 1 there is nothing more to prove.
Therefore we shall show that if m > 1, there is a neighborhood J < [ of
{0,t;] such that £|V x J is trivial. Continuing in this way will eventually
show that &V x [ is trivial. Hence it suffices to assume that m = 2,

Let U, = [0,h], U, = [a,1],0 < a < b < 1. Choose " trivializations

tp,-:§|(V x Uy=(V x U)) x B, i=12

Define a C" map
g:V x [ab] - GL(n),
glx) = ‘Plx‘PZ_xl' xeV x [ﬂ.h].

Next we construct a C" map
h:V x [a1] — GLn

such that h = g on V x [ac] for some ¢, a < ¢ < b. Let 2:[a1] = [a,b]
be a C" map which is the identity on a neighborhood {a.c] of a.
Putpg = 1, x 21V x [a1] = V x [ab]. Defineh = g p
Finally define, foreach xe V x I
wx:ﬁx i R“y
©rx if xe V x [0.c]
Y, = ; C e if et % fad
(X, (multiplication in GL(n)) i XE€E (a.1].

The two definitions agree for x € [a,c]. Hence the maps ¢ fit together to
give a C” trivialization of £|V . x I.

QED

1.2, Corollary. Every C" vector bundle {0 < r € o) over an interval is
trivial.
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The proof of the covering homotopy theorem is based on the following C*
version of the homotopy extension property:

1.3. Lemma. Fix0 < r € oo and let N, P be topological spaces which are
C" manifolds if r > 0, If r = 0 suppose also that N is a normal space. Let
Z < Nbeclosedand V <« U c N beopen,withZ c V < V¥ < U. Suppose
given a commuting diagram

Nx0 = Ux0 o Ux [

P

where f and g are C". Then there exists a C" map h:N x I = P such that
AN x 0= fandh =gonV x I

Proof. Let A:N — [0,1] be a C" map with support in U such that
AV} = 1. Define a C" map
h:N x 1P,
_ex Ay i xeU
Hewt) = {f(x) if  xeN-U

Then h has the required properties.

QED

The foliowing corollary of Lemma 1.3 is called the homotopy extension
theorem.

1.4. Theorem. Let Z be a closed subspace of a normal space N. Let
J:N — P be a continuous map and let g:Z x I — P be a homotopy of flZ.
If g extends to a homotopy of f|U, for some neighborhood U = N of Z, then
g extends to a homotopy h:N x I — P of f. In particular this is the case if
Z is a retract of an open subset of N,

The following theorem is the basic connection between vector bundles
and homotopy. For reasons to be explained later it is called the covering
homotopy theorem.

1.5. Theorem. Let & be a C™ vector bundle over B x I, 0 < r < o0.

Assume B is paracompact. Then & is C" isomorphic to the vector bundle
{(¢|1B x 0) x 1.

Proof. Puté|B x 0 = n = (pEB).Letn x I = (p x 1,E x LB x I).
We shall construct a bundle map & — n x [ over the identity map of B x /.

1. Vector Bundles 9

For this we use the globalization Theorem 2.2.11 applied to a suitable
structure functor on B.

Let Z = [X,} be a locally finite closed covering of B by sets X, having
the following property: each X, has a neighborhood V¥, = B such that
E|V: x I is trivial (use Corollary 1.2), It follows that 4|V, x [ is also trivial,
Let 9 be the family of unions of elements of 7.

Let Y < B. Consider pairs {(f,N)where N < Bisa neighborhood of ¥
and f:8N x | —» (giN) x lisaC isomorphism. Two pairs { f,,N,), i = 0, 1,
have the same Y-germ if Y has a neighborhood M < Nj A N, such that
Jo = fyon M x I This is an equivalence relation: an equivalence class is
called a Y-germ. If Y & 9 the set of all Y-germs is denoted by #F(Y).

IfZePand Y < Z, restriction defines a map

frz:ftz) - }-‘ Y}

In this way a structure functor (#.9) on B is defined.

It is evident that (#,9) is continuous: and Lemma 1.1 implies it is non-
trivial. In fact Lemma 1.1 also makes (# .M locally extendable. Forlet X € 7.
Y €Y). We must prove that

FryoxtFIY U X) = FtY)
is surjective. This amounts to extending every X ~ ¥ —germto an X -germ.
Now X x I has a neighborhood N x I over which both ¢and n x I are
trivial. Since isomorphisms of the trivial bundle are the same as maps into

GL(n), local extendability is implied by the following statement: if U <
is a neighborhood of X ~ Y and

gU x LU x 0) = (GL{n1.1)

is a C" map (where 1 € GL{n) is the identity matrix). then there is a neigh-
borhood V < Uof X A Yanda C map

(N x LN x 0) = (GL(n.1)

which agrees with ¢ on V' x I. But this is a consequence of Lemma 1.3
therefore (#,9) is locally extendable.

We now apply Theorem 2.2.11 and conclude that F(B) is nonempty.
This is equivalent to Theorem 1.5,

QED

L6. Corollary. Two (7 vector bundles ¢, &, over a paracompact base

space B are C" isomorphic if and only if there is a C" rector bundle n over
B x I such thar

&= nB xi (i =0. 0.

Proof. 1f n exists, &, =, &, by Theorem 1.5. Conversely. if F:Z, — 7, is
a C" isomorphism we can take n = &, x I.

QED



Exercises

1. Let , n be vector bundles over a paracompact space and let A = B be closed. Then
every morphism f:{|4 — 5|4 over 1, extends to a morphism g:&(W — n|W over 1, for
some neighborhood W « B of A, and if f is a mono-, epi-, or bimorphism so is g.

2. Let & — Bbea vector bundle over a paracompact space, and let A < B be a closed
sct contractible in B. Then A has a neighborhood W < B such that E| W is trivial.

3. Exercises 1 and 2 are true in the category of bundles, 1 € r < op.

4. Every Lic group is parallelizable. (A Lie group is a manifold G together with a group
operation G x G — G which is C*, and such that inversion G — G is c®)

2. Constructions with Vector Bundles

In this section we fix a differentiability class r, 0 < r < o, and work
consistently in the € category. For r = 0 this means we deal with topo-
logical spaces and continuous maps, while for r > 0 we deal only with C*
manifolds, C" maps, and C” vector bundles. Except for restrictions as indi-
cated below, 7 is arbitrary. We write “bundle” for “vector bundle.”

There is a general procedure, described in Lang’s book [1], which for
each functorial construction with vector spaces (direct sum, tensor product,
etc.) defines a corresponding construction with vector bundles by applying
the original construction to fibres. Rather than proceed at this level of
abstraction, we describe explicitly the constructions we shall need.

A subbundle of a bundle ¢ = (p,E,B) is a bundle &o = (po,Eg.B) over the
same base space B, such that E, < E, p, = p|E,, and there exists a vector
bundle atlas @ for & with the following property. There is a linear subspace
of R, which we may take to be B, such that if (¢,U) € @ then ¢ maps
p (U n Ey into U X R, and the pair

(plp™"(U) N E,,U)

belongs to the vector bundle structure of £,,.

The notion of subbundle is patterned after the definition of submanifold;
and in fact if 4 © M is a C"*! submanifold then T4 is a C" subbundle of
T.M.

If & is a subbundle of & then the inclusion map E, —» E is a mono-
morphism £, — & over 1, Conversely, in analogy with Theorem 13.1, if
1 is a bundle over B and F:n — ¢ is a monomorphism over 1, then Fl(n), with
the bundle structure induced by F, is a subbundle of &. It suffices to prove a
local result; hence we may suppose ¢ and 5 are the trivial bundles B x R"
and B x R* k < n. The monomerphism £:B x R* - B x R” has the form

F(x,») = (x.F ()

where F:B — L{R“R") is of class C", and each linear map F_:R* —» R" is
injective. Fix x € B; put F (RY) = E = R" There is no loss of generality in
assuming that E = R* < R" and F_ is the standard inclusion ®* — R". Let
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n:R" — R* be orthogonal projection. There is an open neighborhood U = B
of x such that #F_:R* — K" is an isomorphism for - ¢ . Let K © =" be the
kernel of r, so that B* = ®F x K. Define

@:U x (B x K} = U x (= » K)
by
plzlrw)) = (oaF.irw).

Then ¢ is a C" vector bundle chart for ¢ and ¢ takes the image of F into
U x B®&* This shows that the image of F is a subbundle.

Another way of getting subbundles is to take the kerne! of an epimorphism
F:¢ — £’ which covers 1, That is. for each x g B let y, 'be the kernel of
F,:&, — & then there is a unique subbundle 4 of 2 having fibres 5, We
leave this for the reader to prove.

It is useful to introduce the notion of an exact sequence of vector bundles
morphisms: this means a finite or infinite sequence

Foo. Foo.

B B R R R

of morphisms, all covering 1. such that for each x & B we have
image (F;_,), = kernel {F},
for all i. Of particular interest are the short exact sequences
0—-¢ A ] 5 . — 0

where 0 denotes a 0-dimensional bundle over B. Such a sequence means
merely that F is a monomorphism, & is an epimorphism and image F =
kernel G.

The existence of kernel subbundles for epimorphism can be stated in
functorial language; given the exact sequence

G .
n—=.—0
there is an exact sequence
(1 05,550

and {1) is vnique in the sense that for any exact sequence

L F 6.
G320 -0

there is a unique isomorphism S — ' such that the diagram

R A
i) =] =

(Y

F
i

~

Q0 -

e
F

-~

commutes.

In the exact sequence (1) we calt [ the quorient bandle of the mono-
morphism F. It is easy to see that every monomorphism has a quotient
bundle and the latter is unique up to isomorphism. In particular. if ; =y
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is a subbundle, the fibres of the quotient bundle are taken to be the vector
spaces n,/¢,, and we denote the quotient bundle by #/Z.

The short exact sequence (1) is said to split if there is a monomorphism
H:{ — nsuch that GH = 1,. Working fibrewise we see that this is equivalent
to the existence of an epitnorphism K:n —~ & such that KF = 1{ &

The Whitney sum (or direct sum) of bundles ¢, { over B is the bundle
¢ @ { whose fibre over x is £, @ {,. If o, ¢ are charts for &, ¢ respectively
over U, a chart § for £ @ { over U is obtained by setting

b= 0. @V B LR OR
The natural exact sequences of vector spaces
0B 6@ B0
fit together to give a split exact sequence
0-¢le@iDL~0.

Let & = (p,E,M)bea C"*! vector bundle. Each fibre £, is a vector space,
with origin x; hence we identify £, with T,(£,). Thus £ is a subbundle of TuE
in a natural way. (Note that the “natural” differentiability class of T\E is
only C") Since M < E is a submanifold (via the zero section), TM is a C’
subbundle of T,E. Evidently we have a short exact sequence

(2) 0-¢ TYyEDB TM -0
which is split by the tangent map of the zero section:
3) : TZ:TM — TyE.

This proves:

2.1. Theorem. Let & = (p,E.M)be a C*! vector bundle,0 < r € w. The
exact sequence (2) of C" vector bundles is naturally split by (3). Thus there is
a natural C" isomorphism

he:TyE =~ (@ TM.

In particular £ < T E as a natural subbundle.
Here natural means with respect to C"*! morphisms. If

f
4 >y
\P A 4
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is such a morphism, then the diagram

ToEE i) > Ty En

e h

Ed Tl\rf_f.-@—w.j.g——)n &TN

commutes, as is easily checked.

The following simple result is one of the most useful facts about vector
bundles.

2.2. Theorem. Every short exact sequence of C cector bundles is split,
0 € r < w0, provided the base space is paracompact.

Proof. 1t suffices to prove that a monomorphism F:7 — 5 over 15 has
a left inverse. This is true locally because F() is a2 subbundle of n, we
showed above that there are charts for  covering B taking (q|]U.|U) o0
(U x R"U x R",anda local left inverse is obtained from a linear retraction
R* —» R* Since local left inverses can be glued together by a partition of
unity, the theorem follows.

QED

Let & = (p,E,B) be a vector bundle. An inner product or orthogonal
structure {of class ") on { is a family « = {a,}, 5 where each a_ is an inner
product (symmetric, bilinear, positive definite 2-form) on the vector space
E,, such that the map (x,y,z}+ a.(y,z), defined on xy.2)eB x E x E:
x = py) = pz}}, is C. Tt is easy to construct such an x whenever B is
paracompact and r £ =, using partitions of unity. In fact, any K-germ of
an orthogonal structure, where K < B is a closed set, can be extended to
an orthogonal structure. The pair (£,2) is called an orthogonal vector bundle.
If M isa C"*' manifold, a C" orthogonal structure on T3 is also called a
Riemannian merric on M of class C".

Suppose (£,) is an orthogonal bundle. If y, - are in the same fibre Zowe
write {y,z)> or {yz), for ayz2). If n < & is a subbundle, the orthogonal
complement ' < ¢ is the subbundle defined fibrewise by

Mh=Mm) ={re&yz)=0al:zen}

The natural epimorphism ¢ — £/p maps #* isomorphically onto & ‘. This
provides another method of splitting short exact sequences, one which works
Just as well for analytic bundles with analytic inner products.

Let M = N be a C"*' submanifold; suppose N has a C" Riemannian
metric. In this case TM* = TyN is called the geometric normal bundle of
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M in N. The algebraic normal bundle of M in N is the C7 quotient bundle
TN/TM; it is canonically C" isomorphic to TM*.

Let &€ = (p,E,M) be an orthogonal bundle. In each fibre £, an ortho-
normal basis e, can be derived from arbitrary basis b, of &, by the Gram-
Schmidt orthogonalization method. This classical procedure, which is a
deformation retraction of GL{(n) into O(n), is so canonical that it leads to a
C’ family of orthonormal bases {e.},.y. U = M, if one starts from an
arbitrary C family {b,},. . This shows that ¢ has an orthogonal atlas & =
{e@;,U.}, that is, each map

(Pi.\'"éx hnd Rn! X € Ui
is an isometry. It follows that the transition functions
g;: Ui U; - GLIN)

take values in O(n). In other words every orthogonal bundle has an orthogonal
atlas. Conversely, given an orthogonal atlas on £ there is a unique orthogonal
structure on £ making each ¢,, isometric.

Two orthogonal vector bundles are isomorphic if there is a vector bundie
isomorphism between them which preserves inner products.

The following lemma shows that the orthogonal structure on a vector
bundle is essentially unique.

2.3. Lemma. Let & = {p,E, M) he a vector bundle, i =0, 1 and f:
&y — &, an isomorphism. Suppose £q and &, have orthogonal structures. Then

[ is homotopic through vector bundle maps to an isomorphism of orthogonal
bundles.

Proof. Suppose first &, and &, are trivial as orthogonal bundles. We
have

S MxR -MxR
J(x3) = (xglx)y),
g:M — GL{n).
Since O(n) is a deformation retract of GL(n), g is homotopic to h:M - O(n).

Moreover the homotopy can be chosen rel g~ ' O(n). Writing such a homo-
topy as g,, 0 < ¢ < 1, with g5 = g, 9, = h, we define

M xR - Mx R, 01l
fixy) = (x.g,(x)y).

This is a homotopy of vector bundle isomorphisms from { to an isomorphism
of orthogonal bundles, and f; = f whenever f is already orthogonal.

The general case of Theorem 2.3 is proved by applying this special case
successively over each element of a locally finite open cover {U;} of M such
that &, and ¢, are trivial orthogonal bundles over U,

QED
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A quite different construction is that of the induced bundle. Let ¢ =
(p,E,M,®P) be a vector bundle and f:M, = M a map. The induced bundle
{or pullback) f*& = (po,Eo,M . Po) is defined as follows. Put

Eq = {{xy)e My x E:f(x) = ply)},
and define
Po:Eo = M,
Po(x,y) = x.

Take @, to be the maximal (C) atlas containing all charts of the form
{(¥.f ~1U) where (p,U)e P and if ze f~}U), f(z) = xe U, then ¢, = ¢,.
The natural vector bundle map ¥: f*£ — £ over f is given by (x,3)+ .
Let g:n - M, be a vector bundle and F:n — ¢ a morphism over f.
There is a unique map of total spaces H:n — f*Z making a commutative

diagram
n F
&
¢ L4 > &
q
Po P
M, 7 » M

and H is a morphism of vector bundles. If F is an epimorphism, monomor-
phism, or bimorphism, so is H. This proves the useful fact that if F:1n — ¢
is avector bundle map over f then n is canonically isomorphic to the puliback
e

The main theorem about induced bundles is the following corollary of
the covering homotopy Theorem L.5.

2.4. Theorem. Suppose B is a paracompact space. Let f, g:B — M be
homotopic maps, and { a vector bundle over M. Then f*& is isomorphic to g*Z.
In particular, if g is constant then f*¢ is trivial.

Proof. Let H:B x I - M be a homotopy from ftog. By 1.3, H* is
isomorphic to (HEE) x I = (f*&) x I and also to (HE) x [ = (g*&) = I
Looking at these bundles over B x [ we find that f*£ is isomorphic to ¢*Z.

QED

2.5, Corollary. Every vector bundle over a contractible paracompact space
is trivial.
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The following coroliary of 2.5 explains the name “covering homotopy
theorem™:

2.6. Theorem. Let B, be paracompact. Let F: $o — &, be a morphism of
vector bundles covering f:B, — B,. Let h:By x I — B, be a homotopy of f.
Then there is a morphism H:&, x | — &1 of F covering h. If F is a mono-,
epi- or bimorphism, H has the same property.

