SULLE FUNZIONI ELEMENTARI DERIVABILI

Svilupperemo e specializzeremo quanto fatto nella nota sulle funzioni elementari continue [EC], a cui ci riferiamo anche per certe notazioni ivi introdotte.

1. GLI INSIEMI DI FUNZIONI \mathcal{F}^0 E \mathcal{C}^0

Vogliamo definire dei sottoinsiemi $\mathcal{F}^0 \subset \mathcal{F}$ e $\mathcal{C}^0 \subset \mathcal{C}$ rispettivamente, restringendo l'insieme degli insiemi di definizione delle funzioni che prenderemo in considerazione.

Definizione 1.1. Dato un sottoinsieme D di \mathbb{R} , diciamo che $a \in D$ è interno se esiste $\epsilon > 0$ tale che $(a - \epsilon, a + \epsilon) \subset D$. Diciamo che $a \in D$ è una estremità locale <math>sinistra (risp. destra se esiste $\epsilon > 0$ tale che $(a - \epsilon, a + \epsilon) \cap D = [a, a + \epsilon)$ $(risp. = (a - \epsilon, a])$. Un sottoinsieme D di \mathbb{R} si dice buono se ogni $a \in D$ è interno oppure è una estremità locale. Se D è buono ed è fatto solo di punti interni, allora diciamo che D è un aperto di \mathbb{R} .

Per esempio, un intervallo o più in generale l'unione di un numero finito di intervalli sono buoni. Un intervallo è aperto se e solo se è della forma (a,b), $a,b \in \overline{\mathbb{R}}$, a < b. Se D è buono, allora ogni punto di D è di accumulazione per D. Poniamo allora \mathcal{F}^0 il sottoinsieme di \mathcal{F} formato dalle funzioni definite su sottoinsiemi buoni di \mathbb{R} , analogamente \mathcal{C}^0 il sottoinsieme di \mathcal{C} formato dalle funzioni continue definite su sottoinsiemi buoni di \mathbb{R} .

1.1. Le procedure raffinate \mathbf{P}^0 . In [EC] abbiamo individuato delle semplici procedure ("somma", "prodotto", "valore assoluto", "reciproco", "inversa", "composizione") che abbiamo genericamente indicato con \mathbf{P} . Vogliamo raffinare queste procedure in modo tale che, una volta applicate a partire da funzioni di \mathcal{F}^0 , producano un'altra funzione di \mathcal{F}^0 . Indicheremo genericamente come \mathbf{P}^0 tali procedure.

Le procedure \mathbf{P}^0 . Siano $f: D \to \mathbb{R}$ e $g: D' \to \mathbb{R}$ due funzioni in \mathcal{F}^0 , cioè definite su insiemi buoni.

- Per "somma" e "prodotto", richiediamo che anche $D \cap D'$ sia buono;
- Per "reciproco" richiediamo che anche $D^* = D \setminus f^{-1}(0)$ sia buono;
- Per "inversa" richiediamo che f sia iniettiva e che f(D) sia buono;
- Per "composizione" richiediamo che per ogni punto interno a di D, f(a) è interno a D', mentre se a è una estremità locale (destra risp. sinistra) di D allora f(a) è interno a D', oppure è una estremità locale (destra risp. sinistra) di D'.

Osservazioni 1.2. In effetti per "somma" e "prodotto" la richiesta che $D \cap D'$ sia buono è sempre soddisfatta automaticamente (dimostrarlo per esercizio). Se supponiamo che f sia continua, la richiesta per "reciproco" che $D^* = D \setminus f^{-1}(0)$ sia buono è automaticamente verificata; supponiamo per esempio che D sia aperto e che $f(a) \neq 0$, allora per la continuità di f e la "permanenza del segno" esiste $\epsilon > 0$ tale che $(a - \epsilon, a + \epsilon) \subset D^*$ il quale è quindi aperto.

Analogamente a quanto succede per C, per C^0 abbiamo:

Proposizione 1.3. (1) Se $f: D \to \mathbb{R}$ appartiene a C^0 e D' è un sottoinsieme buono di D, allora la restrizione di f a D' appartiene a C^0 .

