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Abstract: We prove that the space BV (Rn) of functions with bounded variation on R
n has the

bounded approximation property.
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Introduction

Given an integer n ≥ 1, BV (Rn) denotes the Banach space of real functions
with bounded variation on R

n, namely the functions u in L1(Rn) whose distri-
butional gradient Du is a bounded (vector-valued) Radon measure. As usual,
‖u‖BV := ‖u‖1 + ‖Du‖, where ‖Du‖ is the total variation of the measure Du.

A Banach space F has the bounded approximation property if for every ε > 0
and every compact set K ⊂ F one can find a finite-rank operator T from F
into itself with norm ‖T‖ ≤ C, where C is a finite constant which depends only
on F , so that ‖Ty− y‖F ≤ ε for every y ∈ K (cf. [4], Definition 1.e.11). In this
definition, it is clearly equivalent to consider only sets K which are finite and
contained in a prescribed dense subset of F .

We prove the following:

Theorem 1. - The space BV (Rn) has the bounded approximation property.

Remarks. - (i) The operators T given in our proof are projections.
(ii) The result can be extended to the space BV (Rn, Rk) of BV functions

valued in R
k, as well as the corresponding Banach spaces on over the complex

scalars. Moreover, it holds for the space BV (Ω, Rk) of BV functions on an
open subset Ω of R

n with the extension property, namely when there exists a
bounded extension operator from BV (Ω) to BV (Rn). This class includes all
bounded open sets Ω with Lipschitz boundary. We do not know if the result
holds for Ω an arbitrary open set.

(iii) A careful analysis of the proof of Theorem 1 shows that for every
separable subspace X of BV (Rn) there is a sequence (Pk) of commuting finite
rank projections from BV (Rn) into itself with uniformly bounded norms such



  

2 G. Alberti et al. BV has the bounded approximation property 3

that Pkf → f in BV (Rn) for every f ∈ X. Moreover there is a separable
subspace Y of BV (Rn) with a Schauder basis which contains X.

Specific aspects of Banach space theory and approximation theory of these
spaces have been recently studied in [3], [7] (non linear approximation by Haar
polynomial, boundedness of some averaging projections), and [6] (failure of
lattice structure). Theorem 1 provides further information on Banach space
properties of spaces of functions of bounded variation.
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Proof of the result

Let us fix some notation:
�

n is the Lebesgue measure on R
n and � d is the

d-dimensional Hausdorff measure.

Let µ be a positive measure on R
n, D a Borel set, and f : R

n → R
k a

function whose restriction to D is µ-summable; if 0 < µ(D) < ∞, we denote
by fµ,D := (

∫

D
f dµ)/µ(D) the average of f on D with respect to the measure

µ. We set fµ,D := 0 when µ(D) = 0. If µ is the Lebesgue measure we simply
write fD. Since no confusion may arise, we denote by 1A the characteristic
function of a set A in R

n (and not the average of 1 on A).

Given a finite Borel measure λ on R
n, real- or R

k-valued, |λ| is the variation
of λ, while λa and λs are the absolutely continuous and the singular part of λ
with respect to the Lebesgue measure. Given a positive locally finite measure
µ on R

n, dλ
dµ

is the Radon-Nikodým derivative of λ with respect to µ; so dλ
dµ

is
defined even if λ is not absolutely continuous with respect to µ, in which case
it is the Radon-Nikodým derivative of the absolutely continuous part of λ with
respect to µ. Note that λ 7→ λa and λ 7→ λs are bounded linear operators from
the space of measures � (Rn) into itself, while λ 7→ dλ

dµ
is a bounded linear

operator from � (Rn) into L1(µ).

If u is a BV function, we write Dau and Dsu for the absolutely continuous
and the singular part of the measure Du. We denote by BVloc(R

n) the class
of all functions on R

n which belong to BV (A) for every bounded open set
A ⊂ R

n; in this case |Du| is a locally finite Borel measure on R
n. We will need

the following scaled version of Poincaré inequality (cf. [2], Remark 3.50): for

every open cube Q in R
n and every u ∈ BV (Q) there holds

∫

Q

|u − uQ| d
� n ≤ C diam(Q) |Du|(Q) . (1)

The letter C denotes any constant that might depend only on the dimension
of the space n; the actual value of C may change at every occurrence.

Lemma 2. - Let � be a locally finite family of pairwise disjoint open cubes
Q in R

n whose closures cover R
n. If u is a function in BVloc(R

n) with average
0 on each cube Q ∈ � then

‖Du‖ ≤ C|Du|(Ω)

where Ω is the the union of all Q ∈ � .