Proof. It suffices to find a morphism &, x I — £, x I which covers the
map g:By x I = B, x I, g(x,t) = (h(x.0),t) and which is given by F over
By x 0. Using the relation between induced bundles and bundie maps, we
sec that we may replace ¢, x I with g*(¢, x I), g with the identity map of
By x I, and B, x I with B, x I. By 1.3 g*(&, % I) can be replaced by a
vector bundle n x I over B, x I. Thus we are given an isomorphism map
F:{y =» n and we must extend it to an isomorphism H:éy x I -9 x I.
We can take H = F x I,. The last statement is obvious.

QED

Exercises

L. Let &, = (p,E;,B,) be a C" vector bundle, i = 0, 1, and SiBy = B;a C" map, 0 <
¥ < . There is a (7 vector bundle 4 over B, whose fibre over x is L(Z05:E 1), such that
€ sections of i correspond naturally to €" morphisms Eo = £ over f.

2. Let P* denote real projective k-space, ¢ the trivial 1-dimensional vector bundle over
P* and ¢ the normal bundle of P* — P**!. Then ¢! STP ={@ - @ & [Consider
the inclusion §* = §**! and the antipodal map.]

3. (a) If n is odd T'5" has a nonvanishing section and therefore TS" = ' @ n where
et is a trivial k-dimensional bundle. [If n = 2m — 1, §" c R*™ = €™ If x ¢ 37 and
i = /=1 then ix is tangent to 5™ at x.]

() Itn =4m — 1, TS" = > @ {.[Use guaternions. ]

{€) Ifn = 8m — 1, TS" = ¢" ® 4[Use Cayley numbers. |

4. TS"@ &' is trivial. [Consider T(S" x R) = T{R"*'). Compare Exercise 12 of
Section 1.2.] .

3. If TM has a nonvanishing section and TM @' and TN @ ¢! are trivial then
M x N is parallelizable.

6. A product of two or more spheres is parallelizable if they all have positi\{e dim;nsions
and at least one has odd dimension. [Use Exercises 3(a), 4, and 5, and induction.]

*7. Find explicit trivializations of the tangent bundles of §! x 52 8! x §* 8% x §°,

8. The frame bundle F(M) of an n-manifold M is the manifold of dimension n? + n
whose elements are the pairs (x,1) where x € M and A-®" — M_ is a linear isomorphism.
Define n: F(MY —+ M by n(x,2) = x. The topology and differential structure on F(M)
are such that a coordinate system (¢,U) on M induces a diffeomorphism n~YU) =
U x GL{(n) by (x,4) = (x,De, o A},

(a) There is an exact sequence

(8) 0 — kernel (Tn) - TF(M) - n%{TM) — 0.

{b) kerne!l (Tn) and n*(TM) are trivial vector bundles.
(c) Therefore F(M) is parallelizable.
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9. {(a) Parts(a)and (b) of Exercise 8 are true even if M is not paracompact. In this case,
however, the exact sequence (S) might not split. A splitting j:a™(TM} - TFIM) of 1S)
is called a (perhaps nonlinear) connection on M,

(b) Let M be a connecteq manifold, not assumed to be paracompact or to have a
countable base. If M has a connection then Af is paracompact and has a countable
base. [Hint: use part (a) and Exercise 8(c) to get a Riemannian metric on FIM))

3. The Classification of Vector Bundles

We now prove a basic result-—ultimately based on transversalitv—which
quickly leads to the classification Theorem 3.4.

3.1. Theorem. Let £ be a k-dimensional C* vector bundle over a munifold
M, O0Kr< o Let Uc M be a neighborhood of a closed set A « M.
Suppose that

F:f'U—- Ux R

is @ C" monomorphism (of vector bundles) over 1,. If s 2 k + dim M then
there isa C monomorphism & -+ M x R over 1 w which agrees with F over
some neighborhood of A in U.

Proof. Consider first the special case where ¢ is trivial. Then for each
xe U, FI¢, is a linear map g(x):R* — R* of rank k. We thus obtain a map
g:U = ¥, ,, which is easily proved to be . Since dim M < 5 — k we can
apply Theorem 3.2.5 (on extending continuous maps into Kytofinda ¢
map h: M — V, , which extends the A-germ of g. If r > 0 we use the relative
approximation Theorem 2.2.5 to make h . Then we interpret A as a mono-
morphism M x R* - M x R over |,,.

The general case follows by using the globalization Theorem 2.2.11.

(For those who want more details: a structure functor (#F,9) on M is
defined as follows. Let &' = {X,} be a locally finite closed cover of M such
that £ is trivial over a neighborhood of each Y,. Let 9 be the family of all
unions of elements of . For Y D let F(Y) be the set of equivalence classes
[¢]y (“Y-germs”") of maps @:|W = W x R, as follows. W < M can be
any neighborhood of ¥, and (¢ must be a monomorphism over 1, which
agrees with f over some neighborhood of ¥ ~ A The equivalence relation
is: [@ly = [¥]yif @ and ¢ agree over some neighborhood of Y. Restriction
makes (#,%) into a structure functor which is clearly continuous and non-

trivial; and we proved above that (#.9) is locally extendable. Therefore
Theorem 2.2.11 yields Theorem 31)

QED

Let 3.« = G, , be the foltowing vector bundle over the Grassmannian
G,,: the fibre of y, , over the k-plane P c R®* is the set of pairs (P, x) where
x & P. This makes y, , into an anaiytic k-dimensional vector bundle in a
natural way. We call this the Grassmann bundle or sometimes the unicersal
bundle over G, ,.
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From Theorem 3.1 we have:

3.2. Corollary. Let n be a C" k-plane bundle over V x I where V is an
n-manifold. Suppose that Fi:nlV x i — R* is a C" monomorphism for i = 0, 1.
If s > k + nthen Fy and F, extend to a C" monomorphism F:n - R*

Proof. By the covering homotopy theorem, F, and F, extend to a
monomorphism n]U — R, where U = ¥V x [ is a neighborhood of V x
{0,1}. Nowapply 3.1 (with M = V x [, A = V x {0,1}, etc)

QED

Another corollary of Theorem 3.1 is the existence of “inverse” bundles:

3.3 Theorem. Let £ be a C" k-plane bundle over an n-manifold M, 0 <
r € «_  Then there is a C" n-plane bundle n over M such that £ @ n =,
M X R

Proof. Let F:{ = M x R"** be a monomorphism over 1. Give the

trivial bundle M x R"** its standard orthogonal structure, and for n take
subbundie F(&)' €« M x R"*

QED

We now give another meaning to a C" monomorphism F:£ - M x R
over 1,,. Define a vector bundle map

‘f g >'Ys k
0y

w v

M g > Gs.k

as follows. To y € M, ¢ assigns the k-plane g{y) = F({} e G,,. If z € §,
defines ¢(z) = (F(£,),f(2)). 1t is casy to sce that this correspondence F =
(¢.9) induces a natural bijection between C" monomorphisms § — M X R’
over l,, and C" bundle maps £ = ...

The map g:M — G, , in diagram (1) has the property that g*y, , = &.
Such a map is calied a classifying map for &; we also say ¢ classifies £&. From
Theorems 3.1 and 3.2 and a collar on M (see Scction 4.6), we obtain the
following classication theorem:

3.4, Theorem, If s = k + n then every C k-plane bundle & over an n-
manifold M has a classifying map f:M — G, ,. In fact any classifying map
dM = G, , for £|0M extends to a classifying map for & When's > k + nthe
homotopy class of f, is unique, and if n is another k-plane bundle over M then
fo= fyifandonlyif § =n.

Proof. The only statement needing further proof is the “if” clause.
Suppose .1 = £ and let ¢:& — 7, , be a bimorphism covering f,. From
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the diagram
'1” -~ w 3
y » '[ =? Vsx
M 7 —> G, ,

we see that f; classifies both £ and #. Since the classifying map £, is unique
up to homotopy when s > k + n it follows that f; ~ f,.

QED

Taken together with the covering homotopy theorem. this result is of
fundamental importance because it converts the theory of vector bundles
into a branch of homotopy theory. To put it another way, we can use what-

ever we know about maps to study vector bundles. For example, approxi-
mation theory yields:

3.5. Theorem. Every C vector bundle & over a C* manifold M has a
compatible C bundle structure; and such a structure is unique up to C*
isomorphism.

Proof. Let g:M — G, , be a C classifying map for . Then ¢ can be
approximated by, and so is homotopic to, a C* map h. Therefore

C A='r g‘}’s.k ;r ht:“‘x,k-

But h*y, , is a C* bundle. Thus & has a C*® structure.

If no and #, are C* bundles that are C" isomorphic, they have C*
classifying maps that are homotopic. These maps are then C* homotopic.
Pulling back y, , over M x I by such a homotopy gives a C® vector bundle
¢ such that

M x iz m i=0.
Therefore o =, 1, by Theorem 1.4,
QED

The same result is true if C* is replaced by C*; the proof uses the analytic
approximation Theorem 2.5.1. See also Exercise 3 of Section 4.7 for a
theorem of this type that can be proved without using Theorem 2.5.1.

From now on we need not specify the differentiability class of a vector
bundle.

Although the theorems of this section have been stated for manifoids,
they are also true (ignoring differentiability) for vector bundies over simplicial
(or CW) complexes of finite dimension. The proofs are almost the same. The
main difference is that Theorem 3.1 is proved by induction on dimension;
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the inductive step is proved by extending a map 84™ — ¥, , to 4" ifm <
s — k, where 4™ is an m-simplex. Similarly for CW complexes.

The classification of vector bundles over more general spaces can be
stated as follows. Let K¥X) denote the set of isomorphism classes of k-plane
bundles over the space X. Let [X,G, ,] be the set of homotopy classes of
maps from X to G, ;. A natural map

Gx:Kk(X) - [X,G" k}

is induced by the correspondence f — f*y, ; that &y is well defined follows
from the covering homotopy theorem, if we assume X paracompact. Then
one can prove: if X has the homotopy type of a simplicial or CW complex
of dimension less than 5 — k, the map @y is bijective.

Exercises

[X denotes either a manifold, or a finite dimensional simplicial or CW complex; ¢
denotes the trivial k-plane bundle.}

1. (a) Let i:G, , = G,41, 441 be the natural inclusion. Then
Per ket = Tox Dl
(b) Ifdim X < s — k, then under the classification of vector bundles the map
if:[X»G.s,h] - [X,G,+1.k+1]
corresponds to the map
oKX - KX, [El- el
2. Suppose dim X < min {s — kr — j}. The natural embedding

Gl.t x Gr.j -+ Gl+r.k+j
induces the map
K*X x KIX - K**X

which corresponds to Whitney sum.

3. The map o:K*X — K**1X (see Exercise 1) is surjective if dim X < k and injective
if dim X < k. [Use Exercise 7a and Exercise 9, Section 3.2.]

4. Let & n, { be bundles over X such that{ dn = { D {. Ifdim & > dim X thenn = {.
[Suppose n @ a is trivial; use Exercise 3.]

5, Let G, 4 — Gas1,4 be the natural inclusion and put G, x = \J G,.s Then K'X

3=k
is naturatly isomorphic to [X,G,, . (More usually G, . is denoted by or BO(k). It is
called the classifying space for the functor K*, and also for the group O{k).)

6. Two vector bundles &, n over X are stably isomorphic if §{ © & = n @ ¢ for some
ji k. Let KX denote the set of stable isomorphism classes of bundies over X. The opera-
tion of Whitney sum induces a natural abelian group structure on KX.

*7, There ate maps G, , — Gy x4 Whose direct limit G, , 52 classifying space for
the functor K of Exercise 6. That is, there is a natural isomorphism (of sets) KX =
[X,G.. o) Morcover, there is amap Go o, X Gy, 0 = G, o such that the resulting
binary operation on [X,G,, ] corresponds to the Whitney sum operation in KX.
{More usually G, o i denoted by BO.)
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8. A k-plane bundle over S™ has a vector bundle atlas containing only two charts, each
of whose domains contain a hemisphere. The transition function for such a pair of
charts restricts to a map of the equator ' into GL{k). In this way an somorphism
K5 = m,_,(GL{k)) = m,_,(O(k)) is established, with no restriction on k, a.

9, Let & — $™ be a k-plane bundle corresponding to « € x,_ ({GLik)) (see Exercise 8).
If 5 — $™ corresponds to the inverse of @ (in the abelian group n,_ ,(GLIk}) then { &© 7
is trivial. One can interpret n as the “reflection” of £ in the equator.

*10. Every vector bundle over S* is trivial. [Hint: it suffices to consider 3-plane bundles.]

4. Oriented Vector Bundles

Let V be a (real) finite dimensional vector space of dimension n > 0.
Two bases {e, ..., &), (fi, ..., ) of V are equivalent if the automorphism
A:V -+ V such that Ae, = f; has positive determinant. An orientation of V
is an equivalence class [e,, ..., e,] of bases. If dim V > O there are just
two orientations. If one of them is denoted by o, then — w denotes the other
one.

If L:V — W is an isomorphism of vector spaces and @ = [e,,..., €]
is an orientation of ¥ then L{w) = [Le,, ..., Le,] is the induced orientation
of W,

“Ifdim V = 0 an orientation of V simply means one of the numbers +1.
Many special but trivial arguments for this case will be omitted.

An oriented vector space is a pair (V,w) where w is an orientation of V.
Given (V,w) and (V',00") is an isomorphism L:V — V' is called orientation
preserving if L{w) = «'; otherwise L is orientation reversing.

The standard orientation w”® of R, n > 0, is [ey, ..., e,] where ¢, is the
i'th unit vector. The standard orientation of R® is +1.

LetO — E' % E % E” -+ 0 be an exact sequence of vector spaces. Given
orientations @’ = [ey,...,enJof E'and@” = [f;, ..., f,] of E",an orienta-
tion e of E is defined by

w = [(pel" "!‘pewgli""gn] where Vg = fio -

independent of the choice of the g,. For i also /i, = f;, the automorphism
A:E — E such that Ae; = e,and Ag, = h, fitsinto the commutative diagram

0 sE—P gV g >0
= A =
0 >E’ —> E »E" >0
? '

which implies that det A = 1. Hence
["pel!' "l¢emgll""gl] = [‘pel"' 'v’penvhll‘ - -'hu]-
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1t is easy to see that any two of &', w, @” determine the third uniquely.
Wewritew = 0 @ 0", 0 = 0w, 0" = ofw’.

Now let & = (p,E,B) be a vector bundle. An orientation for £ is a family
o = {,}ze 5 Where w, is an orientation of the fibre E, such that £ has an
atlas @ with the following property: if ¢:£\U — R" is in @ then

¢, (E0,) - (R0

is orientation preserving. We call w a coherent family of orientations of the
fibres. The atlas ¢ is an oriented atlas belonging to w.

If £ has an orientation w, then ¢ is called orientable and the pair (£,w)
is an oriented vector bundle. It is easy to see that if £ is a (" vector bundle
for any r 2 1, and o is an orientation, then ¢ has a C" atlas which belongs
to w. An otiented C* vector bundle can be defined as a C” vector bundle
together with a maximal C" oriented atlas.

Let F:y — ¢ be a bimorphism. If { has an orientation w, there is a unique
orientation 8§ of # such that F maps fibres to fibres preserving orientation.
It follows that the pullback f*¢ of an oriented bundie (£,w) has a natural
orientation f *w.

Let ¢ = (p,E,B) be any vector bundle. Let A:1 - B be a path and @ an
orientation of £|4(0). We propagate © along A as follows. Since the induced
bundle A*¢ — I is trivial and I is connected, there is a unique orientation
0 of A*& such that over 0 € I, § coincides with *w. Denote by 4 o the orienta-
tion of £|A(1) such that over 1€/, A*(A o) coincides with 6.

Let u:I - B be another path with 4(0) = u(0) and A1) = p(l). If A = p
rel {0,1}, then p @ = A, w. To see this, let f:D* — B be such that f = 4on
the top semicircle I, < aD? and f = yon the bottom semicircle I < ap2.
Since D? is contractible, f*¢ is trivial and therefore orientable. Since D?is
connected, f*¢ has a unique orientation & containing f*w = A*w = pro.
Over 1 € I, therefore, the orientations 6, f*i,mand f*p o all coincide. This
implies that L w = po.

1t follows that every vector bundle over a simply connected manifold M is
orientable. To see this, pick a point xo € M and for each y e M leti: I - M
be a path joining x, to y (we may assume M path connected). Let @ be an
arbitrary orientation of |x, and define w, ="A, . Since M is simply con-
nected , is independent of the choice of A,. Let U ¢ M be a connected
coordinate domain. Fix y e U. For ze U we can take 4, to be A, followed
by a path in U from y to z. This choice of the A, shows that the resulting
family of orientations {w,},y 15 an orientation of ¢|U. It follows that
@ = {o,}, ¢ 18 an orientation of &.

More generally, the vector bundle { - M is orientable if and only if
every loop A:1 = M, A0) = A1), preserves orientation of ¢|A(0); that is,
Aw=oilwisan orientation of £4(0). If this condition is satisfied and M

is connected, then a given orientation of a single fibre £, extends to a unique.

orientation of ¢ by propagation along paths. Since each fibre has exactly
two orientations, we see that an orientable vector bundle over a connected
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manifold has just two orientations. If one of these is called w, the other is
called —a. ’

In general every vector bundle £ = (p,E,B) has an oriented double

. “covering & = (F.E,B). Let

B = {(x,w):x € B, @ is an orientation of £,}.

