Reduction on characteristics for continuous solutions

of a scalar balance law

Giovanni Alberti, Stefano Bianchini and Laura Caravenna

AbSTRACT. We consider continuous solutions u to the balance equatio

$$
\partial_{t} u(t, x)+\partial_{x}[f(u(t, x))]=g(t, x),
$$

where f is of class C^{2} and the source term g is bounded. Continuity improves to Hölder continuity when f is uniformly convex, but it is not more regular in general. We discuss he reduction to ODEs on characteristics, mainly based on the joint works [5, 1]. We provide here local Lipschitz regularity results holding in the region where $f^{\prime}(u) f^{\prime \prime}(u) \neq 0$ and only in the simpler case of autonomous sources $g=g(x)$, but for solutions $(), x$, that region, for the system of ODES

$$
\left\{\begin{array}{l}
\dot{\gamma}(t)=f^{\prime}(u(t, \gamma(t))), \\
\frac{d}{d t} u(t, \gamma(t))=g(\gamma(t)) .
\end{array}\right.
$$

Keywords: balance laws, method of characteristics, Lagrangian formulation, ordinary differential equations, Peano phenomenon
MSC (2010): 35L65, 35L60, 34A12

1. Introduction

In the context of classical solutions, the balance law

$$
\begin{equation*}
\partial_{t} u(t, x)+\partial_{x}[f(u(t, x))]=g(t, x) \tag{1.1}
\end{equation*}
$$

with $f \in C^{2}(\mathbb{R})$ can be reduced to ordinary differential equations along characteristic curves, defined as those curves $t \mapsto(t, \gamma(t))$ satisfying $\dot{\gamma}(t)=f^{\prime}(u(t, \gamma(t)))$. Indeed,

$$
\begin{aligned}
g(t, \gamma(t)) & =\partial_{t} u(t, \gamma(t))+\partial_{x}[f(u(t, \gamma(t)))] \\
& =\partial_{t} u(t, \gamma(t))+f^{\prime}(u(t, \gamma(t))) \partial_{x} u(t, \gamma(t)) \\
& =\partial_{t} u(t, \gamma(t))+\dot{\gamma}(t) \partial_{x} u(t, \gamma(t)) \\
& =\frac{d}{d t} u(t, \gamma(t))
\end{aligned}
$$

This more generally allows a parallel between the Cauchy problem for a scalar quasi linear first order PDE and for a system of ODEs, which is known as the method of characteristics (see for instance [10], where it is also provided an application to determine local existence)

If one interprets $f^{\prime}(u)$ as a velocity, this is just the change of variable from the Eulerian (PDE) to the Lagrangian (ODEs) formulation.

We discuss here what remains of this equivalence when u is just continuous and g is bounded. We prove then in Section 2 that when g depends only on x, but not on the time t, then $u(t, x)$ is locally Lipschitz continuous on the open set where $f^{\prime}(u) f^{\prime \prime}(u)$ is nonvanishing. This is sensibly better than the general case, where u is only Hölder continuous. It is based on proving the corresponding result for the system of ODEs. As we are discussing local issues, we will fix for simplicity the domain \mathbb{R}^{2} and we will assume u bounded.

A motivation for a different setting

The development of Geometric Measure Theory in the context of the sub-Riemannian Heisenberg group \mathbb{H}^{n} brought the attention to continuous solutions to the equation

$$
\begin{equation*}
\partial_{t} u(t, x)+\partial_{x}\left[\frac{\left.u^{2}(t, x)\right)}{2}\right]=g(t, x) . \tag{1.2}
\end{equation*}
$$

Continuity is natural from the fact that u parametrizes a surface. As one studies surfaces that have differentiability properties in the intrinsic structure of the Heisenberg group, but not in the Euclidean structure, then it is not natural assuming more regularity of u than continuity [13], which for bounded sources improves to $1 / 2$-Hölder continuity $[4,5]$. Notice that with u continuous the second term of the equation cannot even be rewritten as $u \partial_{x} u$, because $\partial_{x} u$ is only a distribution and u is not a suitable test function.

