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1. Introduction and main notation

The study of the well-posedness of the transport equation

(1.1)
{
∂tu(t, x) + b(t, x) · ∇u(t, x) = 0 ,
u(0, x) = ū(x) ,

where b : [0, T ] × Rd → Rd is a vector field, ū ∈ L∞(Rd) is the initial data, and
the unknown u belongs to L∞([0, T ] × Rd), is of great importance in the theory
of nonlinear evolutionary partial differential equations, due to the appearance of
equations of this form in many physical phenomena; we refer for instance to [16]
and [26] for a general overview on the theory of conservation laws. The theory
is classical and well-understood in the case when b is sufficiently smooth (at least
Lipschitz with respect to the spatial variable, uniformly with respect to the time),
and is strongly based on the so-called theory of characteristics, i.e. on the connection
between (1.1) and the ordinary differential equation

(1.2)
{
γ̇(t) = b(t, γ(t)) ,
γ(0) = x .

However, in many applications motived by physical models, non-smooth vector
fields show up as velocity fields of transport equations. Thus a great interest has
arisen in the study of (1.1) when b is only in some classes of weak differentiabil-
ity. We mention in this context the two seminal papers by DiPerna and Lions
[20] and by Ambrosio [3], in which the Sobolev and the BV cases respectively are
considered, in both cases under boundedness assumptions on the spatial divergence
of the vector field. The result in the BV framework has been applied in [6] and
[5], obtaining well-posedness results for the Keyfitz-Kranzer system [25]. Various
counterexamples (see for instance [19], and also [9] for a related example in the
context of the two-dimensional Keyfitz-Kranzer system) show that some weak dif-
ferentiability assumptions on the vector field are in general necessary in order to
obtain well-posedness. For a general survey on this topic see for instance [7].
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In this note we describe some recent results obtain by the authors in [2], re-
garding the two-dimensional case. Let us consider for simplicity the basic case of
an autonomous two-dimensional divergence free vector field with compact support:

b ∈ L∞(R2; R2) , div b = 0 and spt b ⊂⊂ R2 .

It is well-known that in this situation it is possible to find a Hamiltonian function
H ∈ Lipc(R2) such that

(1.3) b(x) = ∇⊥H(x) =
(
−∂H(x)

∂x2
,
∂H(x)
∂x1

)
for L 2-a.e. x ∈ R2.

Due to this very particular structure, we intuitively expect that the assumptions
needed for the well-posedness should be dramatically weaker than the previous
ones. The starting point for this hope is the heuristic remark that the value of the
Hamiltonian is constant on the trajectories. Indeed, if γ̇(t) = b(γ(t)), then we can
compute

d

dt
H(γ(t)) = ∇H(γ(t)) · γ̇(t) = ∇H(γ(t)) · b(γ(t)) = ∇H(γ(t)) · ∇⊥H(γ(t)) = 0 .

This means that the trajectories “follow” the level sets of the Hamiltonian. Going
on with heuristics, one would try to implement the following strategy:

(a) Localize the equation to each level set, thanks to the fact that the level
sets are invariant under the action of the flow;

(b) Understand the structure of the level sets, trying to prove that generically
they are “one-dimensional sets”;

(c) See the equation on each level set as a one-dimensional problem and show
uniqueness for it;

(d) Deduce uniqueness for the problem in R2 from the uniqueness of all the
problems on the level sets.

Since we can hope for uniqueness on the level sets under quite general hypothe-
ses, the reduced equation being one-dimensional, we expect stronger well-posedness
results in this case: it is natural to imagine that no regularity of b (in terms of weak
derivatives) would be needed.

We shall see in the following (see in particular Theorem 6.2) that in this context
the well-posedness is ensured by a very weak condition regarding the critical points
of the Hamiltonian H, namely by the weak Sard property (4.1). In fact, we are also
able to show that (4.1) is necessary and sufficient for the well-posedness.

We close this first section by indicating the main notation used in the sequel.
We denote by B(Rd) the family of the Borel subsets of Rd, by M (Rd) the family
of the locally finite Borel measures on Rd and by M+(Rd) the subset of M (Rd)
consisting of all nonnegative locally finite Borel measures on Rd.