The topology of B is generated by the subsets {x,0,},., where U = B is
open, &|U is orientable, and 6 is an orientation of {|U. There is a natural
map p:8 = B, p{x,w) = x. Define ¥ = p*£. The natural orientation of & is
dcﬁged as follows: given {x,0) € B, assign to £|(x,w) the orientation p*w. A
section B ~ B is the same as an orientation of £. Therefore { is orientable
if B is simply connected. S .‘ '

) Let 0.—» ¢ = £ = " = 0 be a short exact sequence of vector bundles.
Gx‘ven qnentations o', w” for &, ¢ respectively, a family w = {w,},., of
on::e'ntatlons of fibres of { is obtained by setting v, = w, @ w;,. Local
trivializations make it clear that o is coherent; thus o is an orientation of
§- Any two of w, o', w" determine the third. We put w = o @ ", etc. In
particular we have

4.1. Lemma, Two of §, &', " are orientable if and only if the third is.

Let M be a manifold. M is called orientable if TM is an orientable vector

pundle. An orientation of M means an orientation of TM ; an oriented manifold
isa pair (M,m) where w is an orientation of M. We define —w to be the
orientation of M such that (—w), = —w, (these arc oricntations of M,)
fox: all x€ M. If M is connected and orientable then it has exactly two
orientations, w and —w. Every simply connected manifold is orientable.
. An alternative definition of “orientable manifold” is: M is orientable if
it has an atlas whose coordinate changes have positive Jacobian determinants
at all points. A maximal atlas of this kind is an oriented differential structure.
By considering natural vector bundle charts it is easy to see that the two
definitions are equivalent.
_ Let (M,w) and (N,6) be oriented manifolds. A diffeomorphism f:M = N
is call.ed orientation preserving _if TS (TMw) — (TN,B) preserves orientation;
in this case we write f{w) = 8. On the other hand f is called orientation
reversing if Tf reverses orientation. Notice that when M is connected, f
must have one of these properties; to determine which one, it suffices to
see whether a single T, f preserves orientation.

Now let M be a connected orientable manifold and let g:M =~ M be a
diffeomorphism. Let w, — o be the two orientations of M. Then cither glw) =
w and g{—w) = —w, or ¢lse glw) = —w and g(—w) = w. In other words
g either preserves both orientations or reverses both orientations. We call
g orientation preserving or orientation reversing, accordingly, independent -
of any choice of orientation for M. If & is an oriented differential structure
for M then f preserves orientation if f*® = @, that is, if the derivative of
S at any point, expressed by charts in ¢, has positive Jacobian.
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As an example consider a diffeomorphism of S” obtained from an ortho-
gonal linear operator L € O(n + 1). Since L also maps D"+ onto itself, LIS
is orientation-preserving exactly when LDt is orientation-preserving, or
equivalently, when L preserves orientation of R"*!. Thus L|S" preserves
orientation if and only if det L > 0. In particular, reflection in a hyperplane
always reverses orientation; the antipodal map of 8" preserves orientation if
n is odd and reverses orientation if n is even. '

Let M be a manifold and & = (F,E,M) the oriented double covering of
the vector bundle TM. It is easy to see that € is naturally isomorphic to
TI. Therefore M is an orientable manifold. This shows that every manifold
M has an oriented double covering M. 1t is easy to see that the natural map
p:IVI — M is a submersion. If M is orientable, then each orientation @ of
M defines a section s,:M — M by s,(x) = (x.2). Conversely, every section
defines an orientation of M.

Next consider the algebraic normal bundle v of ¢M in M:

4.2. Theorem. v is trivial, and hence orientable.
Proof. Letn = dim M. Put
R, = {xeR"x, > 0}

Let n: " — R be the projection m(x) = X;.
Let {@;:U; » R%} be family of charts of M that cover oM.
Define morphisms
F:TMoU; » R,
Fix = D(n(pi)r
Since F, maps T(@U,) to 0, it induces 2 morphism
Gi:\’*an - R

which is clearly a bimorphism. Note especially that if x e dU; » ouUy, the

linear map
ijGi;_l :R - R

is positive. This is equivalent to the fact that each ¢; maps U; onto the same
side of 8R", in R". This already proves v orientable. A trivialization of vis
obtained by gluing together the G; with a partition of unity.

QED

Implicit in the last part of the above proof is this result:

4.3. Theorem. An orientable I-dimensional vector bundle over a para-

compact space is trivial.

“This is true in all C" categories; as usual the analytic case requires a
separate proof. But Theorem 4.3 is false without paracompactness: the
tangent bundle of the long line is orientable, but if it were trivial the long

line would have a Riemannian metric and thus would be metrizable!
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We now give some classical geometric applications of orientations.

4.4. Lemma, Let N be a connected manifoldandlet M « N

: N beacon d
closed submanifold of codimension 1, 6M = N = @&. If M separatez ;'e:l:zn
the normal bundle v of M in N is trivial, and N — M has exactly two com-
ponents; and the (topological) boundary of each component is M.

Proof. Let A = N be a component of N — M. Then M is the boundary
of the subset A. For, since M is closed, Bd 4 is 2 nonempty closed subset
of M._Looking at submanifold charts for (N,M) one sees that Bd A is also
open in M. Since M is connected, Bd A = M. Such charts also show that
Ais a submanifold of N with 4 = M. Clearly v is also the normal bundle
of M in A; therefore Theorem 4.2 implies that v is trivial. Let B be another
component of N — M; then B is also a submanifold of N with boundary
M. 1'!1us A u Bis a closed subset of N. Invariance of domain (or the inverse
function theorem) show that 4 u B is also open. Therefore A w B = N.

QED
From Lemmas 4.1 and 4.4 we obtain:

4,5. Theorem. Let N be a connected manifold and M < N a closed
connected submanifold of codimension 1, éM = ¢N = 8. If M separates N
then M is orientable if N is orientable. ‘

Next, a basic topological result:

4.6, Theorem. Let N be a simply connected manifold and M < N a con-
nected closed submanifold of codimension 1, éM = ¢N = J. Then M
separates N.

Proof. We may suppose N connected. Let xo, x, € N — M. Letf:/ -+ N
be a C* path from x, = f{0) to x, = f(1); assume [ is transverse to M.
Then f~ (M) is a finite subset of I. Let L{xo.x,,f) € Z, be the reduction
mod 2 of the cardinality of f ~'(M). We assert that L{x,,x,,[) is independent
of f. For let g:I - M be another such path. Since N is simply connected.
the paths f, g are homotopic rel end points. Thus there isa map H:f x [ —
N such_ thaf H(t,0) = f(1), H(t,1) = gln), HO,1) = xo, and H(L,1) = x|. By
apProxam_anon we may assume that H is C™ and transverse to M. Then
H™ (M) is a compact I-dimensional submanifold of I x I ¢ R* with
boundary f~Y(0) x 0w g~ '(0) x 1. Since H™'(M) has an even number of
boundary points, the assertion follows.

It is clear that there exist xg, X,, f as above with L(xe.x,J) = 1: for
example, take x, and x, on opposite sides of M, in a small arc transverse
to M. Then x, and x, must be in different components of N — M. since
otherwise there would exist a path g joining them in N — M. Such a path
can be made C™ and transverse to N; then L(xo.x;.f) = 0, contradicting

-the assertion above.

QED
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As a corollary of Theorem 4.6 we obtain the following “nonembedding
theorem™:

4.7, Theorem. A compact nonorientable n-manifold without boundary can-
not be embedded in a simply connected (n + 1)-manifold. In particular pro-
jective 2n-space P** does not embed in R forn = 1.

Proof. A simply connected manifold is orientable; together with
Theorems 4.6 afid 4.5, this proves the first statemeént. To prove the second
we show that P2 is nonorientable. Consider P?* as the identification space
of 52" by the antipodal map A; let p:S* - P be the projection. We know
that A is orientation reversing. Therefore P?" cannot be orientable; forifw
is an orientation of P?", there is a unique orientation @ of 52" such that
T,p(0,) = Wpx for all xe §3*. But such a 6 would be invariant under the

antipodal map, which is impossible.
QED
Theorem 4.7 is false if “simply connected” is replaced by “orientable”:

for P?" embeds in the orientabie manifold P2"*1.
It is also true that P2**! does not embed in R2"*%, but more subtle

methods are required.

Exercises

1. If £ is any vector bundle, £ D & is orientable. This implies that TM is orientable
as a manifold.

2. There are precisely two isomorphism classes of n-plane bundles over §* for each
n = 1. Two such bundles are isomorphic if and only if both are orientable or both are
nonorientabie.

3. M x N is orientable if and only if M and N are both orientable.
4, Every Lie group is an orientable manifold.
(In Exetcises 3 through 9, M < Nisa closed, codimension } submanifold.}
5. oM + PJanddN = & and M, N are connected, then N — M is connected.

6. Suppose N = R°*!, M is compact and 3M = . Then M bounds a unique compact
submanifold of R** 1.

7. Suppose M is a neat submanifold. Then the normal bundle of M in N is trivial if
and only if M has arbitrarily small neighborhoods in N that are separated by M.

8. Suppose N = éM = &3, 1f M is contractible to a point in N then M scparates N.

9. [{M = 0Wwhere W = N is a compact submanifold, and W # N, then M scparates
N. ‘

10. Isomorphism classes of oriented k-plane bundles over an n-manifold M correspond
naturally to homotopy classes of maps from M to the Grassman manifold G, of
oriented k-planes in R, provided s > k+m .
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*I1. Let £ — B be a nonorientable v nnect
ector bunadie over manif
set of homotopy classes of orientation-preserving loops 2;02 € \fc‘fl abgioip of
index 2 in 7, (M,xg). o€ M form a subgroup of

12. Let M be a connected orientable mani

. ' : g . ifold. The subgroup Diff”. (M i i

ph;eservmg dl.ﬂ'eomorphlsms is normal and has index lgorr Zpin Diﬁ!'( 310 flo:c: tzt:on
oreover Diff", (M) is open and closed in both the weak and strong‘ lopo];gim\ *

5. Tubular Neighborhoods

Let M c V be a submanifold. A tubular neighborhood of M (or for

(V,M)) is a pair (f,£) where & = ( .
. ’ = (p,E,M) is a vect
[:E — Vis an embedding such that: ) is a vector bundle over M and

1. fIM = 1), where M is identified with the zero section of E;
2. f(E) is an open neighborhood of M in V. ,

More loosely, we often refer to the o

. s t pen set W = f(E) as a tub
nelghl?orhood of M It is then to be understood that a};soliaied t\t;l vlll’k:;
a partlcu‘lar Fetractlon q:W — M making (g,W,M) a vector bundle whose
zero section is the inclusion M — W.

It is easy to see that only n i
neighborhoods. ¥ neat submanifolds can have tubular

A slightly more general concept i i

. . pt is that of a partial tubular neighborhood
of MMThls means a tnplc (f,&,U) where & = (p,E,M) is a vector bundle
ove};‘e . U < E is a neighborhood of the zero section and [:U — Fis an
emAddm.g such that f|M = 1) and f(U) is open in V.

o pfartlal ?ubular nelghb01:hood (f,£,U) contains a tubular neighborhood,
in the oilm.vmg sense: there is a tubular neighborhood (g.Z) of M in V' such
that g = fin a neighborhood of M.

g‘o construct g, fix an orthogonal structure on . Chooseamap p: M - B
sug.ﬂ_that if y € E, and ly| < p(x) then ye f(U). Let 2:[0.c) = [0.1) be
a diffeomorphism equal to the identity near 0. Define an embedding

hE— E,
h(y) = p(pONA ¥ 'y

Then h(E) = U and h = identity near M. Now put g = fh.

Eventually (Theorem 6.3) we shall
] . prove that every neat submani
has a tubular neighborhood. The first step is to prove:'y submanifold

5.1. Theorem. Let M < B* be a submanifold wi
. h .
M has a tubular neighborhood in R*. Jold ithout boundars: Ther

gr(:ofk It suffices to find a partial tubular neighborhood.

ut k = n — dim M and let y, , = G, be th

; . . k e Grassmann bundle

(t.;ce Section 4.3). Let v:M — G, , be a (C™) field of transverse k-planes:
is means that for each x € M, the tangent plane M, c R" is transverse

to the k-plane wx). For example, one could take v(x) = M}
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Put
& = (p.EM) = v¥7,i3

thus ¢ is a vector bundle, and
E={{xyeMxR:ye wx)}.
Define a map
ffE-R
foeyy=x+y (yevxn)

The tangent space to E at a point {x,0) of the zero section has a natural
splitting M, @ v(x). It is clear that T f is the identity on M, and on
v(x). Therefore Tf has rank n at all points of the zero section and it follows
that f is an immersion of some neighborhood of the zero section. Since
fIM = 1, it foliows that from Exercise 7, Section 2.1, f|U is an embedding
of some open neighborhood U < E of M. Thus (f.£,U) is a partial tubular
neighborhood of M.

QED

In the above construction, if we choose W(x) = M3 the resulting tubular
neighborhood is called a normal tubular neighborhood of M in R". It is not
hard to prove that in this case U can be chosen small enough so that f(U 1 v,)
is the set of points in f(U) whose nearest point of M is x. See Figure 4-1.

Figure 4-1, A normal tubular neighborhood.

5.2. Theorem. Let M < V be a submanifold, OM = oV = &. Then M

has a tubular neighborhood in V.

Proof. We may assume V < R". Let W c R" be a neighborhood of
¥ and r:W — V a C® retraction, (Such a W and r exist because V has a
tubular neighborhood in R") Give V the Riemannian metric induced from

R" and let v = (p,E.M) be the normal bundle of M in V. Thus
ve TyV o TyR' =M x R

each fibre v, is contained in x x R

3. 1ubular Neighborhoods
11

For each x € M let

U= {xy)evex + yewl
Puty = U i i i i
(o map (Urem Uy. Then Uis open in E, being the inverse image of W under
E—+ R
x=x+y  (yevw,)
It is easy to verify that the map

U=V,

e =rx+ )
provides a partial tubular neighborhood for (V,M).

QED

ontcI)t ;sn 1;::;211-1 to be able to slide one tubular neighborhood of a submanifold

_ one, mapping fibres linearly onto fibres. S iding i

special case of an isotopy. Isotopi i idere: 'UCh e gt

: . pies will be considered ity

in a later chapter; at present the following remarks suﬂi]::lemore enerali
If P, Q are manifolds, an isotopy of P in Q is a homot;)pv

F:P x1-0Q,

F(x,t) = F[
such that the related map G )

F:Px1tQxi
(x,0) b (Fi(x),0)

‘Fs'aftlocﬂ;becll?i;g. W; call F the track of F. We also say F is an isotopy from

o 1 < P is such that F(x) = !

F is a rel A isotopy. 4x) = Fol) for all (xa)e 4 x I then
The relation “f is isotopic to g” is transitive. For let F. G be 1sotopies

of P in @ such that F, = G,. W ,
F, to G, by setting l o- We can almost define an isotopy H from

where 7:1 — I is a C* map which ¢ i i 10 §
i =0, 1. This H is indeed alr: isotopy Elcl::s; z ?onGetghborhOOd of f1o ifor
3(1;\: sz;;rtle arguTem shows that rel A isotopy is an equivalence relation.
DS { Sl = (p,ELMY) be a tubular neighborhood of M < V for
» 1. An isotopy of tubular neighborhoods from ( f5.50) to (£,.5,) is a rel
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M isotopy F from E, to V such that:

Fq = fo,

F(Ep) = f(E)),
f1'Fi:Ey— E, is a vector bundle isomorphism § — &,

and
F(E, x DisopeninV x I

This last condition is automatic if M = .

One thinks of {F{Eg)}; as a one-parameter family of tubular neighbor-
hoods of M. Notice also that F defines a tubular neighborhood (F.E x )
of M x IinV x I,

It is easy to see that isotopy is an equivalence relation on the class of
tubular neighborhoods for (V,M).

5.3. Theorem. Let M = V be a submanifold, 3M = 8V = (. Then any
two tubular neighborhoods of M in V are isotopic.

Proof. Let the tubular neighborhoods be ( fi.&i = (pEssM)), i =0, 1.
First suppose fo(Eo) = fi(Ey)-
Let $:£, — £, be the fibre derivative of g = f{ 1fo:Eq — E,. Thus @ is
the component along the fibres of the morphism
Tug:TuEo = TM ® & = TM & & = TuEy,

which shows that @ is an isomorphism of vector bundles.
We define the canonical homotopy from ® to g to be

H:E, x [ = Ey,
_ figlex)y il 2> 0,
M Hixy) = {¢(x) ift = 0.

(Here tx means scalar multiplication in the fibre containing x, etc.)
We claim H is C®. This is a local statement; to prove it we can work
in charts for M, & and ¢,. Such charts make g locally a C® embedding

g:U x R* > R" x R,
glx,y} = (g:(x.).92(.)),
g(x.0) = (x,0)
where U = R" is open. Locally, @ becomes the fibre derivative of g:
o U x R* > R™ x R,
o) = (5 %22 (xn).
Here dg,/dy assigns to each point of U X R* a linear map R* -» R*. The local

representation of H is a map (U X R*) x I — R™ x R* given by the same
formula (1).
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By Taylor’s formula we can write

5 :
@ aaley) = S0y + (otxihy)
:v(::;;ei,&isthe mnerproductmR'andsU x R* = R*is a C* map with

It is trivial to verify that Athe first coordinate of (the | i

1 ocal 1a
of) H as given by (1) definesa C* map U x R™ x | - R™. Byr(ch)rt::nswgg:
coordinate of H is given by the formula

dg

Ty SO +<sleml), 1220
Clearly this is C* in (t,x,y). Thus H is C*; and it is easi i ;
an isolopy. ; and it is easily verified that H is

An - t . -
deﬁnedlli); opy of tubular neighborhoods from (f,.Z,) to (f,,&,) is now .