The PDE arises if one wants to show the equivalence between a pointwise, metric notion of differentiability and a distributional one: for $n=1$ the distributional definition is precisely (1.2), while for $n>1$ it is a related multi- D system of PDEs. The corre spondence was introduced first in $[3,4]$ for intrinsic regular hypersurfaces, which are the analogue of what are C^{1}-hypersurfaces in the Euclidean setting. It was extended in $[5,7]$ when considering intrinsic Lipschitz hypersurfaces, analogue of Lipschitz hypersurfaces in the Euclidean setting. The source term g, in \mathbb{H}^{1}, turns out to be what is called the intrinsic gradient of u, which is the counterpart of the gradient in Euclidean geometry; in \mathbb{H}^{n} it is one if its components: u locally parametrizes an intrinsic regular hypersurface if and only if (1.2) holds locally with g continuous; it parametrizes an intrinsic regular hypersurface if and only if (1.2) holds locally with g bounded. As the notion of differentiability they provide in the intrinsic structure of \mathbb{H}^{n} is closer to the Lagrangian formulation, the equivalence between Lagrangian and Eulerian formulation arises as intermediate step of this characterization.
When considering intrinsic Lipschitz hypersurfaces the fact that g is only bounded gives rise to new subtleties. In particular, one already knows by an intrinsic Rademache theorem [11] that the intrinsic differential exists and it is unique \mathscr{L}^{2}-a.e. However, for the ODE formulation this is not enough: as one needs to restrict this L^{∞} function on curves, a precise representative is needed also at points where u is not intrinsically differentiable. Viceversa, if one chooses badly the representative of the source of the ODE formulation a priori it differs on a positive measure set from the source of the ODE. There is however a canonical choice for defining the two sources, which makes the formulations equivalent when the inflection points of f are negligible

Summary of the equivalence

When u is Lipschitz, the ODE

$$
\left\{\begin{array}{l}
\dot{\chi}(t, x)=f^{\prime}(u(t, \chi(t, x))) \\
\chi(0, x)=x
\end{array}\right.
$$

with $x \in \mathbb{R}$ and f of class C^{2}, provides a local diffeomorphism by the classical theory on ODE. If u is instead continuous, Peano's theorem ensures local existence of solutions, but more characteristics may start at one point and characteristics from different points may collapse (see in [5] the classical example of the square-root). This makes clearly impossible to have a local diffeomorphism, or even having a Lagrangian flow in the sense of Ambrosio-DiPerna-Lions [9, 2]. A recent result about this can be obtained for u not depending on time [6], but it is clearly not our assumption. Dropping out injectivity, it is however possible to construct a continuous change of variables with bounded variation.

Let u be a continuous, bounded function.
Lemma 1.1. There exists a continuous function $\chi: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ such that

- $\tau \mapsto \chi(t, \tau)$ is nondecreasing for every t and surjective,
- $\partial_{t} \chi(t, \tau)=f^{\prime}(u(t, \tau))$.

We call it Lagrangian parameterization. This function is not unique.
See $[1,5]$ for the proof. See also $[12]$ for a similar change of variable, for a $1 D$-system. In general one cannot have that χ is $S B V$ [1].

Consider now u continuous distributional solution to (1.1) with g bounded.
Lemma 1.2. Assume that $\mathscr{L}^{1}(\operatorname{clos}(\{$ inflection points of $f\}))=0$. Then u is Lipschitz continuous along every characteristic curve

The proof follows a computation by Dafermos [8]. For general fluxes, there are cases when u is not Lipschitz along some Lagrangian parameterization [1]. The counterexample holds also for continuous autonomous sources $g(t, x)=g_{0}(x)$. What we find more striking is the following.