(2) C^0 è chiuso rispetto alle procedure \mathbf{P}^0 , cioè se applichiamo una procedura \mathbf{P}^0 a partire da funzioni che stanno in C^0 allora produciamo un'altra funzione di C^0 .

2

2. Funzioni derivabili

Richiamiamo alcuni fatti relativi alle funzioni derivabili, cominciando con la definizione. Intanto richiediamo che $f: D \to \mathbb{R} \in \mathcal{F}^0$, cioè che D sia buono. Allora:

Sia $f: D \to \mathbb{R} \in \mathcal{F}^0$. Diciamo che f è derivabile su D se:

(1) Per ogni punto interno $a \in D$ si ha che

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a) \in \mathbb{R}$$

(2) Per ogni estremità locale sinistra $a \in D$ si ha che:

$$\lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h} = (f')^+(a) \in \mathbb{R}$$

(3) Per ogni estremità locale destra $a \in D$ si ha che:

$$\lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h} = (f')^{-}(a) \in \mathbb{R} .$$

Nel primo caso f'(a) è detta la derivata di f in a; nel secondo $(f')^+(a)$ è la derivata destra di f in a; nel terzo $(f')^-(a)$ è la derivata sinistra di f in a. Per uniformità di notazione, a volte scriveremo semplicemente f'(a) anche nel caso in cui a è una estremità locale. C'è un altro modo equivalente molto espressivo di dire le stesse cose. Per semplicità limitiamoci a considerare il caso di un punto interno a. Indichiamo con $Df(a): \mathbb{R} \to \mathbb{R}$ la funzione lineare definita da Df(a)(h) = f'(a)h, cioè Df(a) è data dalla moltiplicazione per lo scalare f'(a). Df(a) è detta il differenziale di f in a. E' chiaro che la derivata e il differenziale in a si ricavano l'una dall'altro in modo automatico, però sono oggetti diversi perchè la derivata è uno scalare mentre il differenziale è una funzione. Possiamo allora riscrivere

$$\lim_{h\to 0}\frac{(f(a+h)-f(a))-Df(a)(h)}{h}=0$$
o, ancora, usando la notazione "o-piccolo" di Landau,

$$(f(a+h) - f(a)) - Df(a)(h) = o(h)$$
.

Si noti che g(h) = f(a+h) - f(a) considerata come funzione di h è tale che g(0) = Df(a)(0) = 0. L'espressione precedente esprime bene l'idea intuitiva che Df(a)(h) è la funzione lineare di h che meglio approssima la g(h) in un intorno di 0 (a volte si dice anche che Df(a) linearizza g in un untorno di 0). Nella letteratura si trovano diverse altre notazioni per indicare la derivata oltre f'(a), per esempio

$$\frac{d}{dx}f(a), \quad \dot{f}(a)$$

Anche noi useremo liberamente l'una o l'altra di queste notazioni.

Se f è derivabile su D, allora la funzione derivata $f': D \to \mathbb{R}, x \to f'(x)$, è un' altra funzione di \mathcal{F}^0 . Ammesso che esista, possiamo definire la derivata seconda f'' = (f')'. Più in generale, per induzione, possiamo definire (ammesso che esista) la derivata n-esima $f^{(n)}$, $n \ge 0$, di f ponendo

- $f^{(0)} = f$, $f^{(1)} = f'$ $f^{(n+1)} = (f^{(n)})'$.

Definizione 2.1. Diciamo che una funzione $f: D \to \mathbb{R}$ in \mathcal{F}^0 è di classe \mathcal{C}^0 se è continua. Diciamo che è di classe \mathcal{C}^k (e scriveremo $f \in \mathcal{C}^k$) se per ogni $0 \leq m \leq k$ la funzione derivata m-esima $f^{(m)}$ esiste ed è continua. Diciamo che f è di classe \mathcal{C}^{∞} se è di classe \mathcal{C}^k per ogni $k \geq 0$.

Vale la seguente importante proposizione.