Flxg) = f7'H(x1 - o),
und;:r the assumption that fo(E,) = fi(E,).
the general case we first i -1
a preliminary isotopy of the fom;:“l?Eomomom setfo  filEn) < Ey by
co . G:onl—on,
G(z) = (1 — )y + th(y)

where
h:Eo - E{)i

o [ ¥P)
Ky} [H_y,]y

and 3:M — R, is a suitably small C‘” map.
Thus ( fo,&0) and (f,G,,&,) are isotopic tubular neighborhoods; and since

JoGy maps E, into f\(E,), so are (£,G\&) and
’ £). Th
follows from transitivity of the rclati‘:a nlof isotop(il £). Theorem 5.3 now

QED

6. Collars and Tubular Neighborhoods of Neat Submanifolds

The boundary of a manifold cannot have a tubul i
i ‘ ar neighborhood.
However, it has a kind of “hali-tubular” neighborhood call:’dh a collar.

" A collar on M is an embedding

[:0M > [0,00) + M
such that f(x,0) = x. The following is the collaring theorem:
6.1. Theorem. oM has a collar.
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Proof. A proof using differential equations is given in Section 5.2. An
alternative proof is outlined as follows.

First, find a C® retraction r:W — &M of a neighborhood of dM onto
dM. This is obviously possible locally, and two local retractions into
coerdinate domains can be glued together with a bump function. A standard
globalization technique (e.g., Theorem 2.2.11) produces a global retraction.

Second, find a neighborhood U « M of M and a map

g:U — [0,00),
glcM) =0

having 0 as a regular value. This is easily done with a partition of unity.
Third, observe that the map

h = (rg):W - éM x [0,00)

maps a neighborhood of ¢M diffeomorphically onto a neighborhood
W < dM x [0,00), and h(x) = (x,0) for x € M.

Finally, let ¢:dM x [0,00) — H(W) be an embedding which fixes
dM x 0. Then h™ ¢ is a coliar.

QED

It is also true that boundaries of C° manifolds have collars, although
this is far from obvious. An elegant and surprising proofis given by M. Brown
[2].

We leave as an exercise the proof of the following refinement of
Theorem 6.1

6.2. Theorem. Let M < V be a closed neat submanifold. Then 8V has
a collar which restricts to a collar on M in M.

Having collars at our disposal we can now prove:

6.3, Theorem. Let M < V be a neat submanifold. Then M has a tubular
neighborhood in V.

Proof. By Theorem 6.2 there is a neighborhood N = V of 8V and a
diffeomorphism
@:(N,eV) = (0V x 1,0V x 0)
such that
¢:NnoM = 0M x L

Let g > 2 dim V. Embed 8V in Ri™!; extend this to an émbedding
8V x I - R x [0,00) = RY
(1) = (x,1).

We can thus assume N < R% in such a way that every vector of R? which

is normal to N at a point of V, or normal to N n M at a point of 3V, is in
R !, See Figure 4--2.
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NnM

Figwe 4-2, An embedding of Nin RY.,

‘We can extend the embedding of N to an embedding of ¥ in RY,.. Thus
V is now a neat submanifold of R%, and both ¥V and M meet R*"*
orthogonally along éV and dM.

We can now find a normal tubular neighborhood of Vin RY, (Figure 4-3),
and the rest of the proof is like that of Theorem 5.2.

QED

[t
Figure 4-3. A normal tubular neighborhood of ¥ in RY.

The following extension theorem for tubular neighborhoods is useful:

6.4. Theorem. Let M < V be a neat submanifold. Then every tubular

neighborhood of OM in 8V is the intersection with 3V of a tubular neighborhood
JorMinV, .

Proof. First consider the special case V = W x I, M = N x I where
N < W is a submanifold and 8N = 8W = . Then
WV=Wx0uWxI
IN=Nx0uUNXx1.
In this case a tubular neighborhood for (8¥,5M) is just a pair of tubular

neighborhood for (W,N). Let these be Eq, E,. By Theorem 5.3 there is
an isotopy of tubular neighborhoods from E; to E,, say F:Eg, x I —+ W.



Then the corresponding embedding

FEgxIoWxI=W
B(x,t) = (F(x,0,0)

a tubular neighborhood for N x [ = M in V, restricts to E, and E, in 8V.
Now consider the general case. Give 8V a collar in V which contain a
collar on M in M; we shall identify &V x [0,00) with a neighborhood
of ¢V in ¥V, so that M x [0,00) corresponds to a neighborhood of oM
in M, Put
V=43V x[01], M =M x[01]
V"' =18V x [1,00), M’ =M x [1,00).

Thus V.= V' U V", V' A V" = §V x 1, and similarly for M.

Let E; be a tubular neighborhood for M in V. By 6.3 there is a tubular
neighborhood E” of M” in V", Let E; = E" n gV < dV x 1. Thus E,
and E, form a tubular neighborhood for M x {0,1} in ¥ x {0,i}. By the
special case E, U E; extends to a tubular neighborhood E’ of V' in M'.
Then E' v E” is a tubular neighborhood M in V which extends E,. (Actually
one has to make sure that E' and E” fit together smoothly at JV*; this is
left to the reader.)

QED

A closed tubular neighborhood of radius ¢ > 0, of a submanifold M < V,
isanembedding D,(§) —+ M which is the restriction of a tubular neighborhood
(/€ = (p.E,M)}) of M. Here

D& = {xeE:|x] < ¢}

is the disk subbundie of & of radius ¢, for a given orthogonal structure on ¢.
The isotopy theorem for closed tubular neighborhoods is as follows:

6.5. Theorem. Let M < V be a submanifold, Let & = (p,E,M) be
orthogonal vector bundles over M, i = 0,1. Let(f,,£)) be a tubular neighborhood
of M. Let & > 0, 6 > 0. Then (fo,6,) and (f1,&,) are isotopic by an isotopy
of tubular neighborhoods F;:E — V, 0 < t < 1, such that Fy = f, and

Fi(D{£o)) = Do&y).

Proof. By Theorem 5.3 and a preliminary isotopy we may assume that,
as tubular neighborhoods, (fo.50) = (/1.€,); but D&,) and Dy(¢,) might
be defined by different orthogonal structures. However, by 2.3 and a linear
isotopy we may assume that these orthogonal structures are identical.
The theorem is now obvious: in any orthogonal vector bundle there is a
linear isotopy carrying D,(£) onto D,(£). .

QED

As a very special but useful case, let M be a point x, € V. An open tubular

neighborhood of x, is an embedding (R",0) = (V,x,) and a closed tubular

6. Collars and Tubular Neighborhoods of Neat Submanifolds iy

neighborhood of radius 1 is an embedding (D*,0) — (V,x,), where n = dim V.
(We suppose aV = &)

6.6. Theorem, Let E* = D" or R and let Ji:(EP0) = (Vxp) be an
embedding, i = 0, 1, where n = dim V. If

. Det(D(f1'fo)(0)) > 0
then fy and f, are isotopic rel 0.

.. Proof. Note that f7'f, is weil defined on a neighborhood of 0 in E*,
$0 its derivative at 0 is defined. By isotopy of tubular neighborhoods we

can assume f{'f, is a linear automorphism L& GL{n). If det L > 0 then
%mmnnectedtotheidentityinGL(n)byanarcL,,Os t<1:

i Lo“fflfo, L: = lg.
The required isotopy from f; to f; is

OLLTf T Ot

QED

One use for tubular neighborhoods is to make a map look like a vector
bundle map (after a homotopy). Let V, N be manifolds, 4 < N a compact
neat submanifold and f:V —+ N a map such that f and f |0V are both
transverse to A. Put M = f~!(4), a neat submanifold of V. Suppose given

tubular neighborhoods U « Vof M and E < N of A. Let D < Ubea
disk subbundle such that f(D) < E.

. 6.7, Theorem. Under the assumptions above, there is a homotopy |,
Sfrom f = f, to amap fy = h:V — N such that:
(@) h|D is the restriction of a vector bundle map U — E over M4
b i=fonMUN-WU0<Lt <.
@ fFIIN-A=V-MO0O<t< L

. Proof. Let &:U — E be the vector bundle map, over f:M — A, which
is the fibre derivative of f:D — E. Let f:D = E,1 > t > 0 be the canonical
homotopy from f; = f|D 10 f, = &|D:

_fttitfex), 1zezo,
Hi) = {«p(x), t=0.

Notice that f(3D) = N — A.

Let D' c U be a disk subbundle with I < int D. Put D' — int D = L;
thus L = aD’ u éD. Define a homotopy

g 0L N — A,
_ A on oD,
%=1 on éb.

By homotopy extension (Theorem 1.4) g, extends to a homotopy
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g,.:L -+ N — A, Define a homotopy

h:V - N,
f on V-D
h =<g, on L
£ on D.

The required map is then h = hq.
QED
Exercises

1. There is an obvious definition of C” tubular neighborhood and C isotopy, 1 € r <
0. A neat C submanifold has a C tubular neighborhood, unique up to C isotopy.

*2, Let My, M, be neat submanifolds of V' in general position. Let (f,§,) be a tubular
neighborhood of My n M, in M,, i = 0, 1. Then there is a tubular neighborhood
(fio @ &) of Mg n M, in V such that fI§ = f.

*3, Extendability of germs of tubular neighborhoods. Let M < V be a neat submanifold
and U < M aneighborhood of a closed subset 4 — M. For every tubular neighborhood
E, of U in V there is a tubular neighborhood E of M in ¥, and a neighborhood W = U
of A, such that E|W = E,|W.

4. Let D < M be a neat p-disk of codimension k. Then D has a ncighborhood E « M
such that

(E,D) = (D* x R*.D* x ().

5. Let M < ¥ be a closed neat submanifold of codimension k. Then there is a map
S:(V,M) = (§*,p) such that p is a regular value and f~ Y(p) = M, if and only if M has
a trivial normal bundle.

6. Let M < R be a submanifold of codimension k, 6M = . Let viM - G, ;bea
transverse field of k-planes. Suppose that v locally satisfies Lipschitz conditions with
respect to Riemannian metrics on M and G, ,. Then M has a tubular neighborhood
U < R* whose fibre over x € M is the intersection of U and the k-plane through x
parallel to Wx). But if v is merely continuous this may be false, even for St c R

7. The boundary of a nonparacompact manifold does not necessarily have a collar.
For instance there is a 2-dimensional manifoid M such that M — M = R? but oM
has uncountably many components {each diffcomorphic to R).

*8. Let L be the long line with its natural ordering (sec Exercise 2, Section 1.1) and set
M = {(x,y}e L x L:x < y}.
Then M is a d-manifold with dM = L. Show dM has no collar.

*9, Ambient isotopy of closed tubular neighborhoods. In Theorem 6.3, the isotopy F | DelEo)
can be achieved through a diffeotopy of V. That is, there is an isotopy G:V — V,
0 <t < 1, such that Gy = 1,, and F(x) = G, fo(x) for x € D(£,).

7. Analytic Differential Structures

We shall use tubular neighborhoods and transversality to prove the
following result:

. 7.1. Theorem (Whitney). Let M be a compact manifold without bbumiary.
“Then M is diffeomorphic to an analytic submanifold of Euclidean space.
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Proof. We may assume M embedded in R* with codimension k. Let
E = R* be a normal tubular neighborhood of M. We identify E with a
neighborhood of the zero section of the normal bundle of M. Let p:E - M
be the restriction of the bundle projection.
Let h:M - G, , be the map sending x € M to the k-plane normal to

Matx. Let E, , — G, , be the Grassmann k-plane bundleand let f:E - E ,
be the natural map covering h; thus )

f()’) = (h(.V)vy)EEq,l < Gq.l x R*.
Note that f is transverse to the zero section G, ; < E, , and

UG} = M.

The main point of the proof is to C* approximate f by an analytic map.
For this we use Theorem 2.5.2. That result says that a real-valued " map
(0 < r £ o0) on an open subset of Euclidean space can be C” approximated,
near a compact set, by an analytic map. The same result clearly holds for
maps into R*. Moreover it holds for maps from open subsets E c Rf into
a C” submanifold N = R. For a normal tubular neighborhood of N
provides a C® retraction p:W — N where W < R* is an open set. Given
S:E — N, the required C® approximation is p e f' where f:E —+ W is
a C® approximation to f.

Now E, , embeds analytically in R® with s = g + q. For this it suffices
to embed G, , in R, This is done by mapping a k-planc P e G,.» to the
lingar map R? — Rf given by orthogonal projection on P.

It follows that the map f:E — E, , can be approximated near M by
an analytic map ¢:E —+ E_ ,. Put M’ = 97 XG, ,). If ¢ is sufficiently C'
close to f then @ ¢ G, , and the restriction of p:E - M to M’ is a C*
diffeomorphism M’ =~ M.

QED

Of course stronger results can be proved by using the powerful Remmert—

Grauert approximation Theorem 2.5.1. The proof given used only the
clementary Theorem 2.5.2.

Exercises
1. Let /1M —+ R* be an embedding where M is compact without boundary. Theo f
can be approximated by embeddings g such that g{M) is an analytic submanifold.

2. Let M = R and N < R be analytic submanifolds without boundaries, with M
compact. Then analytic maps are dense in CW(MN), 0 < r < o,

3. Let { be a C vector bundle over M, where M is a compact analytic submanifold
of Euclidean space, 0 € r £ oo, and M = (. Then £ has a compatible C* vector
bundle structure, unique up to C* isomorphism.



Chapter 5

Degrees, Intersection Numbers, and
the Euler Characteristic

Topology has the peculiarity that questions belonging in its domain may
under certain circumstances be decidable even though the continua to which

they are addressed may not be given exactly, but only vaguely, as is always the
case in reality.

—H. Weyl, Philosophy of Mathematics
and Natural Science, 1949

Geometry is a magic that works . . .

—R. Thom, Stabilité Structurelfe
et Morphogénése, 1972

We now have enough machinery at our disposal to develop one of the
most important tools in topology: the degree of 3 map f:M — N, where M
and N are compact n-manifolds, N is connected, and M = 4N = (. This
degree is an integer if M and N are oriented, an integer mod 2 otherwise,

Intuitively, the degree is the number of times f wraps M around N. The
precise definition requires the theories of approximation, regular values, and
orientation. If f is C! and if Y€ N is a regular value, then the degree of f
is the number of points in S7X(y) at which Tf preserves orientation, minus
the number of points at which T reverses orientation.

It turns out that the degree of £ is the same for alt maps homotopic to
f. This has two important consequences: it makes the degree of any given
map easy to compute, and it gives us a convenient method of distinguishing
homotopy classes. Moreover the degree is the only homotopy invariant for
maps into §"; this is the main result of Section 5.1.

With the introduction of the degree we enter the realm of algebraic topol-
ogy. Many geometrical questions depend on the computation of degrees of
maps; thus topology is translated to algebra, the continuous. is reduced to
the discrete.

The degree is actually a special case of a more general geometrical concept
called the intersection number, developed in Section 5.2. If M and N are
submanifolds of W of complementary dimensions, and M and N are in
general position, their intersection number is the algebraic number of points
_in M ~ N, each counted with appropriate sign determined by orientations.

By means of transversality theory, intersection numbers of maps M, N - W
can be defined; again we obtain homotopy invariants. If W is an n-dimen-
sional oriented vector bundle ¢ = M then the self-intersection number of
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the zero section is called the Euler number X(&). This is an important iso-
morphism invariant of bundles. The Euler number of TM is the Euler
charucteristic y(M}. .

We can compute X(£) by means of sections of &. This leads to the com-
putation of y(M) as the sum of the indices of zeros of a vector field on M.
In Chapter 6 we shall use the Morse inequalities to recompute z{M) as the

alternating sum of the Betti numbers of M.

1. Degrees of Maps

In this section we exploit orientations and tubular neighborhoods to
derive some classical homotopy and extension theorems.

Recall that Euclidean n-space R, n > 1, has the standard orientation o»"
given by any basis whose coordinate matrix has positive determinant !a.nd
the orientation of R is the number + 1). Every n-dimensional submanifold
of R" is also given this orientation.

If (M,w), {N,0) are oriented manifolds, the product orientation & x 8 for
M x N assignsto(x,y)e M x N the orientation w_ @ 6, of(M x N),, ,, =
M, @ N,.

Let (M,w) be an oriented d-manifold and f:8M x [0.2c) -» M a collar.
Then T, f induces an isomorphism of the trivial bux_)dle M x R onto the
normal bundle v of M in M. The standard orientation of R orients each
fibre of M x R; via T, f this induces an orientation 1 of v w!:ic_h does not
depend on the collar. In other words v is oriented by inward pointing vectors
tangent to M at dM.

We now have orientations o and 1 of M and v. From the exact sequence
of vector bundies

02 T(OM) - TyM - v >0

we define the induced orientation w/t = dw of M. Thus (ey,. “v 2 €nn 1) 15 an
orienting basis for (dw), if (e, . .., e,_,,&,) is an orienting basis for w, and
e, points into M at x € M. _

Let 8 be an orientation of M. We usually give M x [ the product orienta-
tion @ = 8 x w' where ' is the standard orientation of 1. It follows that

dwlM x 0 =8  and dolM x 1 = —0.