Theorem 1.3. Assume that $\mathscr{L}^{1}(\operatorname{clos}(\{$ inflection points of $f\}))=0$. Then there exists a pointwise defined function $\hat{g}(t, x)$

$$
\frac{d}{d t} u(t, \gamma(t))=\hat{g}(t, \gamma(t)) \quad \text { in } \mathcal{D}^{\prime}(\mathbb{R}) \text { for every characteristic curve } \gamma .
$$

The proof is based on a selection theorem as a technical device, but \hat{g} is essentially uniquely defined as the derivative of u along some characteristic.
Remark 1.4. There is a substantial difference between the uniformly convex and the strictly convex cases: in the former at almost every (t, x) there exists a unique value for $\frac{d}{d t} u(t, \gamma(t)), \gamma(t)=x$, and it does not depend on which characteristic $\gamma(s)$ one has chosen. That value is the most natural choice of \hat{g} at those points, and this a.e. defined function \hat{g} identifies the same distribution as the source term g. Without uniform convexity $\frac{d}{d t} u(t, \gamma(t))$ may not exist on a set of positive \mathscr{L}^{2}-measure, independently of which characteristic γ one chooses through the point. The correspondence between distributional and Lagrangian sources gets more complicated with non-convexity.

The converse also holds. We give here a weaker statement without the negligibility condition on the inflection points. As mentioned identifying sources is delicate, we refer for it to the more extensive work [1].
Theorem 1.5. Assume that a continuous function u has a Lagrangian parameterization χ for which there exists a bounded function \tilde{g} s.t. it satisfies

$$
\begin{equation*}
\frac{d}{d t} u(t, \chi(t, \tau))=\tilde{g}(t, \chi(t, \tau)) \quad \text { in } \mathcal{D}^{\prime}(\mathbb{R}) \text { for every } \tau \in \mathbb{R} \tag{1.3}
\end{equation*}
$$

Then there exists a function $g(t, x)$ s.t. (1.1) holds.
Viceversa, if (1.1) holds then there exists a Lagrangian parameterization χ and function \tilde{g} s.t. (1.3) holds.
We finally mention that continuous distributional solutions to this simple equation do not dissipate entropy.
Theorem 1.6. Let u be a continuous distributional solution to (1.1) with bounded source g. Then for every smooth function η and q satisfying $q^{\prime}=\eta^{\prime} f^{\prime}$

$$
\partial_{t}[\eta(u(t, x))]+\partial_{x}[q(u(t, x))]=\eta^{\prime}(u(t, x)) g(t, x)
$$

2. Some local regularity with autonomous sources

We mention a local regularity result holding in the case of autonomous sources: the continuous function $u(t, x)$ is locally Lipschitz continuous in the (open) complementary of the 0 -level set of the product $f^{\prime}(u) f^{\prime \prime}(u)$. For $f(u)=u^{2} / 2$, this means $u \neq 0$. When the source is not autonomous, then this fails to be true, indeed characteristics may bifurcate also at points where u is not vanishing.

We remind [1] that when f has inflection points of positive measure, then a priori u may not be Lipschitz along some characteristics, even with $g=g(x)$.
Lemma 2.1. There may be locally multiple solutions to the ordinary differential equation

$$
\left\{\begin{array}{l}
\dot{\gamma}(t)=u(t, \gamma(t)), \\
\ddot{\gamma}(t)=g(\gamma(t)), \\
\gamma(\bar{t})=\bar{x},
\end{array}\right.
$$

with $u(t, x)$ continuous, $g(x)$ bounded, only if $u(\bar{t}, \bar{x})=0$ but it does not identically vanish in a whole neighborhood.
Remark 2.2. We are not stating existence. The lemma is however still not obvious because we do not have differentiability properties of u, which follow a posteriori by the next corollary in the region where u does not vanish. As a consequence, we do not have now the differentiability of the map $\gamma(t)$ w.r.t. the initial data of the ODE. The lemma asserts indeed the continuity in this variable in that region, provided it exists. We remind that when g depends on t bifurcations may easily occur also if $u \neq 0$.