Proof. - We must show that |Du|(E) ≤ C|Du|(Ω) for E := R
n \Ω. Since

the covering � is locally finite, E is the union of all boundaries ∂Q with Q ∈ � .
Thus E is an (n − 1)-rectifiable set, and the restriction of the measure |Du|
to E is given by |Du| E = |tr+E(u) − tr−E(u)|� n−1 E, where tr+E(u) and
tr−E(u) are the traces of u on the two sides of E with respect to some choice of
orientation for E, and � n−1 E denotes the restriction of the measure � n−1

to the set E (see [2], Theorem 3.77). Hence

|Du|(E) =

∫

E

|tr+E(u) − tr−E(u)| d� n−1

≤

∫

E

|tr+E(u)| + |tr−E(u)| d� n−1

=
∑

Q∈�

∫

∂Q

|tr−∂Ω(u)| d� n−1

≤
∑

Q∈�
C |Du|(Q) = C |Du|(Ω) .

The inequality in the fourth line is obtained as follows. For every open cube Q
with size 1 in R

n and every u ∈ BV (Q) there holds

‖tr−∂Ω(u)‖L1(∂Q) ≤ C‖u‖BV (Q)

by the continuity of the trace operator, cf. [2], Theorem 3.87 (here L1(∂Q)
stands, as usual, for L1(� n−1 ∂Q)). If in addition u has average 0 on Q
then ‖u‖L1(Q) ≤ C|Du|(Q) by (1), and therefore

‖tr−∂Ω(u)‖L1(∂Q) ≤ C|Du|(Q) .
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Since the last inequality is scaling invariant, it holds for cubes of any size.

Definition 3. - Let µ be a locally finite, positive measure on R
n, and let

� be a countable family of pairwise disjoint, bounded Borel sets. We denote
by Ω the union of all D ∈ � and set

σ := sup
{

diam(D) : D ∈ �
}

(2)

and, for every map f ∈ L1(µ, Rk),

Uf :=
∑

D∈�
fµ,D 1D . (3)

Lemma 4. - (a) The operator U defined in (3) is a bounded linear operator
from L1(µ, Rk) into L1(µ, Rk) with norm ‖U‖ = 1.

(b) Given a sequence of coverings �i, define Ωi, σi, and Ui accordingly.
If σi → 0 as i → +∞, then (Uif − 1Ωi

f) → 0 in L1(µ, Rk) for every f in
L1(µ, Rk), that is

∑

D∈�i

∫

|f − fµ,D| dµ → 0 . (4)

Proof. - Statement (a) is immediate. To prove statement (b), we remark
that since the operators Ui and the truncation operators f 7→ 1Ωi

f are uni-
formly bounded, it suffices to show that (Uif − 1Ωi

f) → 0 for f in a suitable
a dense subset of L1(µ, Rk). For instance, we can take f continuous and com-
pactly supported, and then (4) is an immediate consequence of the uniform
continuity of f .

Definition 5. - Fix ū in BV (Rn) and set µ := |Dū|. Given a locally finite
family � of mutually disjoint open cubes Q whose closures cover R

n, we define
σ as in (2), and for every u ∈ BV (Rn) we set

T 1u(x) :=
∑

Q∈�
uQ 1Q(x)

T 2u(x) :=
∑

Q∈�

[ dDu

d
�

n

]

Q
· (x − xQ) 1Q(x)

T 3u(x) :=
∑

Q∈�

[dDsu

dµ
·
dDū

dµ

]

µ,Q
(ū(x) − ūQ) 1Q(x)

(here xQ is the center of Q, i.e., the average of the identity map x 7→ x over Q,
and the dot “ · ” stands for the usual scalar product in R

n). Finally we set

Tu := T 1u + T 2u + T 3u . (5)

Lemma 6. - (a) The operator T defined in (5) is a bounded linear operator
from BV (Rn) into itself with norm ‖T‖ ≤ C(1 + σ). If in addition Daū = 0,
then T is a projection.

(b) Given a sequence of families �i of cubes which satisfy the assumptions
of Definition 5, we define σi and Ti accordingly, and if σi → 0 as i → +∞,
then Tiu → u in L1(Rn) for every u ∈ BV (Rn). If in addition Dsu is of the
form Dsu = f · Dū with f a scalar function, then Tiu → u in BV (Rn).

Proof. - We first prove (a). The following estimates are immediate:

‖T 1u‖1 ≤ ‖u‖1 (6)

‖T 2u‖1 ≤ σ‖Dau‖ (7)

‖T 3u‖1 ≤ Cσ‖Dsu‖ (8)

(for the second estimate we use that |x−xQ| ≤ diam(Q) ≤ σ and for the third
that

∫

Q
|ū − ūQ| ≤ C σ |Dū|(Q) by estimate (1)). Estimates (6, 7, 8) imply

‖Tu‖1 ≤ ‖u‖1 + Cσ‖Du‖ . (9)

In order to estimate ‖D(Tu)‖ we notice that Tu and u have the same average
on every cube Q ∈ � , and therefore we can use Lemma 2 to estimate the total
variation of D(Tu− u); denoting by Ω the union of the open cubes Q ∈ � we
obtain