We shall frequently speak of “the oriented manifold M”, not naming
the orientation explicitly. In this case M and M x I are also oriented
manifolds, as is any submanifold of M of the same dimension. If - M de-
notes the manifold M with the opposite orientation, then

M x)=(MxQu(—-Mx1

as oriented manifolds. _ '
The closed unit n-disk D"*! < R*** has the standard orientation. "l'here-
fore its boundary 5" inherits an orientation, also called “standard™. It is easy



to verify that stereographic projection from the north poleP = (0,...,0,1)e
§” is an orientation preserving diffeomorphism $" — P =~ R". Thus if
(e1, ..., ) is an orienting basis for R* = R"*!, an orienting basis for §" at
the south pole —Pis (e, ..., e,), while at the north pole (e,, . . ., e, 1 €y)
is orienting,

Let A:R™ — R™ be the antipodal map A(x) = —x Since Det 4 = (—1)*
it follows that A preserves orientation of R™ if and only if m is even. The
antipodal map of R"*! restricts to a diffeomorphism of D"**, Since it clearly
preserves orientation of the normal bundle of 3D"* 1, it follows that A: §* —» §"
preserves orientation if and only if n is odd.

L1. Lemma. Let (W,w) be an oriented 0-manifold. Suppose K ¢ W is
an embedded arc which is transverse to 8W at its endpoints u, ve dW. Let x
be an orientation of K, and consider the quotient orientation w/x of the alge-
braic normal bundle of K. Then

CIJ,,/K“ = (aw)u - wu/Kv = - (6w),,

Proof. Let X, X, be tangent vectors to K at u, v which belong to k,, x,
respectively. Then X, is inward if and only if X, is outward; this is equivalent
to the lemma.

QED

Let (M,w), (N,8) be compact oriented manifolds of the same dimension,
without boundaries. Assume N is connected. Let S:M —~ NbeaC' map
and x € M a regular point of f. Put y = f(x). We say x has pasitive type if
the isomorphism T, f:M_ —» N » PTeserves orientation, that is, it sends w, to
8,. In this case we write deg, f = 1. If T, f reverses orientation then x has
negative type, and we write deg, /' = —1. We call deg, f the degree of f
at x.

Suppose y € N is any regular value for f. Define the degree of f over y
to be

deg(f,y) = Toes-vpdeg, f;
if £7'(y) is empty, deg(f,y) = 0. To indicate orientations we also write
deg(f,y) = deg(f,y; w,0).

Reversing w or 8 changes the sign of deg(f,y).

To interpret deg( f, ) geometrically, suppose that £~ *(y) contains n points
of positive type and m points of negative type, so that deg(f,y) = n — m.
From the inverse function theorem we can find an open set U = N about
y and an open set U(x) = M about each x € S£7'(¥) such that f maps each
Ul(x) diffeomorphically onto U preserving or reversing orientation according
to the type of x. Thus deg(f,y) is the algebraic number of times f covers U,

For example, let S! be the unit circle in the cormplex plane. Let M =
N =S and 0 = w. If £:S' — S! is the map f(z) = z" then deg(f,z) = n,
provided z # | whenn = 0.

If M is not connected, but has components M,, . . ., M,, note that

deg [ = 3, deglf|M,).

Of course each M, is given the orientation w|M; induced by the inclusion
M;c M

1.2. Lemma. Let W be a compact oriented manifold of dimension n + 1,
N a compact oriented n-manifold without boundary and h:W - N q C? map.
Let y € N be a regular value for both h and h|dW. Then deg(h]aWw.y) = 0.

Proof. Let w, 8 be the orientations of W, N respectively. Let M PR ¥ |
be the components of 3W.

Since y is a regular value, h™'(y) is a compact I-dimension submanifold
of W whose boundary is (hj0W)~'(y). Let u € h~'(y). Then there is a unique
veh™'(y), v # u, and a component arc K < h~{y) such that 6K = {uc}.
It suffices to show that u and v are of opposite type for hdW.

Let v = TW/TK, the algebraic normal bundle of K in W. Since yisa
regular value, Tf induces a bimorphism #:v — N » There are natural identi-
fications v, = (aW),, v, = (OW),.

Since K is an arc there is & unique orientation x of v such that x, = (cw),.
By Lemma 1.1, x, = —(dw),.

Suppose  is of positive type (for AjgW). Then @,(x,} = 8, for all x € K.

It follows that
T(hOW)dw), = B.x,
= 8,

and
T(EW) ~dw), = Bx,
=6,
Therefore v is of negative type, This shows that h|¢W has equal numbers
of points of positive and negative type in h~(y).
' QED
L.3. Corollary. Let (M,w) and (N.0) be compact, oriented n-manifolds,

OM = 0N = (J. Let N be connected, and f, g:M — N homotopic C* maps
~having a common regular value y € N. Then degt f,y) = deglg, »).

Proof. There is a homotopy h:M x 1 - N from f to g, and one can
make k C™ and transverse to y. As oriented manifolds

IMxDN=Mx0u)u(M x 1,-a).
By Lemma 1.2 we have
0 = deg(hjdM x I))
= deg(f,y; w,0) + deglg,y: —w,0)

= deg{f,y; ©,0) — deg(g,y; w.0).
QED
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1.4. Lemma. Let M, N be a compact oriented n-manifolds without bound-
aries, n > 1, with N connected. Let y, z € N be regular values for a C* map
J:M —= N. Then deg(f,y) = deg([f.2). ‘

Proof. Suppose there is a diffeomorphism h: N -» N, homotopic to the
identity, such that h(y) = z. Then deg(h,z) = deg, A = 1, by Corollary 1.3.
It is easy to see that this implies

deg(f,y) = deglhf,z).
But hf is homotopic to f; hence

deg(hf,z) = deg(f,2).

It remains to construct h, If y and z are very close together, say in the same
coordinate ball, the construction is not hard, and is left as an exercise. The
relation between y and z, that such an h exists, is an equivalence relation
on N whose equivalence classes are thus disjoint open sets. Since N is con-
nected, any two points are equivalent. :

QED

1.5. Lemma. Let M, N be manifolds and f:M — N a continuous map.
Then f can be approximated by C* maps homotopic to f.

Proof. We may assume, by Theorem 4.6.3, that N is a C* retract of an
open subset W < R%; let r:W — N be a retraction. Let g:M — N bea C*
map which approximates fso closely that the map

h:M x I - RY,
h(x,t) = (1 — Of(x) + tg(x)
takes value in W. Then rh:M x I — N is a homotopy from f to g.

QED

We are ready to define the degree of a map. Let M, N be oriented compact
n-manifolds, n > 1, with N connected and M = N = (. The degree deg f
of a continuous map f:M — N is defined to be deg(g,z) where g:M - N is
a C* map homotopic to f and ze N is a regular value for g. By Lemma
1.5 such a g exists, and deg f is independent of g and z by Corollary 1.3
and Lemma 1.4.

1f M and N are not oriented, perhaps even nonorientable, a mod 2 degree
of f:M — N is defined as follows. Again let z € N be a regular value for a
C* map g:M — N homotopic to f. Let deg;(g,2) denote the reduction
modulo 2 of the number of points in g~ !(z). Then deg,(g,2) is independent
of g and z. This follows from the mod 2 analogue of Lemma 1.2, the proof
of which reduces to the fact that a compact 1-manifold has an even number
of boundary points. We then define deg,(f} = deg,(g.2).

The results proved up to now apply to degrees of continuous maps to
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yield:

1.6. Theorem. Let M, N be compact n-manifolds without boundary, with
N connected.

(&) Homotopic maps M — N have the same degree if M, N are oriented.
and the same mod 2 degree otherwise.

(b) Let M = OW, W compact. Suppose a map [:M — N extends to W.
Then deg f = O if W and N are orientable, and deg, f = 0 otherwise.

The degree is a powerful tool in studying maps. For example, if deg f(or
deg; f) is nonzero then f must be surjective. For if f is not surjective, it can
be approximated by a homotopic C* map g which is not surjective. If
ye N — g(M]}, clearly deg(g,y) = 0.

Here is an application of degree theory to complex analysis; it has the
fundamental theorem of algebra as a corollary. Let p(z). ¢(z) be complex
polynomials. The rational function p(z)/g(2) extends to a C® map f:5? — §2,
where §? denotes the Riemann sphere (the compactification of the complex
field C by oo). Then: f is either constant or surjective.

The key to the proof is the observation that z € 52 is a regular point if
and only if the complex derivative f’(x) # 0, and in this case the real deriva-
tive Df,:R? —» R? has positive determinant.

If f is not constant then f” is not identically O; hence there is a regular
point z. By the inverse function theorem there is an open set U < 5% about
z, containing only regular points, such that f(U) is open. Let we f(U) be
a regular value. Then f~'(w) is nonempty. Since every point in f~*(w) has
positive type, it follows that deg( f,w) = deg f > 0. Therefore f is surjective.

A famous application of degree theory is the so-called “hairy ball
theorem™: every vector field on $** is zero somewhere; more picturesquely.
a hairy ball cannot be combed. To prove this, suppose that & is a vector
field on $* which is nowhere zero. A homotopy of $* from the identity to
the antipodal map is obtained by moving each x & $* to — x along the great
semicircle in the direction o(x). The existence of such a homotopy implies
that the antipodal map has degree + 1 and so preserves orientation; therefore
k is odd.

The question of zeros of a vector field, or more generally, of a section
of a vector bundle, is approached more systematically in Section 5.2 with
the theory of Euler numbers.

The following lemma will be used in the extension Theorem 1.8.

1.7. Lemma. Let W be an oriented {n + 1}manifold and K <= W a neat
arc. Let V = 8W be a neighborhood of K and f:V -» N a map to an oriented
n-manifold N, 0N = (5. Let y € N be a regular value of f and assume ¢K =

. S~y Finally, assume that f has opposite degrees at the two endpoints of K.

Then there is a neighborhood Wy, < W of K and a map g: Wy, — N such that:
@ g=fonW,nV,
(b) y is a regular value of g,
© g7 '(» =K.
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Proof. We may take (N,)) = (R",0). Let the endpoints of K be x,, x;.
Since O is a regular value each x; has a neighborhood U; < V such that f
restricts to an embedding f;:(U,x;) — (R",0).

It suffices to prove the lemma for any map agrecing with f near K.
Therefore we can assume that each f; is a diffeomorphism. Then f; ! can
be regarded as a tubular neighborhood of x, in W; and together, fg! and
f1! form a tubular neighborhood of 8K in 0W.

By Theorem 4.6.4 this tubular neighborhood extends to a tubular neigh-
borhood E of K in V. We may assume W = E. Since K is an arc, E'is a
trivial vector bundle over K, and we may assume that

WK)=(I x BRI x 0)
and (N, y) = (R",0). With this notation,
V=0xRulxR"

and f:i x B" — R" (i = 0, 1) is given by a linear isomorphism L, € GL(n).
The degree assumptions and the convention for orienting &/ x R") mean
that L, and L, have determinants of the same sign. Therefore Ly and L,
can be joined by a path L, in GL(n), 0 < t < 1. The required extension of
f is the map
I xR - R
{t,y) — L{(y).
QED

We can now prove a basic extension theorem:

1.8. Theorem. Let W be a connected oriented compact d-manifold of
dimension n + 1. Let f:0W — §" be a continuous map. Then f extends to
a map W — 5" if and only if deg f = 0.

Proof. We aiready know that the degree vanishes if f extends. Suppose
then that deg f = 0.

By homotopy extension it suffices to extend some map homotopic to
f. Since f is homotopic to a C* map (Theorem 1.5) we may assume f is
C>. Let ye §" be a regular value of f.

Since deg(f,y) = 0, f () has equal numbers of points of positive and
negative type. We can find a set of disjoint embedded arcs K, ..., K, © W,
each going from a positive to a negative point of f7'(y), with K =
K, u---u K, a neat submanifold and K = f~'(y). When dim W > 3
this follows from density of embeddings I — W. When dim W = 2 we can
find immersed arcs K, . . . , K, (which may across each other). A new family
of K4, ..., K, without crossings can be obtained by the following device.
Assume the crossings are in general position. At each crossing make the
change suggested by Figure 5—1. The arrows indicate the orientation of the
arcs from positive to negative endpoint. There results a compact neat 1-
dimensional submanifold K’ of W with boundary f ~!(y). Each component
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+ -~
Before After
Figure 5-1, Eliminating crossings.

of K’ is an arc or a circle; each arc has endpoints of opposite types (see the
arrows in Figure 5-1). Thus we obtain disjoint embedded arcs.

Now apply Lemma 1.7 to each arc K, with N = S". We obtain an open
neighborhood W, = W of UK, and a map g:W, — §* which agrees with
f on 8W,, having y as a regular value, and with g~ Y» = Uk,

Let U = W, be a smaller open neighborhood of UK, whose closure is in
W,. Then Bd U = W, — uK,. The maps ¢ and f fit together to form a
continuous map

hX=BdUu (W - U)— 5§ — »

Note that X is a closed subset of W — U. Since §* — y = R, Tietze's
extension theorem permits an extension of htoamap H:W — U - S — y.
An extension of f to W is the map equal to H on W — U and to g on W,.

QED
An analogue of Theorem 1.8 for nonorientable manifolds is:

1.9. Theorem. Let W be a connected compact nonorientable é-manifold
of dimension n + 1 > 2. A map f:6W — S* extends to W if and only if
deg, f = 0.

Proof. If f extends, deg; f = 0 by Theorem 1.6.

Suppose deg, f = 0. We may assume f is C*. Consider first the case
dim W = 3.

Let y e S* be a regular value; then f~'(y) has even cardinality. Hence
f~'(y) = 0K where K < W is the union of disjoint neatly embedded arcs.

Let K, be one of these arcs with endpoints i, v € f~'(y). Although TW
is not an orientable vector bundle, TW[K; is. Give TWIK; an arbitrary
orientation; this induces orientations to T,0W and T,¢W. It then makes
sense to ask whether u and v are of opposite type for the map f. If they are
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not, we change K; to a new arc K by adding to it an orientation reversing
loop L in W (see Figure 5-2).

Because dim W = 3 we can make K embedded and disjoint from the
other arcs K. Give TW|K; an orientation and give T,0W and T,0W the
induced orientations. With respect to these orientations, ¥ and v are now
of opposite type; otherwise L would preserve orientation.

v 7
Before After
Figure 5-2.

We can thus assume that T W is oriented so that with respect to the
induced orientation of T(OW)|f ™ *(y), the endpoints of each arc are of
opposite type. The rest of the proof for dim W 2 3 is now exactly like that
for the oriented case.

Now letdimn W = 2. Let y € §' be aregular value for f. After a homotopy, ’

we may assume that there are disjoint open intervals I, ..., I, c ¢W with
the foliowing properties:

(a) each I, contains exactly one point x; of £~ (y);

(b) f maps I; diffeomorphically onto §* — (—y);

() floW — ul)) = —».
We say that f is in standard form in this case.

Give ¢W any orientation, so that the integer deg f is now defined. Note
that deg f is even. Each /; contributes +1 to deg f; hence v is even.

We proceed by induction on v = v(f); if v = 0 then f is constant and
extends to the constant map of W. Suppose then that v > 2.

Let K = W be a neat arc joining x, to x,; give T W an orientation w.
As before, choose K so that x, and x, are of opposite type for f with respect
to the orientations of T, W, i = [, 2 induced by w.

Let N = Wbeatubular neighborhood of K suchthat N m oW = I, U I,
Topologically N is a rectangle whose boundary dN is a circle consisting
of four arcs I, Jy, I,, J,.
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We change f to a new map g:dW — S' thus: g = fon oW — (I, U I,),
whileg(I, U 1) = —y. Observe that g is in standard form and v(g) = -2
We assume inductively that g extends 10 a map G: W — S'.

Note that deg(G|dN) = 0, by Theorem 1.6(b) since G extends over N.
Since GlI, U I, is constant, this means that deg G, + deg G{J, = 0,
when J, and J, are given orientations induced from an orientation of ¢V.

Define a new map h:0N — 5§ equaito GonJ, u Jyandto fon [, U 1,.
Because of the way the arc K was chosen, deg f}f, + deg f]I; = 0. It
follows that deg h = 0. By Theorem 1.8 (adapted to N) there is an extension

of h to a map H:N — S'. The required extension of f is the map W — §'
which equals Hon N and Gon W — N.

QED

We can now classify maps of all compact n-manifolds into S*. Let =
denote the relation of homotopy.

1.10. Theorem. Let M be a compact connected n-manifold, n > 1. Let
[, g:M — S be continuous maps.

(a) IfM isoriented and oM = (J, then f = gifandonly ifdeg f = deg g;
and there are maps of every degreemeZ.

(b) If M is nonorientable and SM = &, then f ~ g ifand only if deg, =
deg, g; and there are maps of every degreeme Z,.

{c) IféM # S then f ~ g.

Proof. We first show that there are maps of every degree. Let M be as
in (a). The constant map M — S” has degree 0. Givenme Z, let o,: U, » R*,
i =1,..., m be disjoint surjective charts which preserve orientation. Let
s:R" ~ §" — P be the inverse of stereographic projection from the north
pole P so that s preserves orientation. Define

M-8,

f= 5@; on U,
" |constantmapP on M - LU,

Then f is continuous and has degree m. If the ¢; were orientation reversing
J would have degree —m. Taking m = 1 and ignoring orientations proves
the second part of (b).