Proof. We just prove that if u does not vanish at some point (\bar{t}, \bar{x}), at that point there is at most one solution of the ODE, as an effect of the autonomous source. The reason is that if $u(\bar{t}, \bar{x})$ does not vanish, then any Lipschitz characteristic $x=\gamma(t)$, with $\bar{x}=\gamma(\bar{t})$, is a diffeomorphism in some neighborhood of (\bar{t}, \bar{x}), and we can invert it. This allows to have the space variable as a parameter: the characteristic can be expressed
as $t=\theta(x)$. However, the second order relation $\ddot{\gamma}(t)=g(\gamma(t))$, once expressed in the x variable, can be integrated determining the function θ.

By elementary arguments, it suffices to show that there exists (locally) only one characteristic passing through $(\bar{t}, \bar{x})=(0,0)$ with slope $u(0,0)=1$. Focus the attention on a neighborhood U of the origin where u is bigger than some $\varepsilon>0$. Let $x=\gamma(t)$ be any Lipschitz continuous solution of the ODE. Since $\dot{\gamma}(0)=u(0,0)>0$, by the inverse function theorem there exists $\delta>0$ and a function

$$
\theta:(\gamma(-\delta), \gamma(\delta)) \rightarrow(-\delta, \delta) \quad \text { s.t. } \quad \theta(\gamma(t))=t, \quad \gamma(\theta(x))=x
$$

Moreover, it is continuously differentiable with derivative

$$
\begin{equation*}
\dot{\theta}(x)=\frac{1}{\dot{\gamma}(\theta(x))}=\frac{1}{u(\theta(x), x)} \in\left[\frac{1}{\max |u|}, \frac{1}{\varepsilon}\right] . \tag{2.1}
\end{equation*}
$$

From the Lipschitz continuity of $u(t, \gamma(t))$ and the fact that γ is a local diffeomorphism with inverse θ we deduce that the composite function $u(\theta(x), x)$ is Lipschitz continuous. At points $X \subset U$ of differentiability by the classical chain rule

$$
\begin{aligned}
& \lim _{h \downarrow 0} \frac{\dot{\dot{\gamma}}(\theta(x+h))-\dot{\gamma}(\theta(x))}{h}= \\
& \quad=\frac{\dot{\gamma}(\theta(x+h))-\dot{\gamma}(\theta(x))}{\theta(x+h)-\theta(x)} \cdot \frac{\theta(x+h)-\theta(x)}{h}=\ddot{\gamma}(\theta(x)) \dot{\theta}(x),
\end{aligned}
$$

and by (2.1) we have that $\dot{\theta}$ is differentiable at $x \in X$ with derivative

$$
\ddot{\theta}(x)=-\frac{\ddot{\gamma}(\theta(x)) \dot{\theta}(x)}{[\dot{\gamma}(\theta(x))]^{2}}=-\frac{g(\theta(x))}{u^{3}(\theta(x), x)} \quad \Leftrightarrow \quad-\frac{\ddot{\theta}(x)}{[\dot{\theta}(x)]^{3}}=g(x) .
$$

For those $x \in X$, the differential equation may be rewritten as

$$
\frac{d}{d x}\left[\frac{1}{2[\dot{\theta}(x)]^{2}}\right]=g(x) \quad \Leftrightarrow \quad \frac{d}{d x} \frac{u^{2}(\theta(x), x)}{2}=g(x) .
$$

The explicit ODE for $\theta(x)$, with initial data $\theta(0)=0,[\dot{\theta}(0)]^{-1}=u(0,0)=1$, is easily solved locally by

$$
\begin{equation*}
u^{2}(\theta(x), x)=\frac{1}{\dot{\theta}^{2}(x)}=1+2 \int_{0}^{x} g(z) d z \tag{2.2}
\end{equation*}
$$

This shows that the slope of every characteristic through the origin, which is a local diffeomorphism, is fixed at each x independently of the characteristic we have chosen: therefore there can be only one characteristic, precisely (in the space parameterization)

$$
\begin{equation*}
\theta(x ; \bar{t}, \bar{x})=\bar{t}+\int_{\bar{x}}^{x} \frac{1}{\sqrt{u^{2}(\bar{t}, \bar{x})+2 \int_{\bar{x}}^{w} g(z) d z}} d w . \tag{2.3}
\end{equation*}
$$

Notice finally that if u vanishes in a neighborhood, being $\dot{\gamma}(t) \equiv 0$ there characteristics must be vertical (in that region of the (x, t)-plane).