If µ ∈ M (Rd) and E ⊂ Rd is a Borel set, the restriction of µ to E is the
measure µ E ∈ M (Rd) defined by (µ E)(A) = µ(A ∩ E) for every Borel set
A ⊂ Rd. If µ ∈ M (Rd) and ν ∈ M+(Rd) we say that µ is absolutely continuous
with respect to ν (and we write µ � ν) if |µ|(E) = 0 for every Borel set E ⊂ X
such that ν(E) = 0. We say that two measures µ and ν ∈ M (Rd) are mutually
singular (and we write µ ⊥ ν) if they are concentrated on disjoint Borel sets. For
µ ∈ M (Rd) and ν ∈ M+(Rd) we recall that the Lebesgue decomposition theorem
gives the existence of µa ∈M (Rd) and µs ∈M (Rd) such that

µa � ν , µs ⊥ ν and µ = µa + µs .
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If f : Rd → Rm is a Borel map and µ ∈ M (Rd) we denote by f#µ ∈ M (Rm)
the push-forward of the measure µ, defined by

(1.4) (f#µ)(E) = µ(f−1(E)) for every Borel set E ⊂ Rm.

We denote by L d the Lebesgue measure on Rd and with H k the k-dimensional
Hausdorff measure on Rd. We say that a Borel set Σ ⊂ Rd is H k-rectifiable if there
exist countably many Lipschitz functions fi : Rk → Rd such that

H k
(
Σ \ ∪ifi

(
Rk
))

= 0 .

We finally recall the coarea formula for Lipschitz functions, which shall be
frequently used in our analysis: for every Lipschitz map f : Rd → Rd−k and every
positive Borel function ϕ : Rd → [0,+∞] there holds

(1.5)
∫

Rd

ϕJ dL d =
∫

Rd−k

[∫
Eh

ϕdH k

]
dL d−k(h) ,

where J = [det(∇f · t∇f)]1/2 is the Jacobian of f and Eh = {x ∈ Rd : f(x) = h},
for h ∈ Rd−k, are the level sets of the function f .

2. Previous literature and main points of the proof

We first indicate the essential literature on the two-dimensional transport equa-
tion. Previous results by Bouchut and Desvillettes [10], Hauray [24] and Colombini
and Lerner [12, 13] show that uniqueness holds for the transport equation relative
to an autonomous bounded divergence-free vector field, under the following addi-
tional condition on the local direction of the vector field: there exists an open set
Ω ⊂ R2 such that H 1(R2 \ Ω) = 0 and for every x ∈ Ω the following holds:

(2.1) there exist ξ ∈ S1, α > 0 and ε > 0 such that
for L 2-a.e. y ∈ Bε(x), we have b(y) · ξ ≥ α.

The validity of this condition permits a local change of variable, which straightens
the level sets of the Hamiltonian, thus reducing the equation to a one-dimensional
problem (the second spatial variable appears as a parameter in the equation after
the change of variable). Some extensions to the non-divergence-free case are due
to Colombini and Rauch [14] and to Colombini, Rauch and the third author [11].

However, the meaning of condition (2.1) is not completely clear: while in the
stationary problem it just expresses the fact that the surface on which we consider
the initial data is noncharacteristic, in the time-space problem it is a kind of local
regularity of the direction of b. In particular, condition (2.1) prevents the existence
of “too many” zeros of the vector field.

The strategy followed in [2] is a bit different: we do not perform a local change
of variable according to the Hamiltonian, but we rather split the equation on the
level sets of the Hamiltonian, using the coarea formula. Then we would like to
look at the equation level set by level set. It turns out that, where ∇H 6= 0,
the level sets are in fact nice rectifiable curves, and this will allow to consider the
PDE in the parametrization. The interesting point is that, in order to separate
the evolution in {∇H = 0} from the evolution in {∇H 6= 0}, we need a condition
which is reminiscent of (2.1), in the sense that it regards again the “amount of
critical points of H”. This is precisely the weak Sard property in (4.1). We notice
that condition (4.1) is much weaker than (2.1). Surprisingly enough, we are able to
show that (4.1) is equivalent to the well-posedness, and we also construct various
explicit examples of nonuniqueness when (4.1) is violated. We present in this note
an account of the necessity of (4.1) in the basic case of a bounded divergence-free
vector field: we remark that various generalizations and extensions are possible (we
refer again to [2]).
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3. Splitting on the level sets of the Hamiltonian

We are concerned with the Cauchy problem for the transport equation (1.1)
and we define the Hamiltonian function H ∈ Lipc(R2) associated to b as in (1.3).
Consider the weak formulation of (1.1): u(t, x) ∈ L∞([0, T ]×R2) is a weak solution
of (1.1) if for every ϕ(t, x) ∈ Lipc([0, T [×R2) we have

(3.1)
∫ T

0

∫
R2
u
(
∂tϕ+ b · ∇ϕ

)
dx dt = −

∫
R2
ū ϕ(0, ·) dx .