The first parts of (a) and (b) are consequences of Theorems 1.8 and 1.9
with W= M x I. To prove {c) let M’ be the double of M, two copies of
M glued along OM, and p:M’' — M the map identifying the two copies,
and i:M — M’ the embedding of one copy. It is easy to see that fp:M" — 5*
has degree 0 if M is orientable, and otherwise deg,(fp) = 0. Therefore fp
is homotopic to a constant map ¢ (which also has degree 0). Since fpi = f,
it follows that f =~ ¢, Similarlyg ~ ¢,s0 f ~ g.

QED
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Exercises

1. A complex polynomial of degree n defines a map of the Riemann sphere to itself
of degree n. What is the degree of the map defined by a rational function p(z)/g(z)?

2. (a) Let M, N, P be compact connected oriented n-manifolds without boundaries

and M & N 4 P continuous maps. Then deg( fz) = (deg g)(deg f). The same holds
mod 2 if M, N, P are not oriented.

(b) The degree of a homeomorphism or homotopy equivalence is + 1.

*3, Let M, be the category whose objects are compact connected n-manifolds and whose
morphisms are homotopy classes [ /] of maps f:M — N. For an object M let n"(M)
be the set of homotopy classes M — S". Given{ f}:M — N define [ f]*: 2" (N} — n*(M),
[f1*{g] = [af]- This makes =" a contravariant functor from 9, to the category of sets.

(a) There is a unique way of lifting this functor to the category of groups so that
n*(S") = Z with the identity map corresponding to 1€ Z.
(b) Given the group structure of (a), for each M there is an isomorphism

z if M is orientable, oM = &
M) x<{Z, if M is nonorientable, M =
0 if oM # Q.

But there is no natural family of such isomorphisms.
4. A continuous map f; 8" — 5" such that f(x} = f(— x) has even degree.

*5. Let M, N be compact connected oriented n-manifolds, M = (.
(a) Suppose n = 2. If there exists a map 5" — M of degree one, then M is simply
connected. More generally:
(b) If f:M — N has degree 1 then the induced homomorphism of fundamental
groups [, :m, (M) — m,(N) is surjective.
(c) I f:M — N has degree k O then the image of [+ is a subgroup whose index
divides |k|.

6. Let M < R"*! be a compact n-dimensional submanifold, éM = J. For each
xeR'*! — M define
o M5,y (y— x|y — x|

Then x and y are in the same component of R"*' — M if and only if 6, ~ o,, and x
is in the unbounded component if and only if o, ~ constant. If M is connected then
x is in the bounded component if and only if deg(e,) = 1.

7. Let M, N = R? be compact oriented submanifolds without boundaries, of dimen-
sions m, n respectively. Assume that M and N are disjoint, and m + n = ¢ — 1. The
linking number Lk(M,N) is the degree of the map

Mx N> §!
(M (x — Yfix - ¥
Then:
(a) Lk(M,N) = (— )™~ =D [ k(N M).

(b) If M can be deformed to a point in R — N, or bounds an oriented compact
submanifold in R* — N, then Lk(M,N) = 0.

(c) Let §, §' be the boundary circles of a cylinder embedded in R? with k twists.

Then, with suitable orientations, Lk{§,5") = k.

(d) Let C, and C, = R? be cylinders embedded with k, and k, twists respectively.

If }k,| # |k,| there is no diffeomorphism of R? carrying C, onto C,.

2. lntersection Numbers and the Euler Characteristic 13

B. Let M = R"*! be a compact n-dimensional submanifold without boundary. Two

points x, ye R**! — M are separated by M if and only if Lk({x,y},M) # 0. (See
Exercise 7.)

9. The Hopf invariant of a map f:8> — 52 is defined to be the linking number Hi /) =
Lk{g~ *(a)g~'(b)) {see Exercise 7) where g is & C* map homotopic to f and a, b are
distinct regular values of g. The linking number is computed in

R*=S"_¢ fio+ab
(a} H(/f)is a well-defined homotopy invariant of f which vanishes if f is null homo-
topic.
(b) 1fg:5° — S? has degree p then H(fg) = pH(f).
{c) Lfh:5% = S? has degree g then H(hf) = ¢*H( /)
(d) Let 5* = C? be the unit sphere and 52 = CP. The Hopf map

@:5% - 82,
Plzw) = [2w]
has Hopf invariant 1. Hence ¢ is not null homotopic.

10. Let U, ¥ be noncompact oriented n-manifolds without boundaries and h: U — ¥
a proper C* map. The degree of h is defined as usual,

degh=73,deg, h (xeh '(y)

where y is a regular value.

(a) deg his independent of y, and if g is a C* map homotopic to h by a proper ho-
motopy U x I — V then deg g = deg h. Thus the degree of any continuous proper
map f:U — V can be defined by choosing h sufficiently close to f.

(b) In particular the degree of a homeomorphism U — V is defined; it is always + 1.
{Compare Exercise 2).

{c} A topological n-manifold without boundary is called 1opologically orientable if
it has an atlas whose coordinate changes have degree + i on each component. A smooth
manifold is orientable if and only if it is topologicaily orientable.

(d) Orientability of a smooth manifold is a topological invariant.

11. The fundamental theorem of algebra can be generalized as follows. Let L7 = R" be
a nonempty open set and f:U — R" a C' map. Assume: (a) f is proper; (b) outside

some compact set, Det{Df,) > 0. Then f is surjective. In particular the equation f(x) = ¢
has a solution.

12, Let f,..., f, be real [or complex] polynomials in n > 2 variables. Write f, =
h, + r, where h, is a homogeneous polynomial of degree d, > 0 and r, has smaller
degree. Assume that x = (0,...,0) is the only solution to hyx) = --- = hfx) = 0.
Assume also that Det[0h,/0x;] # 0 at all nonzero x in R* [or €*]. Then the system
of equations fy(x) = 0,k = 1,..., », has a solution in R* [or C"]. [Hint: Exercise 11.]

2. Intersection Numbers and the Euler Characteristic

Let W be an oriented manifold of dimension m + n and N c W a
closed oriented submanifold of dimension n. Let M be a compact oriented
m-manifold. Suppose IM = N = .

Let f:M — W be a C* map transverse to N.
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A point x € f~Y(N) has positive or negative type according as the com-
posite linear isomorphism

MEW,W/N, y=f(x

preserves ot reverses orientation; we write # (f,N) = 1 or — 1, respectively,
The intersection number of (f,N) is the integer

#(,N) = Y #(f.N),

summed over all x € f ™ {(N).

2.1. Theorem. If f,g:M — W are homotopic C* maps transverse to N
then #(f,N} = #(g,N).

Proof. The proof is similar to that of Corollary 1.3 and is left to the
reader.

QED

For any continuous map g:M — W we define #(g,N) = #(f,N) where
Jfis a C*® map which is transverse to N and homotopic to g. By Theorem 2.1,
#(g.N) is well defined.

Note that it is not really necessary for N and W to be oriented:; all that
is actually used is an orientation of the normal bundle of N.

If M is also a submanifold of W and i:M — W is the inclusion, the
intersection number of (M,N} is the integer #(M,N) = #(i,N). We put
#(M,N) = #(M,N; W) to emphasize W. If both M and N are¢ compact
then #(M,N} = (~ 1" #(N,M) as is easily proved.

Clearly #(f,N)=0if [ is homotopic in W to g:M - W - N. In
particular if M and N are closed submanifolds of R™*" with M compact
and M = ON = (¥, then #(M,N; Rm*+m = 0,

It is not generally true that if #(M,N) = 0 then M is deformable into
W - N, Figure 5-3 shows a counterexample of two circles on a surface §
of genus 2. If M, N, and W are allowed to have boundaries, # (f,N) and
#({M,N) are defined in the same way whenever M is a neat submanifold

and f(0OM) < éW — N. In this case the C*® map g:M — W must be
homotopic

Figare 5-3. 4 (M,N} = 0, but M is not deformable into § — N,
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to f by a homotopy that takes M into W — 9N at each stage. Of course
# (/,N) is only an invariant of this kind of homotopy.

If M, N or W is not oriented, mod 2 intersection numbers #f,N)
and # ,(M,N) are defined in a similar way.

Let ¢ = (p,E,M) be an n-dimensional oriented vector bundle over M ;
as usual M is identified with the zero section. Assume M is connected,
oriented, compact, n-dimensional and without boundary. The Euler number
of £ is defined to be the integer

X)) = #(MM) = #(M,M;E)

2.2. Theorem. If £ (as above) has a section f that is nowhere zero then
X@) =0.

Proof. f is homotopic to the zero section by the linear bomotopy
(x,t) = tf(x). Hence if i:M — E is the zero section,

X = #(,M) = #(f;M) = 0.
QED

To compute X{(¢) approximate the zero section Z:M — E by a C*
map h transverse to Z(M). If the approximation is close enough then
ph:M — M is a diffeomorphism and we obtain a C* section ¢ transverse 1o
the zero section by setting ¢ = h(ph)™"*: thus fg = 1,,.

Let xy,..., X, € M be the zeros of g. Let ,:¢|U; = U; x R® be local
trivializations of  over open sets U; = M such that x; € U,. The composition

FeU S ElU - U; x R - R"
has 0 € R" as a regular value and x; € F;”'(0). Then

deg, F; = #,(9.M),
called the index of g at x,. Hence

X(¢) = Zl dch, ;.

If £ = TM with the same orientation as M then X (&) is called the Euler
characteristic of M, denoted by y(M). Later we shall define (M) for non-
orientable and d-manifoids.

A section of TM is called a vector field on M.

To compute y(M) one can start with a C* vector field f:M — TM trans-
verse to the zero section. At each zero x; of f let ¢;:U; — R* be a chart
(preserving orientation). Then To,° f @, ! is a C* vector field on o(U)
and thus defines a C* map g,:9,(U,) - R" with a regular value at 0. Denote
by d; the degree of g, at ,(x;); then y(M) =Y d,. The integer d, is the index
at x; of the vector field f; it is independent the choice of (¢,,U,) and the
orientation of M. We denote 4, by Ind,, f.
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As an example we compute x(S"). Let P be the north poleand Q = — P
the south pole. Let

a5 —-P-R
S -0-R

be the stereographic projections. The coordinate change
¢!l =gt " R"-0-R" -0

is given by x — x/]x|*.

Let f be the vector field on S" — P whose representation via ¢ is the
identity vector field on R". Then f(x) — 0 as x — P and we define f(P) = 0.
Thus f:8" — TS has zeroes only at Q and P.

In t coordinates f corresponds to the vector field x — —x on §* — Q.
Thus fis C*.

The identity map of R" has degree 1 at 0, the antipodal map has degree
(—1)". Therefore '

Indp f=1, Indyf=(-1"
Thus we have proved:

2.3. Theorem.

- 2 if  niseven,
J‘(S")"”('”‘{o if  nisodd,

2.4, Corollary. Every vector field on S*" vanishes somewhere.
Some other computations are given by:

2.5. Theorem. (a) Let M and N be compact oriented manifolds without
boundaries. Then y(M x N) = y(M)x(N).

(b) Let ¢ be an n-dimensional oriented vector bundle over a compact
oriented n-manifold M" without boundary. Then X(§) = 0 if nis odd.

{© ¥M) =0 if M is an odd dimensional compact oriented manifold
without boundary.

Proof. (a) is proved by choosing vector fields f, g on M, N and using
fx g:Mx No TM x TN to compute (M x N). The details are left
as an exercise.

(b) is proved by using sections f and — f to compute X({) in two ways.
One finds that

Ind, f = (—1)" Ind,{—f), n = dim M.
Hence if n is odd, X (&) = — X(£). And (c) follows from (b).

QED

Now we define (M) for a nonorientable compact manifold M, 8M = .
Let f:M — TM be a section transverse to M. For each xe M there is
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a canonical identification
(TM),/M, = M,;

see Theorem 4.2.1. Therefore T/ induces an automorphism @, via the
composition
&M, Z(TM), > (TM)/M, = M,
Define
Ind, f = Det @,/|Det &,4,

M) =Y Ind, f, xef (M)

This definition of course makes sense if M is oriented, and in that case
it is easy to check that it is the same as y(M). In particular, it is independent
of f and of the orientation in this case.

For M nonorientable, let p:# — M be the oriented double covering
Given f as above let /1M — TH be the unique section covering f. Let
e f1(M); put p(® = x. It is clear that

Ind, { = Ind, f.
It follows that

$(81) = y,(M).

Thus (M) is independent of f.

Parts (a) and (c) of Theorem 2.5 hold for M nonorientable.

The Euler characteristic y(M) of a compact é-manifold M is defined
as follows. Let f:M — TM be a section which is transverse to the zero
section M, and such that f points outward at points of ¢M. Such a section
always exists; for example, an outward section over {M can be obtained
from a collar, extended over M by a partition of unity, and then be made
transverse to the zero section by approximation. Moreover any two such

outward vector fields are connected by a homotopy of outward vector
fields. We define

M) = M) = 3. Ind, f, xefTHM)

To show that y,(M) is independent of f, let M — M be the oriented
double covering of M and let /" be the vector field on M which covers f.
Then f is outward, and local computations show that y (M) = 2y{M).
It therefore suffices to show that x,(M) is independent of f when M is
oriented; and this proof is similar to that of Theorem 1.2.

The Euler characteristic y(M) is thus defined for any compact manifold
M. Note that Theorem 2.5 (a) is true whenever ¢M or éN is empty.

The proof of the following lemma is left to the reader {a similar argument
was given in the proof of Theorem 1.4).

or

2.6. Lemma. Let M be a connected manifold, U = M anopenset F <« M
a finite set. Then there is a diffeomorphism of M carrying F into U.
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Using the lemma we prove:

2.7. Theorem, Let M be a compact connected d-manifold. Then M has
a nonvanishing vector field.

Proof. Let M’ be the double of M, containing M as a submanifold.
Then M. has a vector field f with a finite set F of zeros. Let ¢:M' - M’
be a diffeomorphism taking F into M’ — M. Then To-fep™'|M is a
vector field on M without zeros!

QED

The following lemma relates the index of a zero of a vector field to the
degree of a map into a sphere.

2.8. Lemma. Let D < R" be an n-disk with center x. Let U = R" be
an open set containing D and [:U — R" a C* map, considered as a vector
field on U. Suppose 0 is a regular value and x = D r f~1(0). Define a map

g:0D = §"71,

y = fO -
Then deg g = Ind, f.

Proof. We may suppose for simplicity that x = 0. Define f;: U —+ R" by:

_ £y, 1zt>0
iy = {Dfn(J'), t=0;

define g,:8D — §"~! like g, using f; instead of f. Since g, is homotopic
to g, = g, it follows that deg g, = deg g.
We claim Ind, f, = Ind, f. This is because the map

&:Dx IR x I,
(»8) = ()1

is C® (see proof of Theorem 4.4.3) and T'@ thus induces a homotopy between
Df,(0) and Df;(0).

It remains to prove Ind, f, = deg g, Now f; is linear, and hence is
homotopic through linear maps to an element of O(n). Thus it suffices to
prove the lemma for the special case where f is orthogonal, But theng = f
and in this case the lemma is easy to verify: Indy f = +1 = deg g according
as f preserves or reverses orientation.

QED

The degree of g:dD — §*~! in Lemma 2.8 is defined whenever x is
an isolated zero of f:U — R", even if f is merely continuous. Moreover
deg g is independent of D, by Theorem 1.6(b). This permits us to extend
significantly the definition of Ind, f. Let U — R" be an open set, f:U ~ R"
a vector field on U and x € U an isolated zero of f. The index of f at x is
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Ind, f = deg g, where for some n-disk D < U with center x = D fTHO)
g:dD - s
7y = ff»]

If 0 is a regular value of f this agrees with the older definition. Note that
deg g can take any integer value (for n > 2).

2.9. Lemma. Let W < R* be a connected compact n-dimensional sub-
r;}anifold and f:W — R" a C* map. Assume f - (O} is a finite subset of W — oW
Tid,f=0, (xef '(0)

there is a map g:W — R® — 0 which equals f on dW; and conversely.

Proof. Let f~Y0) = {Xts.--,x}. Let D,,..., D, be small disjoi
n-disks in Int W, centered at x,,. . ., X mpect;vely. Bl ot

Let Wo = W —u Int D,. Then oW, = oW \J @D;and fi,) c R* — 0.
i=1
Notice that deg(f|6W,) = 0 by 1.8. Define
g:Wo - 5",

ye= S| fk
According to the preceding lemma,

k
'Z dcg(gtaDi) = 0.
=]

It follqws that deg(g|dW) = 0; by Theorem 1.8 there is a map W - §*!
extending g|0W. The composition

WSS LR -0

* . converse

_ QED
We can now prove the converse of Theorem 2.2.

2.10. Theorem, Let M be a compact connected oriented n-manifold with-

out boundary and ¢ an oriented n-plane bundle over M. If X(&) = G then & has
a nonvanishing section.

Proof. Let f:M ~» £ be a C” section transverse to M. By Lemma 2.6
we may assume that the finite set f "(M) lies in the domain of the chart
¢:U x R" Let y:&; — U x R* be a bundle chart. The map

Yofeop 'R*">TR" =R" x R"

is a vector field on R" transverse to the zero section, or what is the same
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thing, a map g:R" — R" transverse to 0. The assumption X(§) = 0 implies
that
YoInd,g =0 (xeg '0)).