Lemma 2.3. Under the hypothesis of Lemma 2.1, if $g(x)$ is continuous it should also vanish at points where there are more characteristics, but it must not identically vanish in a neighborhood.

Proof. We show that not only u, but also g must vanish. The argument shows that when two characteristics meet and have both second derivative with the same value, this value must be 0 . For simplifying notations, consider two characteristics $\gamma_{1}(t) \leq \gamma_{2}(t)$ for arbitrarily small $t>0$ with $\gamma_{1}(0)=\gamma_{2}(0)=0$. If $\gamma_{1}\left(t_{k}\right) \gamma_{2}\left(t_{k}\right) \leq 0$ for $t_{k} \downarrow 0$, then

$$
0 \leq \ddot{\gamma}_{2}(0)=g(0)=\ddot{\gamma}_{1}(0) \leq 0
$$

thus g vanishes. If instead e.g. $g>0$ near the origin, having excluded the above case there exists $\delta>0$ such that $0<\gamma_{1}(t) \leq \gamma_{2}(t)$ for $t \in[0, \delta]$. Then (2.2) implies that the two curves coincide: having $\dot{\gamma}_{1}\left(t_{k}\right)=0$ or $\dot{\gamma}_{2}\left(t_{k}\right)=0$ for a sequence $\left|t_{k}\right| \downarrow 0$ would contradict the positivity of g, therefore for small $t>0$ necessarily $\dot{\gamma}_{1}(t)>0, \dot{\gamma}_{2}(t)>0$ and therefore

$$
\begin{aligned}
u^{2}\left(\gamma_{1}^{-1}(x), x\right)+2 \int_{x}^{0} g(z) d z & =\dot{\gamma}_{1}^{2}(0) \\
& =0=\dot{\gamma}_{2}^{2}(0)=u^{2}\left(\gamma_{2}^{-1}(x), x\right)+2 \int_{x}^{0} g(z) d z
\end{aligned}
$$

Being $\dot{\gamma}_{i}(t)=u\left(t, \gamma_{i}(t)\right), i=1,2$, by the differential relation, this shows that $\dot{\gamma}_{1}(t) \equiv$ $\dot{\gamma}_{2}(t)$ for small times. This implies that the two curves coincide.

Finally, suppose g vanishes in a neighborhood. Then, as $\ddot{\gamma}(t)=0$ in that neighborhood, characteristics are straight lines. As by the continuity of u characteristics may only intersect with the same derivative, they must be parallel lines and therefore bifurcation of characteristics does not occur.

We now show that in case u does not vanish, in the above lemma much more regularity holds.

Lemma 2.4. If for every $(\bar{t}, \bar{x}) \in \Omega$ open in \mathbb{R}^{2} there exists a curve γ s.t.

$$
\left\{\begin{array}{l}
\dot{\dot{\gamma}}(t)=u(t, \gamma(t)), \\
\ddot{\gamma}(t)=g(\gamma(t)), \\
\gamma(\bar{t})=\bar{x},
\end{array}\right.
$$

with $u(t, x)$ continuous, $g(x)$ bounded, then $u(t, x)$ is locally Lipschitz in the open set $\{(t, x): u(t, x) \neq 0\} \subset \Omega$.
Corollary 2.5. If u is not locally Lipschitz where nonvanishing then the system in Lemma 2.1 cannot have solutions through each point of the plane. In particular, u cannot be a continuous solution to