Notice that from the coarea formula (1.5) it follows that for every function
φ ∈ L1(R2) we have

(3.2)
∫

R2∩{∇H 6=0}
φdx =

∫
R

[∫
Eh

φ

|∇H|
dH 1

]
dh ,

where Eh are the level sets of the function H. Using (3.2) in (3.1) and recalling
that b = ∇⊥H we obtain

(3.3)

0 =
∫ T

0

∫
{∇H=0}

u ∂tϕdx dt+
∫
{∇H=0}

ūϕ(0, ·) dx

+
∫ T

0

∫
{∇H 6=0}

u
(
∂tϕ+ b · ∇ϕ

)
dx dt+

∫
{∇H 6=0}

ū ϕ(0, ·) dx

=
∫ T

0

∫
{∇H=0}

u ∂tϕdx dt+
∫
{∇H=0}

ū ϕ(0, ·) dx

+
∫ T

0

∫
R

[∫
Eh

u

|∇H|
(
∂tϕ+ b · ∇ϕ

)
dH 1

]
dh dt

+
∫

R

[∫
Eh

ū

|∇H|
ϕ(0, ·) dH 1

]
dh .

The following lemma will allow the selection of the level sets of the Hamiltonian.
We recall that we denote by H#L 2 the push-forward of the Lebesgue measure on
R2 via the function H, defined according to (1.4).

Lemma 3.1. - If u(t, x) is a weak solution of (1.1) and η(h) ∈ L1(R, H#L 2),
then u(t, x)η(H(x)) is a weak solution of (1.1).

Proof. - Considering the weak formulation (3.1) with test function

ψ(t, x) = ϕ(t, x)η(H(x))

we deduce the validity of the lemma for any Lipschitz function η. The thesis
for every η ∈ L1(R, H#L 2) follows from an approximation procedure, since no
derivatives of η are involved in the weak formulation.

We now introduce some notation that will be used in the rest of this note. We
consider the measure λϕ defined by

λϕ = H#

((∫ T

0

u ∂tϕdt+ ū ϕ(0, ·)

)
L 2 {∇H = 0}

)
.

It is readily checked that λϕ � H#

(
L 2 {∇H = 0}

)
. We denote by λϕ(h) the

density of λϕ with respect to H#

(
L 2 {∇H = 0}

)
, i.e.

λϕ = λϕ(h)H#

(
L 2 {∇H = 0}

)
.
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Moreover, for every η ∈ L1(R, H#L 2), we have

λη(H)ϕ = η(h)λϕ(h)H#

(
L 2 {∇H = 0}

)
.

We now perform the Lebesgue decomposition of H#

(
L 2 {∇H = 0}

)
into the

absolutely continuous and the singular (with respect to L 1) parts:

H#

(
L 2 {∇H = 0}

)
=
[
H#

(
L 2 {∇H = 0}

)]a(h)L 1

+
[
H#

(
L 2 {∇H = 0}

)]s
.

Going back to (3.3), using Lemma 3.1 and the notation introduced we obtain,
for every η ∈ L1(R, H#L 2),

(3.4)

∫
R
η(h)λϕ(h)d

[
H#

(
L 2 {∇H = 0}

)]
(h)

+
∫ T

0

∫
R
η(h)

[∫
Eh

u

|∇H|
(
∂tϕ+ b · ∇ϕ

)
dH 1

]
dh dt

+
∫

R
η(h)

[∫
Eh

ū

|∇H|
ϕ(0, ·) dH 1

]
dh = 0 .