Let B = R” be an n-disk containing ¢~ *(0) in its interior. By Theorem
2.9 there is a map h:R” — R" — 0 which equals g on R* — Int B. Define
fl : M - év

_ e if xeM-—eo !'(IntB)
A= omhot) it xeB.
Then f; is nonvanishing.
QED

We use all the preceding results to prove a classical thcorem of Whitney
[3]. We follow Whitney’s proof.

2.11. Theorem. Let M < R*" be a compact oriented n-dimensional sub-
manifold without boundary. Then M has a nonvanishing normal vector field.

Proof. We may assume M connected. Let v be the normal bundle of
M. By Theorem 2.10 it suffices to prove that X(v) = 0. We identify a neigh-
borhood W of the zero section of v with a neighborhood of M in R?*, Then

X(§) = #(MM; W) = #(MM; R*) = 0.
QED

If M in Theorem 2.11 is not assumed orientable, the conclusion may be
false, as Whitney showed for P2 ¢ R*.

Exercises

1. Consider complex projective m-space CP™ as a submanifold of CP* in the natural
way. Then (with natural orientations)

#(CPNCPP™™M = 1.
A similar result holds mod 2 for real projective spaces.

2. #(fN; W) = 0if M — W extends to an oriented compact manifold bounded by
M, or if N bounds a closed oriented submanifold of W, or if f or N is null homotopic
in W. Similarly for # (f,N).
3. Let M be a compact oriented manifold without boundary. Let
M, = {(xx)e M x M}
be the diagonal submanifold.
(a) X(M) = #(M,.M,)

{b} x(M) = 0 il and only if there is a map f:M — M withous fixed point, which is
homotopic to the identity. This is true even if M is nonorientable.
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4. Let M, N, W be oriented manifolds without boundaries, di
N ] » . d .‘ i = i p
The intersection number of maps [:M - W, g:N - Hr/‘cs:'d:t!:necfl :sdmlN i I

Q) = #(f x oW, W x W),
This integer depends only on the homotopy classes of fandg. Ifgisan embedding then
#(/9) = #(f4N)).
#(gf) = (—eardmn g1
For unoriented manifolds a mod 2 intersection number is defined similarly,

- Let & = (pEM,), i = 0, 1, be ori i
ot o l;o 1;: b«; vmdary, Bos oriented n-plane bundles over compact oriented n-

In general

fox¢) = (Po x PiEo x E, M, x M,).
X{&o x §) = X(Co)X(C.).

6. Let £ be an r-plane bundle over a connected k-mani
8 f
(a} Ik < n, £ has a nonvanishing section, ol M.
(b) ifk = nand xe M, ¢ has a section which vanishes only at x,
(¢) ITk = n, and oM & or M is not compact, then £ has a nonvanishing section,

7. (a) Supposea compact n-manifold can be ex
_ ' . essedas A U B
n-dimensional submanifolds and 4 n Bisan(np—r- 1) - dm:nsi:nt;??ugm ﬁm
x(AﬂB}=x(A)+x(B)-z(AnB)L °
(b} x(24} is even. [Hint: take B = A]

Then

8. The Euler characteristi i ;
Exercise 7] racteristic of an (orientable) surface of genus g is 2 — 29 [Use

9. Let M be a possibly nonorientable com i i

‘ st : pact manifold without boundary, and
‘(l;s::! —+b!.vf x MacC map. '_l‘bcn the integer [{G) = #(GM,. M x M}iswcll-rd?eﬁned
using arbitrary lqcal orientations of M at points x where Gix)e M,,and the correspond-

> : Y comtinuous map, th
ﬁﬁg;ynm 2{ g fls tl-llghmteger Lefig) = L{G) where Gix) = (x,glx}). Lel'lgl; 1] :
has & o e of g. The Leflschetz number of La is f(M). If Leftg) £ 0 then g

10. Let x € M be an isolated fixed point of a continu

. ousmapg:M — M.Letg: U — B
be_a chart at x; put ©{x} = y. The vector field N2 =g ') - - is dczned ona
neighborhood of y in R* and has ¥ for an isolated zero. Define

Lef(g) = Ind, /.
This is independent of (o, )} gis C! then
Lef(g) =De(Tg -1, 1= identity map of M.
if the set Fix (g) of fixed points of g is finite, then (see Exercise 9)
Leflg) = ¥, Lelfg)  (xe Fix(g)).

I1. Every continuous map P2 — P2= s 5 fixed point. [Consi : 2% whi
comimute with the antipodal map. See Exercises 9, I;g] - [Consider maps of $%* which

12. Lemma 2.9 is true even if the map f is merely continuous,
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13. (a) There is a continuous map f:5% — 52 of degree 2, that has exactly two periodic
points. (A point x is periodic if f(x) = x for some n > Q)

*#(b) If /:§% — §% is C" and has degree d such that |d| > 1, then f has infinitely
many periodic points, {Shub-Sullivan [1]).
**¥(c) Identify the 2-torus T2 with the coset space R*/Z? and let f:T? — T? be the
diffeomorphism induced from the linear operator on R* whose matrix is [} ] Shub
and Sullivan ask: if g:T? — T? is a continuous map homotopic to f, must g have
infinitely many periodic points?
14. Let M, N be compact oriented n-manifolds without boundary; assume N is con-
nected. Then the degree ofa map f: M — N equals the intersection number of the graph
of fwith M x yinM x N,forany ye N.

*13. Using intersection numbers and some elementary homotopy theory one can prove
that every diffeomorphism of the complex projective plane CP? preserves orientation.
Using the fact that 7,(CP?) is infinite cyclic, generated by the natural inclusion i:§? =
CP! = CP?, one sees that if h:CP? = CP? then h,[i] = +[i] in #,(CP?). Therefore

#(hihi) = #(i) =1
(see Exercise 4). On the other hand it is easy to see that for any maps
f.9:8% = CP,

#(hf.hg) = (deg W[ #(f 9]
Therefore deg h = 1.

16. Theorem 2.11 generalizes as follows. Let M" = N?" be a compact submanifold.
Suppose M" and N*" are orientable and M"® = 0 in N?*. Then M" has a nonvanishing
normal vector field (for any Riemannian metric on N2%).

17, What is the degree of the map CP* -+ CP" defined by
[zgr -y 2e] = [Wop oo s W]
where w, = (¥, Apz,P, if p is an integer and [4,,] € GL(n,€)?
18. What is thc Euler number of the normal bundle of CP" in CP**?

19, Let £ - S" be an orthogonal oriented n-plane bundle.
(a) ¢ corresponds to an clement o € m, _ (SO(n)). (Compare Exercise 8, Section 4.3}
(b) X({)is the image of « in n,_ (5"~ ") = Z by the homomorphism

Joi 7 (SO(R)) 7, (S"71)

induced by the map f:50(n) -+ $*~*, where f is defined by evaluation on the north
pole Pe s,

*20. Verify the statement of Heegard quoted at the beginning of Chapter 4.

21. Every vector field transverse to the boundary of the n-disk must have a zero in the
interior,

22. Let p be a singularity of a vector field f on an open set in R*. If Dfip)
has k ecigenvalues with negative real part and n-k with positive real par, then
Ind, f = (—1)P"L.

3. Historical Remarks

The origin dg;gg'g-notion of the degree is Kronecker's “characteristic of
of a system of fd@ions“ defined in 1869. The type of problem Kronecker
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studied was the following (in modern terminotogy). Let F 0. Fq be C!
maps from R" to R. Suppose 0 € R is a regular value for each of them, and
that each submanifold M, = F; {(— oc,0] is compact. If there is no common
zero of Fo,...,F,ondM;fori=1,...,n how many common Zeros are’
themforthenmapsl-',:Mi +Rji=0,...,i—Li+1,...,n?Kronecker
gave an integral formula which is equivalent to the degree of the composite
map
M LR — 055t

where G, = (Fy, ..., Fi,...,F) and x{x) = x/|x|. He proved that this
degree is independent of i and equals the algebraic number of zeros of G;

- in M. He also showed that the total curvature of a compact surface M* c R
i 2x times the degree of the Gauss map M? — $2. Later Walter von Dyck

showed that the degree of the Gauss map equals the Euler characteristic of
M, thus giving the first proof of what is now wrongly called the Gauss~
Bonnet theorem.,

An influential and still interesting article by Hadamard [1]in 1910 gave
a more geometrical presentation of Kronecker's ideas. Kronecker's work is
discussed in modern terms in the books by Lefschetz [1], and Alexandroff
and Hopf [1].

The topological idea of the degree of a map is due to Brouwer [11.
Brouwer made fundamental contributions to the topology of manifolds (see
Lefschetz [1] for an extensive bibliography). In his later years, however, he
developed the intuitionistic view of mathematics and repudiated some of
his earlier results.

Our treatment of the degree closely follows that of Pontryagin [1].



Chapter 6
Morse Theory

La topologie est précisément la discipline mathématique qui permet la passage
du local au global.

—R. Thom, Stabilité Structurelle
et Morphogenése, 1972

Up to this point we have obtained results of a very general nature:
all n-manifolds embed in R**?!, all maps can be approximated by C*
maps, etc. These are useful tools but they give no hint as to how to analyze
a particular manifold, or class of manifolds. As yet we are unable even to
classify compact 2-manifolds.

In this chapter we analyze the level sets f~(y) of a function M — R
having only the simplest possible critical points. Such a function is called
a “Morse function.” The decomposition of M into these level sets contains
an amazing amount of information about the topology of M. For example
we will show in Section 6.4 how a CW-complex, homotopy equivalent
to M, can be obtained from any Morse function. In Section 6.3 the Morse
inequalities are proved. These relate the critical points of f to the homology
groups of M in particular they compute the Euler characteristic of M
from any Morse function on M.

Morse functions are shown in Section 6.1 to be open and dense in Cy(M,R),
2 € r € oo. At each critical point a special kind of chart is constructed,
making a Morse function look like a nondegenerate quadratic form. The
index of this form is called the index of the critical point. These charts
give a complete local analysis of the function.

In Section 6.2, which starts out with some facts about differential
equations, the sets f ~![ a,b] which contain no critical point are investigated.
Under mild restrictions it is shown that f~'{a,b] ~ f~'(a) x [ab].

Section 6.3 contains the heart of Morse theory. Suppose [~ ![ab]
contains exactly one critical point, of index k. It turns out that up to homotepy
equivalence, f~'[a,b] is obtained from f~'(a) by attaching a k-cell. This
leads directly to the Morse inequalities, and to the construction of a
CW-complex homotopy equivalent to M which has one k-cell for each
critical point of index k.

We have presented only the very beginning of Morse theory. For the
subject's important applications to such fields as differential geometry
and the calculus of variations the reader should consult M. Morse [1],
Milnor [3], Palais [1], or Smale [3].
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1. Morse Functions

Let M be a manilold of dimension n. Th

g . 1he cotangent bundle T*M |
defined l_lke the tangent bundle TM using the dual ':'gemor spac: (R"]"{ ;S
L{R",R) instead of &". More precisely, as a set T*M = Uk e s{M?) where

MY = LIM_R). If (¢,U) is a chart on M, a natural chari on T*M is the map
T*U - o(U) x (R)*

which sends e M* . jecti
M € M? to (p(x),Ap; ). The projection map p: T* — Af sends

Let ffM>RbeaC* ma
P, I € r € w. For each ; i
map T, f:M, — R belongs to M?. We write € M the finear

T.f = D *
Then the map = e M.

Df:M — T*M,
x+ Df, = Df(x)

1s a " section of T*M. The local representation of Df, in terms of a chart
on M aEd the corresponding natural chart on T*M, is a map from an open
set in R" to (R*)*, of the form x 1~ Dg(x) where g is the local representation
of f. Tl}u_s Df g_eneralizes the usual differential of functions on R*

A cnt:wl point x of f is a zero of DY, that is, Df(x) is the zero of the vector
:&a:z arﬁ;};s the iet of critical points of f is the counter-image of the
Soman an= dimcj-u T M of zeroes. Note that Z* ~ M and the codimension

A cr?tfcal point x of f is nondegenerate if Df is transverse to Z* at x
If all_crmml points of f are nondegenerate S is called a Morse functio‘r;
In this case the set of critical points is a closed discrete subset of M .

The idea behind the definition of nondegenerate critical point is. this.
By‘ means of local coordinates, assume M = R” and xe R* is a critical
point for f:R* — R It is easy to see that x is nondegenerate precisely when
x is a regular point for Df:R* — (R*}*. Therefore as y varies in a small
neighborhood of x, Df, takes on every value in a neighborhood of 0 in
(R™)* exactly once. Moreover as ¥y moves away from x with nonzero velocit
Df, moves away from 0 with nonzero velocity. >

Let Uc R" be open and let g: U — B be a C? map. It is easy to see
that a critical point p€ U is nondegenerate if and only if the linear map
. D(Dg)(p)y:R* —~ (R"*
is bijective. Identify L(R",(R")*) with the space of bilinear mapsR* x " R:
we sce that this is equivalent to the condition that the symmetric bilinee;;

map D%g(p):R* x R* — R be nondegenerate. In te i i
. Tms of
means that the n x n Hessian matrix coordinates this

&g
[61:; 0x; (p)]
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has rank n. This provides a criterion in local coordinates for a critical point
of a map M — R to be nondegenerate.

Let p € U be a critical point of g: U — R. The Hessian of g at the critical
point p is the quadratic form H,f associated to the bilinear form Dig(p);
thus

H,f(y) = D’g(p)y.y)
d*g
= g‘;axi ax, (Pyeyy
This form is invariant under diffeomorphisms in the following sense. Let
V < R"be open and suppose h; V — Uisa C? diffeomorphism. Letg = h™*(p)
so that g is a critical point of gh:V — R. Then the diagram commutes,

H,(gh)

>R

Dhig)

Rll

as a computation shows.
Now let f:M ~ R be C2. For each critical point x of f we define the
Hessian quadratic form H.f:M_ — R to be the composition

H,f:Mx-Dl" R" "2””_[)[}}

where ¢ is any chart at x. The invariance property of Hessians of functions
on R" implies that H_f is well-defined independently of @. Note that x
is a nondegenerate critical point if and only if H f is a nondegenerate
quadratic form. Thus we obtain an alternate definition: a critical point of
a C? real valued function is nondegenerate if and only if the associated
Hessian quadratic form is nondegenerate.

Now let @ be a nondegenerate quadratic form on a vector space E.
We say Q is negative definite on a subspace F < E if Q(x) < 0 whenever
x € F is nonzero. The largest possible dimension of a subspace on which
Q is negative definite is the index of Q, denoted by Ind Q. If A = [q;;] is
a symmetric n X n matrix expressing Q(x) as Ea,jx,xj for some choice of
linear coordinates on E, then the index of Q equals the number of negative
eigenvalues of A, counting multiplicities.

Let pe M be a nondegenerate critical point of f:M — R. The index
of p is the index of the Hessian of f at p, denoted by Ind(p) or Ind,(p).

This number gives us valuable information about the local behavior
of f near x. Suppose that M = R" and p = 0. The second-order Taylor
expansion of f at 0 looks like

fx) = f(0) + $Hof(x) + R(x)
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where R(x)/|x_|2 —+ 0 as x -+ 0. Thus f is approximately a constant plus
half the H&ssnap at 0. .Lct E_. @ E, be a direct sum decomposition of
R" so that H,f is negative definite on E_ and positive definite on E, . and

dmE_ = k = Ind Hyf

dmE, =n— &k
Thenl if xeR"and teR — 0 are sufficiently small, f(rx)t is a decreasing
function of ¢ for xe E_ and an increasing function of ¢ for xe E..

It follows that for a Morse function S:M - R, a critical point p is a

local minimum if and only if Ind(p) = 0, and a local maximum i :
Ind(p) = dim M. . maximum if and only if

The following result of Marston Morse is a sharper form of this relation

between f and its Hessian at a nondegenerate critical point p. It states that
f has a local representation at p which equals fip) + 4, 1.

- L.1. Morse’s Lemma. Let pe M be a nondegenerate critical point of

indexkof a C*>map fM-+R1<r< o Then there is a C' chart (p.U)
at p such that

L] L)
fo ..., u) = f(p) - 2: w+ Y ouf
i= i=k+1

. The proof is based on the following parametric form of the diagonaliza-
tion of symmetric matrices. Let 'Q denote the transpose of the matrix Q.

~ Lemma. Let A= diag{a,, ..., a,} be a diagonal n x n matrix with
diagonal entries +1. Then there exists neighborhood N of A in the rvector
space of symmetric n x n matrices, and a C* map

P:N - GLinR)
such that P(4) = [ (the identity matrix), and if P(B) = Q then '"QBQ = A.