Proposizione 2.2. Se $f \in \mathcal{F}^0$ è derivabile allora $f \in \mathcal{C}^0$. Più in generale se esistono le funzioni derivata m-esima $f^{(m)}$ per ogni $0 \le m \le k+1$, allora $f \in \mathcal{C}^k$. Se esistono le funzioni derivata m-esima $f^{(m)}$ per ogni m > 0, allora $f \in \mathcal{C}^{\infty}$.

- 2.1. Procedure che preservano la derivabilità. Torniamo alle nostre procedure \mathbf{P}^0 definite qui sopra. Ci chiediamo se tali procedure, una volta applicate a funzioni derivabili producano un'altra funzione derivabile. Si vede subito che bisogna escludere la procedura "valore assoluto". Infatti, per esempio, la funzione identità di \mathbb{R} , $x \to x$, è derivabile, ma la funzione $x \to |x|$ non è derivabile in 0. Consideriamo ora la procedura "inversa". La funzione $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ è derivabile con derivata $f'(x) = 3x^2$, f'(0) = 0; f è bigettiva con funzione inversa data da $f^{-1}(0) = 0$, $f^{-1}(y) = y^{1/3}$ se y > 0, $f^{-1}(y) = -|y|^{1/3}$ se y < 0. Si verifica che f^{-1} non è derivabile in 0 (infatti la retta tangente al grafico di f^{-1} nel punto (0,0) è verticale e dunque ha "coefficiente angolare" infinito). Allora le procedure \mathbf{P}' si ottengono dalle procedure \mathbf{P}^0 nel modo seguente:
 - Si elimina la procedura "valore assoluto".
 - Per la procedura "inversa" si rafforzano le richieste, richiedendo inoltre che per ogni $a \in D$, $f'(a) \neq 0$.
 - Le altre procedure restano uguali.

La seguente proposizione riassume importanti proprietà strutturali delle funzioni derivabili.

Proposizione 2.3. (1) Se $f: D \to \mathbb{R} \in \mathcal{F}^0$ è derivabile, D' è un sottoinsieme buono di D, allora la restrizione di f a D' è derivabile.

(2) Le funzioni derivabili sono chiuse rispetto alle procedure \mathbf{P}' , cioè se applichiamo una procedura \mathbf{P}' a partire da funzioni derivabili, allora produciamo un'altra funzione derivabile.

In effetti, per ogni procedura \mathbf{P}' , conosciamo la formula esplicita per la derivata della funzione risultante. Siano come al solito $f:D\to\mathbb{R}$ e $g:D'\to\mathbb{R}$ due funzioni in \mathcal{F}^0 e supponiamo inoltre che siano entrambe derivabili.

Regole di derivazione:

- ("Somma") Per ogni $a \in D \cap D'$, (f+g)'(a) = f'(a) + g'(a).
- ("Prodotto") Per ogni $a \in D \cap D'$, (fg)'(a) = f(a)g'(a) + f'(a)g(a).
- ("Reciproco") Per ogni $a \in D^* = D \setminus f^{-1}(0)$, $(\frac{1}{f})'(a) = -\frac{f'(a)}{f^2(a)}$. ("Composizione") Per ogni $a \in D$, $(g \circ f)'(a) = g'(f(a))f'(a)$. ("Inversa") Per ogni b = f(a), $(f^{-1})'(b) = \frac{1}{f'(a)}$.

Nel caso di "composizione" e "inversa" le formule diventano particolarmente espressive se riformulate in termini delle funzioni differenziali; infatti si ha:

- Per ogni $a \in D$, $D(q \circ f)(a) = Dq(f(a)) \circ Df(a)$ cioè "il differenziale della composizione è la composizione dei differenziali".
- $Df^{-1}(f(a)) = (Df(a))^{-1}$, cioè il "differenziale dell'inversa è l'inversa del differenziale".
- 2.2. Funzioni elementari derivabili. Consideriamo lo stesso insieme di funzioni fondamentali che abbiamo usato in [EC] per definire le funzioni elementari continue. Vale il seguente fatto che dimostreremo dopo.