The arbitrariness of the function η ∈ L1(R, H#L 2) in (3.4) then gives the following:
(i) for L 1-a.e. h ∈ R we have

(3.5)
λϕ(h)

[
H#

(
L 2 {∇H = 0}

)]a(h)

+
∫ T

0

∫
Eh

u

|∇H|
(
∂tϕ+ b · ∇ϕ

)
dH 1dt+

∫
Eh

ū

|∇H|
ϕ(0, ·) dH 1 = 0 ;

(ii) for
[
H#

(
L 2 {∇H = 0}

)]s-a.e. h ∈ R we have

(3.6) λϕ(h) = 0 .

4. The weak Sard property

We see from equation (3.5) that the dynamics in {∇H 6= 0} and in {∇H = 0}
could be coupled: this can actually happen, as shown in the examples constructed
in [2]. This means that we can have interactions between the areas in which the
velocity is zero and the ones in which it is nonzero. In order to separate the two
dynamics we need the following weak Sard property of the Hamiltonian.

Definition 4.1. - We say that H ∈ Lipc(R2) satisfies the weak Sard property
if

(4.1) H#

(
L 2 {∇H = 0}

)
⊥ L 1 .

Using the notation introduced in the previous section this means that[
H#

(
L 2 {∇H = 0}

)]a(h) = 0 for L 1-a.e. h ∈ R.

The connection with the classical Sard theorem (see for instance Theorem 3.4.3
of [23]) is evident: here we are requiring that the “image” (via the push-forward
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through H) of the Lebesgue measure L 2 restricted to the set of the critical points
{∇H = 0} is “not seen” by the Lebesgue measure L 1 in the codomain.

Assuming the weak Sard property we can separate the two dynamics, hence
from equations (3.5) and (3.6) we deduce the following result.

Theorem 4.2. - Let b ∈ L∞(R2; R2) with compact support and assume that
div b = 0. Let H ∈ Lipc(R2) be as in (1.3) and assume that H satisfies the weak
Sard property (4.1). Let u ∈ L∞([0, T ]× Rd) be a weak solution of (1.1). Then we
have

(4.2)
∫ T

0

∫
Eh

u

|∇H|
(
∂tϕ+ b · ∇ϕ

)
dH 1dt+

∫
Eh

ū

|∇H|
ϕ(0, ·) dH 1 = 0

for L 1-a.e. h ∈ R and

(4.3)
∫ T

0

∫
{∇H=0}

u ∂tϕdx dt+
∫
{∇H=0}

ū ϕ(0, ·) dx = 0 .

Notice that (4.3) gives u(t, x) = ū for L 1⊗L 2-a.e. (t, x) ∈ [0, T ]×{∇H = 0}.
This means that, thanks to the weak Sard property, the uniqueness for the Cauchy
problem (1.1) is equivalent to the uniqueness for the “reduced problems” (4.2) on
the level sets, for L 1-a.e. h ∈ R. The issue of the uniqueness on the level sets is
discussed in Section 6.

5. Structure of the level sets

In this section we give a detailed description of the structure of the level sets

Eh = {x ∈ R2 : H(x) = h} .

We first notice, by the continuity of H and by the assumption of compactness of
the support, that for every h 6= 0 the set Eh is compact. Moreover, an application
of the coarea formula in the form given in (3.2) gives

(5.1)
∫
Eh

1
|∇H|

dH 1 < +∞ for L 1-a.e. h ∈ R.

In particular, since |∇H| ≤ ‖b‖∞, this yields

H 1(Eh) < +∞ for L 1-a.e. h ∈ R.

For every h ∈ R, we denote by Ch the family of all the connected components C of
Eh such that H 1(C) > 0 (in fact, these are just the connected components which
contain more than one point).

We collect together in the following theorem all the results relative to the clas-
sification of the level sets. For the proof we refer to [2]. See the end of the first
section for the notion of rectifiable set.

Theorem 5.1. - Let H ∈ Lipc(R2). For L 1-a.e. h ∈ R the following statements
hold.

(i) Eh is H 1-rectifiable and H 1(Eh) < +∞; the map H is differentiable
in x and ∇H 6= 0 at H 1-a.e. x ∈ Eh; the function 1/|∇H| belongs to
L1(Eh,H 1).