Proof of Lemma. Let B = [b,;] be a symmetric matrix so near to A that

b,, is nonzero and has the same sign as a,. Consider the linear coordinate
change in R": x = Ty where

blz bl e
x - — m—— — ey _,_,l 1
1 [yl bll yz bll }l]/J|bll|
X =N for k=2....n
One verifies that ‘TBT has the form




1f B is near enough to A then the symmetric (.n - 1) % ‘(n — 1) matrix
B, will be as close as desired to the diagonal matrix 4, = dxag{a,., R 3
in particular it will be invertible. Note that Tal:ld B, are C* functions of B.
By induction on n we assume there exists a matrix 0, = P,(B,)e GL(n - 1)
depending analytically on B,, such that ‘Q,B,Q = 4,. Define P(B} = Q by
Q = TS where

-

P00

then 'QBQ = A.
QED

Proof of Morse’s Lemma. We may assume M is a convex open set in
R" p=0eR" and f(0) = 0 e R. By a linear coordinate change we may

assume that the matrix
A=
0x; dx;

is diagonal, with the first k diagonal entries equal to —1 and the rest equal
to + 1. By assumption Df(0) = 0. '

There exists a C" map x — B, from M to the space of symmetric n X n
matrices such that if x € M and B, = [b;;(x)] then

f(x) = i b,-j{x)xixj
i

s =1

and B, = A. This follows, for example, from the fundamental theorem of
calculus applied twice:

St = [} Dt di
1 af
1 [j‘o 6_xJ (¢x) dt] Xj
1 1 62f
1 [L L &%, 0x; (stx) ds dt] XX)

bij(x)xin.
1

?M:

i

1= 5

Let P(B)- be the matrix valued function in the lemma; put P(f?,) =
Q. € GL(n). Define a C" map ¢:U - R", where U =« M is a sufficiently
small neighborhood of 0:

plx) = 0 'x.
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A calculation shows that Dg{0) = I; therefore by the inverse function
theorem we may assume (p,U) is a C chart.
Put y = ¢{x); then, in matrix notation:

f(x) = ‘xB,x
= 'W'Q.B,0.)y

QED

We now have a complete local description of a Morse function f:M — R.

If ae M is a regular point then by the implicit function theorem there are
coordinates near a such that

f(xls. . xl) = xl'
If a is a critical point there are coordinates near a such that

f(xla'-"x-)=f(a)-x§—"‘—xf+xf+l +...+x1

The index k is uniquely determined by the critical point.

It follows that the level sets f~'(y) of a Morse function have nice local
structure. Near a regular point f~'(y) looks like a hyperplane in R*. At
a critical point there is a chart (@,U) throwing U ~ f~%(y) onto a
neighborhood of 0 in the degenerate quadric hypersurface

—xf—"'—x§+xf+l+“'+x3=0;

nearby level surfaces in U go onto open subsets of the nondegenerate quadrics
—x} ~ - — x4+ xt., 4+ + x2 = constant £ 0.

See Figure 6-1 for some examples.

As the value of the Morse function increases past a critical value, the
topological character of the level surfaces changes suddenly. This is studied
in detail in the following sections.

We close this section with:

1.2. Theorem. For any manifold M, Morse functions form a dense open
setin CsiMR),2 < s <€ .

Proof. The cotangent vector bundle T*M is isomorphic to JY(M,R).
the bundle of 1-jets of maps M — R; a natural isomorphism is defined by
sending j; f € J1(M,R) to Df, € T*M. Thus a C* map f:M — R is a Morse
function if and only if its i-prolongation

M = JY(MR)
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Figure 6-1.

is transverse to the zero section. The theorem now follows from jet trans-
versality (Theorem 3.2.8).

QED

Exercises

+ _ - =0

**1. In Morse’s lemma C*2 can be replaced by C™* 1. (Assume M = R, p = 0, f(p) - 0,

Pu:niDz}g(x,x;n: Q(x). Let t+ £(t,x) be the solution of the differential equation

dx/dt = grad Q(x) such that £0,x} = 0. For x near 0 there is a unique #(x) such that
Qd(ex),x) = f(x). Define (x) = &(r(x),x). See Kuiper [1], Takens [1].)

2. Let M = R**! be a compact C? submanifold. For each veStiet ,:M — R be the
map f(x} = {v,x). (This is essentially orthogonal p_rojeption into the line through v.)
Then the set of v € §% such that f, is a Morse function is open and dense.

i : 2 \ t of linear maps
3. Let M c R? be a C? submanifold and /M - R a C?* map. The set of lin !
L e LIR*.R) such that the map M — R, x— f(x) + L(x) is a Morse function, is a Baire
set and thus dense. If M is compact it is open and dense.

4. Let M < Rf be a closed compact €? submanifoid. _The set of points u € R? such
that the map x — |x — u|? is a Morse function on M, is open and dense.
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*S. Let fo, f;:M — R be Morse functions. It may be impossible to find a C? homotopy
S:M x [01] — R such that S(x0) = foix), f(x.1) = f,(x} and each map f{x} = fix.n
is a Morse function, 0 € ¢ < [. However, a C? bomotopy from f, 1o f; can be found
such that each £ is a Morse function except for a finite set ¢, . ., I for cach j, £, has
only one degenerate critical point z;; in suitable local coordinates at Z;, f;, has the form:

=xi—cc—of st xla o+ x4 X3 4 Rix) + comstant
where R(x)/|x[* - 0 as x| - 0. (Assume £ is C* and make the map (x5} j2 £ trans-
verse 10 suitable submanifolds of JX(M,R))

There is a Morse function on the projective plane which has exactly three critical
points.

S|W having index k. If also V = M — ¢M, and V is connected, then there is a ¢
tubular neighborhood 8. @ n) for (M, V) and an orthogonal structure on £ @& nsuch
that the composition E¢®n) < M 7 Ris given by

oy = —|x? + I+ C

for(x,y)e ¢, @ N P € V, where C is the constant Jo.

2. Differential Equations and Regular Level Surfaces

We recall some facts about differential equations. Let W < R" be an
open set and g:W —+ R*a C map, | <r < w, regarded as a vector field
on W. Then locally g satisfies Lipschitz conditions, so the basic theorems
about existence, uniqueness and differentiability of solutions of ordinary
differential equations apply to the initial value probiem:

W o' = gle(n)),

¢(0) = x
for each x € W. Therefore there is an open interval J < R about 0 and a
C*! map

9:(J,0) - (W,x)

which satisfies (1). If ¢,:J, - W is another solution to (1) then ¢ = P,
on J nJ,. Thus ¢ and ¢, fit together to form a solution on J U J,. It
follows that J and ¢ are unique provided J is taken to be maximal. We
call this maximal interval J(x), and the corresponding solution is written
variously as

5 J(x) - W,

@Xt) = @dx) = p{t,x).

The maps ¢* and sometimes the sets 9*(J(x)) are called solution curres
Or trajectories or flow lines of the vector field g.
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The interval-valued function x — J(x) is lower semicontinuous in the
sense that if o € J(x) then x € J(y) for all y in some neighborhood of x.
This implies that the set

Q={tx)eR x W:teJ(x)}
isopenin R x W.
The flow generated by g is the C" map
@2 - W,
(t,x) — @(x).
Foreachte R let
W, = {xe W:te J(x)}.

Then W, is open in W and there is defined a C" map
oW - W,
X > @(x).

Clearly o{W,) = W_, and _, = @, 1. Thus o, is a C embedding. More
generally we have the relations

{P,QD;(X) = ‘P:+:(x),

valid in the sense that if one side is defined so is the other, and they are equal.
It is not hard to prove that if K = R is any interval and U < Wis an open
set such that U < (", ¢ W, then the map K —» Emb"(K,W) is continuous
for the weak topology.

Let P = W be compact. For each x € W the set of ¢t € J(x) such that
@(x) € P, is closed in R, not merely in J(x). This has the important
consequence that if x € P is such that ¢{x)e P for all t € J(x) n R, then
J(x) > R,, and similarly for R_. In particular if the trajectory of x has
compact closure in W then J(x) = R.

Now let X be a C vector field on an n-manifold M; that is, X isa C"
section of TM. Assume first that M = 3.

An integral curve (or solution curve) of X is a differentiable map n:J - M
where J — R is an interval and #'(t) = X{(5(t)) for each re J. If (,U) is
achart on M (ofclass C*, or C*ifr = w)containing y(S)and W = J{U) =« R"
then the composite map

frw i virusee
is a C" vector field on W. The map ¢ = o #:J — W satisfies the differential

equation

@ @'(8) = flolr)),

because
¢'(t) = Dyln'(t)} = DX, (1))
= (DY o X oy )ym(t))
= flo()).
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Thus ¢ carries an integral curve of X into solution of (2), provided the
integral curve lies in a coordinate domain.

All the results about vector fields on open sets in R” carry over to vector
fields on M. For each x € M there is a maximal open interval J(x) about 0
and a C"*?! integral curve (or trajectory, or flow line} of X,

77 (J(x).0) = (M,x)
(1) = n(t,x) = ndx)
The set '

Q= {(tx)e R x M:te J(x)}

isopenin R x M; the flow of X is the C" map -
n:02 - M,
(£.x) > n(x).

The previous results about endpoints of J(x} and compact subsets of
M are still valid. An important case is where M is compact and without
boundary. In this case @ = M x R and each #, is a C" diffeomorphism of
M. Thus the maps {n, }, . form a one-parameter group of C diffeomorphism
of M: the map

R— Diff(M), t—n,

is continuous, and 7, = 1,4,

Unfortunately we must also consider vector fields on d-manifolds.
Suppose now that M # (. The preceding resuits can be used if we first
embed M as a closed submanifold of an n-manifold N without boundary,
such as the double of M, and then extend X to a " vector field on N. (This
can be done with a partition of unity if 1 < r < oo, since local 7 extensions
exist by definition, If r = w the local extensions are unique and fit together
to give an analytic vector field on a neighborhood of M in N, which is all
that is needed.)

If X is tangent to &M, that is, if X(6M) = T(¢M), everything is as before.
But if X is not tangent to M, the intervals J(x) will not all be open. If x € ¢M,
X(x) # 0, and X(x) points into [respectively, out of] M, then J(x) will
contain 0 as its left [resp. right] endpoint. It is also possible that X(x) is
tangent to M and still J(x) contains the endpoint 0; and J{x) can even
be the degenerate interval {0}. For any y € M, if J(y) contains an endpoint
b then n(b,y) € ¢M.

The set 2, defined as before, is not necessarily open in R x M, but its
interior is dense. Moreover the flow n:Q - M is C in the sense that it

extends to a C" map £ -+ N where 2 < R x N is open.

If the trajectory of x € M has compact closure then J(x) is a closed
interval; if also the trajectory lies in M — 0M then J{x) = R.

If J(x) = R for all x e M the vector field is called completely integrable.
A necessary condition for X to be completely integrable is that X be tangent
to éM. A sufficient condition is that X be tangent to M and each trajectory
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have compact closure. A more general sufficient condition is given in
Exercise 1.

Differential equations can be used to prove anew the collaring theorem:

2.1. Theorem. Let M be a d-manifold. Then there exists a C® embedding
F:0M x [0,00) - M
such that F(x,0) = x for all x e oM.,

Proof. Using charts covering 6M and a partition of unity, one finds
a C® vector field X on a neighborhood U < M of M which is nowhere
tangent to M and which points into M (in local coordinates). Let
W c dM x [0,0) be a neighborhood of M x 0 on which the flow n of
the vector field is defined. There is a C* embedding h:0M x [0,00) = W
which leaves M x 0 pointwise fixed. The required map F is the composition

F:0M x [0,20) 5 w3 M.

QED

We turn now to the construction of a vector field transverse to the regular
level surfaces of a C"* ' map f:M — R,r > 1. We assume M has been given
a C” Riemannian metric. The inner product in any M, is denoted by (X,Y);
the corresponding norm is |X| = (X,X)!72,

For every linear map 4:M, — R there exists a unique tangent vector
X, e M, such that A(Y) = <(X,,Y) for all Ye M,. We call X, the vector
dual to A. The map A+ X, is a linear isomorphism from M? onto M,.
Its inverse assigns to X ¢ M, the linear map

M, >R, Ve (XY

IffiM > R is C*!, for each x € M define the vector grad fix)e M, to
be the dual of Df,. In this way the C gradient vector field grad f is defined.
It depends on the Riemannian metric.

If M is open in R" and the metric is given by the standard inner product
of R" then _ .

’ 8 af
grad f(x) —(ar (x)s P aaf (X9 .
It is clear that grad f(x) = 0 if and only if x is a critical point of . At
a regular point grad f(x) is transverse to the level surface £~ '(f(x)); in
fact, they are orthogonal.
Notice that fis nondecreasing along gradient lines, that is, along solution

curves of the gradient differential equation n' = grad f{y). For if n(t) is a
solution then

d
7 J0(0) = <grad fin(9)), grad fin(1))>
= Jgrad fin()f* > 0.
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And f is strictly increasing along any solution curve which is not a critical
point. ) '

The following regular interval theorem is a useful way of finding diffeo-
morphisms.

2.2. Theorem. Let {:M — [ab] bea C"*"' map on a compact -manifold,
1 < r € w. Suppose f has no critical points and f(6M) = {ab}. Then there
is a C diffeomorphism F:f~"(a) x [ab] ~ M so that the diagram

S ) X-[ﬂ,b];'—'—F——>M

N

commutes. In particular oll level surfaces of f are diffeomorphic.

Proof. Give M a Riemannian metric. Consider the C" vector field on M:
grad f(x)
X = d P

Notice that X(x) has the same trajectories as grad f but with a different
parametrization. '

Let n:{tot;] ~ M be a solution curve of X. A computation shows
that the derivative of the map

[tat: ] =R, 1+ f(n()
is identically 1. This means that
(1) Ity = falte) = 1, — 1o

Let x € f~'(s). Since M is compact, the set J(x) is closed; from (1) it follows
that

(2) J(x) = [a — sp — 5]
The assumptions on f imply that f~'(a) is a union of boundary
components of M. Define a map
F.f~Ya) x [ab] = M,
F(x,t) = nt — ax).
Since f increases along gradient lines, and thus along X-trajectones, F

is injective. And F is an immersion because gradient lines are transverse
to level surfaces. Thus F is an embedding. Finally, F is onto because of (2).

QED



2.3. Corollary. Let M be a compact manifold and assume OM = AU B
where A and B are disjoint closed sets. Suppose there existsa Cmap f*M - R

without critical point such that f(A) = 0, f(B) = 1. Then M is diffeomorphic
tobothA x Iand B x I,

The following topological application of critical point theory is due
to G. Reeb.

2.4. Theorem. Let M be a compact n-dimensional manifold without
boundary, admitting a Morse function f:M -+ R with only 2 critical points.
Then M is homeomorphic to the n-sphere S™.

Proof. Let the critical points be P, and P_. We may assume P, is
a maximum and P. a minimum. Put f(P,) = z,, f{P_) = z_. By Morse’s

lemma there arc coordinates {x,,..., x,) in a neighborhood U, of P,
giving f|U, the form

—-xt - = x4z,
Therefore there exists b < z, such that the set
D, = f"'[bz,]

is a neighborhood of P, diffeomorphic to the n-disk D"
Similarly there exists a > z_ such that the set

D_ = f~'[z_.d]

is a neighborhood of P_ diffeomorphicte D", Weassume z_ < a < b < z,.
Note that :

oD, ~D_ = 5L

By Theorem 2.2 the set f ~![a,b] is diffeomorphicto S"~ ! x I.See Figure 6-2.

Let Q,, Q- < §" be the north and south poles. Let B, B. be disjoint
neighborhoods of @, Q- diffeomorphic to D* (the two “polar caps™)} so
that, putting C = §* — Int(B, v B_), we have C & 5" % x I and
dC = 0B, wéB_.

[ I
S r
],
B— sa
v oz_
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Let hy: D, — B, be a diffecomorphism. Extend
hoIaD‘.'.:aD.‘. - 53...

to a diffeomorphism (3D,) x I — (8B,) x I. This provides an extension
of hy to a homeomorphism
' hy:D, v f 'Yab]->B,vC.
It is possible to extend '
h,|éD_:8D_ — 3B_
to a homeomorphism D_ — B_. This is the same as extending a homeo-

morphism g,:5"~* = §*~! to a homeomorphism g:D* — D", and one can
extend radially:

0 ifx=0

Thus g maps each radial segment [0,y], y € $*~ %, linearly onto the segment
[0.90(»)]: - _
In this way h, is extended to a homeomorphism h:M — S*.

) = {|x|go(x/|x|) ifx#0

QED

It is not always possible to find a diffeomorphism between M and S5™!
In 1956 John Milnor [1] found an example of a manifold which is homeo-
morphic, but not diffeomorphic, to S”. This very surprising result stimulated
intensive research into such “exotic spheres” and into the more general
problem of finding and classifying all differential structures on a manifold.
A great deal is now known, but the problem has not been solved.

Exercises
1. A vector field X on M has bounded velocity if there is a complete Ricmannian metric
on M such that | X(x)| is bounded. In this case every maximal _soluuon curve is defined
on a closed interval J(x). If also X is tangent to M then X is completely integrable.

#s*2 If a C! vector field X is completely integrabie, does X necessarily have bounded

velocity? (See Exercise 1)

3. Let X be a C vector field on a manifold M, 1 € r € 0. There is a completely
integrable C" vector field ¥ on M whose trajectories (considered as subsets) are the
same as those of X.

4. Let X be a C! vector field on a d-manifold M. If x € 8M and J(x) = [04] or [0.a)
then every neighborhood of x contains a point y € M such that X(y) oM and X(y)
points inward.

5. Let (x,y) be local coordinates on the torus T = §' x §' corresponding to angular
‘variables on §! taken mod 2x. For each pair a, § of real numbers not both zero, let
X, s denote the vector field on T which in (x,y) coordinates is the constant ﬁelfi (8.
(a) If z and B are linearly dependent over the rational numbers then every trajectory
of X, ,is acircle. i )
(b) If « and B are linearly independent over the rationals then every trajectory of
X, g is dense. In fact:



(c) In case (b), Ict 7 be a real number such that T, &, B are linearly independent over
the rationals. Then for each x & T the set {@ulx):n € Z, } is dense,