Lemma 2.4. Ogni funzione fondamentale è una funzione C^{∞} .

Definiamo \mathcal{E}' l'insieme delle funzioni che si ottengono a partire dalle funzioni fondamentali applicando in successione un numero finito (che però può essere arbitrariamente grande) di procedure \mathbf{P}' . Poiché le funzioni derivabili sono chiuse rispetto alle procedure \mathbf{P}' , ne segue che ogni funzione in \mathcal{E}' è derivabile; chiameremo quindi \mathcal{E}' l'insieme delle funzioni elementari derivabili. Tutte le funzioni elementari continue polinomiali, razionali, etc. descritte alla fine di [EC] sono anche funzioni elementari derivabili. Vale il seguente Lemma che dimostreremo dopo.

Lemma 2.5. La derivata di ogni funzione fondamentale è elementare derivabile.

Infine possiamo enunciare

Theorem 2.6. Ogni funzione elementare derivabile è C^{∞} . L'insieme \mathcal{E}' è chiuso rispetto alla derivazione, $cio\grave{e}$ se $f \in \mathcal{E}'$ allora anche $f' \in \mathcal{E}'$.

Dim. Il teorema segue dalle proprietà sopra enunciate delle funzioni fondamentali e dalle regole di derivazione enunciate qui sopra.

Ci resta da trattare le derivate delle funzioni fondamentali.

- Se f è una funzione costante, allora f'(a) = 0 per ogni a.
- Se f è la funzione inclusione di un intervallo I, $x \to x$ (in particolare se f è l'identità di \mathbb{R}) allora f'(a) = 1 per ogni $a \in I$.
- Calcoliamo per ogni $a \in \mathbb{R}$,

$$(\exp)'(a) = \lim_{h \to 0} \frac{\exp(a+h) - \exp(a)}{h}$$

si ha che

$$\exp(a+h) - \exp(a) = \exp(a)(\exp(h) - 1)$$

Dunque

$$(\exp)'(a) = \exp(a) \lim_{h \to 0} \frac{\exp(h) - 1}{h} = \exp(a)$$

abbiamo così verificato che $(\exp)' = \exp$.

• Calcoliamo per ogni $a \in \mathbb{R}$,

$$(\sin)'(a) = \lim_{h \to 0} \frac{\sin(a+h) - \sin(a)}{h}$$

per note formule trigonometriche sappiamo che

$$\sin(a+h) = \sin(a)\cos(h) + \cos(a)\sin(h)$$

da cui

$$\frac{\sin(a+h) - \sin(a)}{h} = \sin(a)\frac{\cos(h) - 1}{h} + \cos(a)\frac{\sin(h)}{h}$$

Passando al limite per $h \to 0$ e ricordando gli opportuni limiti notevoli (vedi la scheda [LIMITI]) si conclude che

$$(\sin)'(a) = \cos(a) .$$

D'altra parte $\cos(a) = \sin(a + \pi/2)$ è composizione di funzioni elementari derivabili; infatti $\cos'(a) = \sin'(a + \pi/2) = \cos(a + \pi/2) = -\sin(a)$.

Abbiamo così completato la nostra discussione. Vedi [DE] per una scheda con le derivate delle principali funzioni elementari derivabili. Concludiamo enunciando (senza dare la dimostrazione) un'altra proprietà interessante delle funzioni elementari derivabili, la cosiddetta proprietà del prolungamento analitico.

Proposizione 2.7. Se f e g sono due funzioni elementari definite su un intervallo aperto I che coincidono su un sotto-intervallo aperto $I' \subset I$, allora f e g coincidono su tutto I.

Si noti che la proposizione è chiaramente vera per le funzioni fondamentali. Questo suggerisce che potrebbe esserci una dimostrazione per induzione sul numero minimo di procedure \mathbf{P}' necessarie per produrre una funzione data a partire dalle funzioni fondamentali. Comunque questa proprietà può essere dimostrata (con altri metodi) per una classe più ampia di funzioni, dette *analitiche*, che contiene le funzioni elementari. Non avremo però tempo di sviluppare questa importante teoria in questo corso.