(ii) The family Ch is countable and H 1 (Eh \ ∪C∈Ch
C) = 0.
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(iii) Every C ∈ Ch is a closed simple curve. More precisely, it is possible to find
a Lipschitz injective parametrization γ : [α, β]∗ → C such that

(5.2) γ̇(s) = ∇⊥(γ(s)) for L 1-a.e. s ∈ [α, β]∗,

where we denote by [α, β]∗ the quotient space consisting of the interval [α, β]
with identified endpoints, endowed with the distance

dist [α,β]∗(x, y) = min
{
|x− y|, (β − α)− |x− y|

}
.

We will also need the following topological lemma.

Lemma 5.2. - Let h ∈ R such that the conclusions of Theorem 5.1 hold. Then,
for every C ∈ Ch, there exists a decreasing sequence {Un} of bounded open sets in
R2 such that ∂Un ∩ Eh = ∅ for every n and Eh ∩ (∩nUn) = C.

6. Uniqueness on the level sets and conclusion of the proof

We first show, using Lemma 5.2, that equation (4.2) can be separated into a
family of equations on the connected components of each level set.

Proposition 6.1. - Let b ∈ L∞(R2; R2) with compact support and assume that
div b = 0. Let H ∈ Lipc(R2) be as in (1.3) and assume that H satisfies the weak
Sard property (4.1). Let u ∈ L∞([0, T ]×Rd) be a weak solution of (1.1). Then, for
every C ∈ Ch, for L 1-a.e. h ∈ R, we have

(6.1)
∫ T

0

∫
C

u

|∇H|
(
∂tϕ+ b · ∇ϕ

)
dH 1dt+

∫
C

ū

|∇H|
ϕ(0, ·) dH 1 = 0 .

Proof. - We fix h ∈ R such that the conclusions of Theorems 4.2 and 5.1 hold.
We choose a sequence {Un} as in Lemma 5.2. Since ∂Un and Eh are compact sets
we have

dist (∂Un, Eh) = εn > 0 .

Thus we fix a standard convolution kernel ρ with spt ρ ⊂ B1(0) and for every n we
set

γn(x) = 1Un
∗ ρεn/4(x) ,

where we denote with 1Un
the characteristic function of the set Un. We rewrite

equation (4.2) with the test function ϕ(t, x)γn(x). We have

0 =
∫ T

0

∫
Eh

u

|∇H|

(
∂tϕγn + b · ∇

(
ϕγn

))
dH 1dt+

∫
Eh

ū

|∇H|
ϕ(0, ·)γn dH 1

=
∫ T

0

∫
Eh∩Un

u

|∇H|
(
∂tϕ+ b · ∇ϕ

)
dH 1dt+

∫
Eh∩Un

ū

|∇H|
ϕ(0, ·) dH 1 .

We now let n→∞ in the above equality. Recalling (5.1) and applying the Lebesgue
dominated convergence theorem we eventually obtain (6.1).

We are now in the position to formulate and prove our main result.

Theorem 6.2. - Let b ∈ L∞(R2; R2) with compact support and assume that
div b = 0. Let H ∈ Lipc(R2) be as in (1.3) and assume that H satisfies the weak
Sard property (4.1). Then, for every initial data ū ∈ L∞(R2), the Cauchy problem
(1.1) has a unique solution u ∈ L∞([0, T ]× R2).
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We remark that from this theorem it also follows a well-posedness result for the
ordinary differential equation (1.2). In this low regularity context, existence and
uniqueness for the ODE are proved (via some well-established abstract arguments,
starting from the uniqueness result for the PDE, see for instance [7]) in the context
of the so-called regular Lagrangian flows, i.e. roughly speaking ODE flows that
“compress the trajectories in a uniformly controlled way”.

Proof of Theorem 6.2. - The existence is obtained by a standard regulariza-
tion technique, see for instance [7]. To show the uniqueness, by linearity it suffices
to show that the only solution u ∈ L∞([0, T ]×R2) with initial data ū ≡ 0 is u ≡ 0.
Recalling the discussion at the end of Section 4 and the result of Proposition 6.1,
it is enough to show that, for every C ∈ Ch, for L 1-a.e. h ∈ R, the validity of∫ T

0

∫
C

u

|∇H|
(
∂tϕ+ b · ∇ϕ

)
dH 1dt = 0

for every ϕ(t, x) ∈ Lipc([0, T [×R2) implies

(6.2) u(t, x) = 0 for L 1 ⊗H 1-a.e. (t, x) ∈ [0, T ]× C.