$$
\partial_{t} u(t, x)+\partial_{x}[f(u(t, x))]=g(x)
$$

Proof. By Lemma 2.1 there is a unique characteristic starting at each point $(\bar{t}, \bar{x}) \in$ $\Omega=\{(t, x): u(t, x) \neq 0\}$, which is given by (2.3). We start comparing the value of u at two points $(0,0),(-t, 0), t>0$, in a ball B compactly contained in Ω. In particular, there exists $\delta(B)$ s.t. the two characteristics starting from the points we have chosen do not intersect if $0<x<\delta(B)$, as there u does not vanish. For such small x one has by (2.3)

$$
\begin{equation*}
\int_{0}^{x} \frac{1}{\sqrt{\lambda_{1}^{2}+2 \int_{0}^{w} g(z) d z}} d w>-t+\int_{0}^{x} \frac{1}{\sqrt{\lambda_{2}^{2}+2 \int_{0}^{w} g(z) d z}} d w \tag{2.4}
\end{equation*}
$$

where we defined $\lambda_{1}=u(0,0)$ and $\lambda_{2}=u(-t, 0)$. Equivalently

$$
t>\int_{0}^{x} \frac{1}{\sqrt{\lambda_{2}^{2}+2 \int_{0}^{w} g(z) d z}}-\frac{1}{\sqrt{\lambda_{1}^{2}+2 \int_{0}^{w} g(z) d z}} d w
$$

Suppose $\lambda_{1}>\lambda_{2}$. By the convexity of $r \mapsto 1 / \sqrt{r}$, the right-hand side is larger than

$$
\begin{aligned}
\int_{0}^{x}\left[\frac{d}{d r}\left(\frac{1}{\sqrt{r}}\right)\right. & \left.\left.\right|_{r=\lambda_{1}^{2}+2 \int_{0}^{w} g(z) d z}\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)\right] d w= \\
& =\left[\frac{\lambda_{2}+\lambda_{1}}{-2} \int_{0}^{x} \frac{1}{\left(\lambda_{1}^{2}+2 \int_{0}^{w} g(z) d z\right)^{3 / 2}} d w\right]\left(\lambda_{2}-\lambda_{1}\right) \\
& \geq\left[\frac{\lambda_{2}+\lambda_{1}}{2\left(\lambda_{1}^{2}+2 G x\right)^{3 / 2}} x\right]\left(\lambda_{1}-\lambda_{2}\right)
\end{aligned}
$$

The argument within square brackets in the last line is uniformly continuous and as $t \downarrow 0$ it is larger than x / λ_{1}^{2}. As the inequalities hold for every positive $t, x<\delta=\delta(B)$, the non-intersecting condition (2.4) gives

$$
t>\left(\frac{\lambda_{1}^{2}}{\delta}+\varepsilon\right)^{-1}\left(\lambda_{1}-\lambda_{2}\right) \quad \Rightarrow \quad u(0,0)-u(t, 0)=\lambda_{1}-\lambda_{2} \leq\left(\frac{\lambda_{1}^{2}}{\delta}+\varepsilon\right) t
$$

which is half the Lipschitz inequality at the points $(0,0),(-t, 0)$. The other half, for $\lambda_{1}<\lambda_{2}$ is similarly obtained considering small negative x.

For comparing two generic close points (t, x) and $(0,0)$, by the finite speed of propagation one can combine the Lipschitz regularity along characteristics and the Lipschitz regularity along vertical lines.

Corollary 2.6. Let $u(t, x)$ be a continuous solution to the balance equation

$$
\partial_{t} u(t, x)+\partial_{x}[f(u(t, x))]=g(x), \quad g \in L^{\infty}(\mathbb{R}) .
$$

Then the function $u(t, x)$ is locally Lipschitz in the open set

$$
\left\{(t, x): f^{\prime}(u(t, x)) \cdot f^{\prime \prime}(u(t, x)) \neq 0\right\}
$$

Proof. We first consider the case of quadratic flux $f(u)=u^{2} / 2$. By Theorem 1.3, there exists a function $\hat{g}(t, x)$ such that we can apply Lemma 2.1, which gives the thesis. If $g \in L^{\infty}$ they may a priori differ on an \mathscr{L}^{2}-negligible set, but one can prove that $\hat{g}(t, x)=\hat{g}(x)$.