We proceed in several steps.

Step 1. Parametrization of C. - We fix h ∈ R such that the conclusions
of Theorem 5.1 and of Proposition 6.1 hold. Using the result in Theorem 5.1(iii)
we know that every C ∈ Ch is a closed simple curve and we choose a Lipschitz
injective parametrization γ : [α, β]∗ → C which satisfies (5.2). Hence from (6.1)
(with ū ≡ 0) we get

(6.3)
∫ T

0

∫ β

α

u(t, γ(s))
(

(∂tϕ)(t, γ(s)) + b(γ(s)) · (∇ϕ)(t, γ(s))
)
ds dt = 0

for every ϕ ∈ Lipc([0, T [×R2). We set

(6.4) ϕ̃(t, s) = ϕ(t, γ(s)) .

Differentiating both sides of (6.4) with respect to s we get

∂sϕ̃(t, s) = (∇ϕ)(t, γ(s)) · γ̇(s) = (∇ϕ)(t, γ(s)) · (∇⊥H)(γ(s)) ,

and this implies

(6.5) b(γ(s)) · (∇ϕ)(t, γ(s)) = (∇⊥H)(γ(s)) · (∇ϕ)(t, γ(s)) = ∂sϕ̃(t, s) .

Setting ũ(t, s) = u(t, γ(s)) and inserting (6.5) in (6.3) we obtain

(6.6)
∫ T

0

∫ β

α

ũ
(
∂tϕ̃+ ∂sϕ̃

)
ds dt = 0

for every ϕ̃ : [0, T ] × [α, β]∗ → R of the form ϕ̃(t, s) = ϕ(t, γ(s)) for some ϕ ∈
Lipc([0, T [×R2).

Step 2. Test functions in [0, T ] × [α, β]∗. - We notice that, up to now,
we cannot see (6.6) as a distributional equation on [0, T ]× [α, β]∗: indeed, we are
allowed to use as test functions only the particular ϕ̃’s of the form above. However,
the following lemma from [2] holds.
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Lemma 6.3. - Every ψ ∈ Lipc([0, T [×[α, β]∗) can be approximated uniformly
with a sequence of functions {ϕ̃n} of the form above and such that Lip(ϕ̃n) is
equi-bounded.

This means that we can write (6.6) with ϕ̃ = ϕ̃n for every n and passing to the
limit we get

(6.7)
∫ T

0

∫ β

α

ũ
(
∂tψ + ∂sψ

)
ds dt = 0

for any ψ ∈ Lipc([0, T [×, [α, β]∗). This is now a distributional equation on [0, T ]×
[α, β]∗.

Step 3. Uniqueness on C. - Now it suffices to notice that (6.7) is the distri-
butional form of the Cauchy problem

(6.8)
{
∂tũ+ ∂sũ = 0 ,
ũ(0, ·) = 0 .

By the smooth theory for the transport equation (see [7]) we know that the only
solution to this problem is ũ ≡ 0. From the definition of ũ we see that this precisely
implies (6.2), thus we have shown the desired thesis.

We close this note by presenting two particular cases in which the weak Sard
property (4.1) is satisfied by the function H ∈ Lipc(R2) associated to b as in (1.3)
and thus the uniqueness result of Theorem 6.2 holds. See [2] for the proof.

Corollary 6.4. - Let b ∈ L∞(R2; R2) with compact support and assume that
div b = 0 and that b is approximately differentiable L 2-a.e. in R2. Then, for
every initial data ū ∈ L∞(R2), the Cauchy problem (1.1) has a unique solution
u ∈ L∞([0, T ]× R2).

We observe that the approximate differentiability assumption on b in Corol-
lary 6.4 is of “qualitative” type, in contrast with the usual “quantitative” weak
regularity assumptions, for instance Sobolev or BV . In the second corollary we
deal with the case in which we assume a control on the distributional curl of the
vector field.

Corollary 6.5. - Let b ∈ L∞(R2; R2) with compact support and assume that
div b = 0 and that the distributional curl of b is a measure. Then, for every initial
data ū ∈ L∞(R2), the Cauchy problem (1.1) has a unique solution u ∈ L∞([0, T ]×
R2).
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