Being u an entropy solution by Theorem 1.6, $f^{\prime}(u)$ solves the equation

$$
\left[f^{\prime}(u)\right]_{t}+\left[\frac{f^{\prime}(u)^{2}}{2}\right]_{x}=f^{\prime \prime}(u) g
$$

By the previous case then $f^{\prime}(u)$ is Lipschitz in the open set where it does not vanish. If moreover $f^{\prime \prime}(u)$ does not vanish, then the regularity of u can be proved just by inverting f^{\prime}.

Acknowledgements. L.C. acknowledges the UK EPSRC Science and Innovation award to the Oxford Centre for Nonlinear PDE (EP/E035027/1) and the ERC Starting Grant CONSLAW.

References

[1] Alberti, Giovanni; Bianchini, Stefano; Caravenna; Laura. Eulerian and Lagrangian conAlberti, Giovanni; Bianchini, Stefano; Caravenna; Laura. Eulerian an
tinuous solutions to a balance law with non convex flux. Paper in preparation.
[2] Ambrosio, Luigi. Transport equation and Cauchy problem for $B V$ vector fields. Invent. Math. 158 (2004), no. 2, 227-260
[3] Ambrosio, Luigi; Serra Cassano, Francesco; Vittone, Davide. Intrinsic regular hypersurfaces in Heisenberg groups. J. Geom. Anal., 16 (2006), no. 2, 187-232.
[4] Bigolin, Francesco; Serra Cassano, Francesco. Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs. Adv. Calc. Var., 3 (2010), no. 1, 69 97.
[5] Bigolin, Francesco; Caravenna, Laura; Serra Cassano, Francesco. Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation. Ann. Inst. H. Poincare Anal. Non Linéaire, to appear.
[6] Crippa, Gianluca. Lagrangian flows and the one-dimensional Peano phenomenon for ODEs. J Differential Equations, 250 (2011), no. 7, 3135-3149.
[7] Citti, Giovanna; Manfredini, Maria; Pinamonti, Andrea; Serra Cassano, Francesco Smooth approximation for intrinsic Lipschitz functions in the Heisenberg group. Calc. Var. Partial Differential Equations, 49 (2014), no. 3-4, 1279-1308.
[8] Dafermos, Constantine M. Continuous solutions for balance laws. Ric. Mat., 55 (2006), no. 1 , 79-91.
9] DiPerna, Ronald J.; Lions, Pierre-Louis. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98 (1989), no. 3, 511-547
10] Evans, Lawrence C. Partial differential equations. Second edition. Graduate Studies in Mathe matics, vol. 19. American Mathematical Society, Providence (RI), 2010.
(11) Franchi, Bruno; Serapioni, Raul; Serra Cassano, Francesco. Differentiability of intrinsic Lipschitz functions within Heisenberg groups. J. Geom. Anal. 21 (2011), no. 4, 1044-1084
12] Holden, Helge; Raynaud, Xavier. Global semigroup of conservative solutions of the nonlinea variational wave equation. Arch. Ration. Mech. Anal., 201 (2011), no. 3, 871-964.
[13] Kirchheim, Bernd; Serra Cassano, Francesco. Rectifiability and parameterization of intrin sic regular surfaces in the Heisenberg group. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 3 (2004), no. 4, 871-896.
G.A.

Dipartimento di Matematica, Università di Pisa, largo Pontecorvo 5, 56127 Pisa, Italy e-mail: giovanni.alberti@unipi.it
S.B.

SISSA, via Bonomea 265, 34136 Trieste, Italy
e-mail: stefano.bianchini@sissa.it
OxPDE, Mathematical Institute, 24-29 St Giles', OX1 3LB Oxford, United Kingdom
e-mail: laura.caravenna@maths.ox.ac.uk