‖D(Tu)‖ ≤ ‖Du‖ + ‖D(Tu − u)‖

≤ ‖Du‖ + C |D(Tu − u)|(Ω)

≤ (1 + C)‖Du‖ + C |D(Tu)|(Ω)

≤ (1 + C)‖Du‖ + C
∑

Q∈�
|D(T 2u)|(Q) + |D(T 3u)|(Q) . (10)

Since T 2u is affine on Q and its gradient is the average of dDu
d� n over Q, we have

|D(T 2u)|(Q) =

∣

∣

∣

∣

[ dDu

d
�

n

]

Q

∣

∣

∣

∣

� n(Q) ≤

∫

Q

∣

∣

∣

dDu

d
�

n

∣

∣

∣
d
� n ≤ |Du|(Q) .

The gradient of T 3u on Ω agrees with Dū times the average of the scalar
product of dDsu

dµ
and dDū

dµ
with respect to the measure µ = |Dū|, and since

∣

∣

dDū
dµ

∣

∣ = 1 µ-almost everywhere,

|D(T 3u)|(Q) =

∣

∣

∣

∣

[dDsu

dµ
·
dDū

dµ

]

µ,Q

∣

∣

∣

∣

µ(Q) ≤

∫

Q

∣

∣

∣

dDsu

dµ

∣

∣

∣
dµ ≤ |Du|(Q) .
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Hence (10) becomes
‖D(Tu)‖ ≤ C‖Du‖ . (11)

Estimates (9) and (11) imply the first part of statement (a).
Concerning the second part, assume that Daū = 0. Notice that T 1, T 2, T 3

are mutually commuting projections, thus T is a projection, and its range is the
direct sum of the ranges of T 1, T 2, T 3, namely the space of all BV functions
whose restriction to each Q ∈ � agrees with a linear combination of ū and an
affine function.

Let us prove statement (b). Inequality (1) yields

‖T 1
i u − u‖1 =

∑

Q∈�i

∫

Q

|u − uQ| d
� n ≤

∑

Q∈�i

Cσi |Du|(Q) ≤ Cσi ‖Du‖ ,

and recalling estimates (7), (8) we get

‖Tiu − u‖1 ≤ ‖T 1
i u − u‖1 + ‖T 2

i u‖1 + ‖T 3
i u‖1 ≤ Cσi ‖Du‖ ,

which tends to 0 as σi → 0. To prove the second part of statement (b), we
denote by Ωi the union of all cubes Q ∈ �i, and estimate ‖D(Tiu − u)‖ using
Lemma 2 again and taking into account that D(T 1

i u)(Q) = 0 for every Q ∈ �i:

‖D(Tiu − u)‖ ≤ C |D(Tiu − u)|(Ωi)

= C
∑

Q∈�i

|D(Tiu) − Du|(Q)

≤ C
∑

Q∈�i

|D(T 2
i u) − Dau|(Q) + |D(T 3

i u) − Dsu|(Q) . (12)

Setting g := dDu
d� n = dDau

d� n , we have D(T 2
i u) = gQ

�
n on each Q ∈ �i, and

then

|D(T 2
i u) − Dau|(Q) =

∫

Q

|gQ − g| d
� n . (13)

Since Dsu = fDū, a simple computation yields D(T 3
i u) = fµ,QDū on each

Q ∈ �i, and then

|D(T 3
i u) − Dsu|(Q) =

∫

Q

|fµ,Q − f | d|Dū| . (14)

Finally (12, 13, 14) yield

‖D(Tiu − u)‖ ≤ C
∑

Q∈�i

[
∫

Q

|g − gQ| d
� n +

∫

Q

|f − fµ,Q| dµ

]

.

By (4) both sums at the right-hand side of this inequality vanish as σi → 0,
and the proof of statement (b) is complete.

Lemma 7. - Let uj be a sequence of functions from BV (Rn). Then there
exists ū ∈ BV (Rn) such that Daū = 0, and for every j, Dsuj can be written
in the form Dsuj = fjDū for some scalar function fj ∈ L1(|Dsū|).

Proof. - This result is essentially contained in [1], but not explicitly stated
there. In the following proof, all numbered statements and definitions are taken
from [1]; we omit to recall the full statements.

Let µ :=
∑

j αj |Dsuj |, where the αj are positive numbers chosen so to
make the series converge. Let E(µ, x) ⊂ R

n be the normal space to µ at every
x ∈ R

n in the sense of Definition 2.3, namely a Borel map which takes every
x ∈ R

n into a linear subspace E(x) of R
n, satisfies dDu

dµ
(x) ∈ E(x) for µ-a.e. x

and every u ∈ BV (Rn), and is µ-minimal with respect to inclusion.

It follows immediately that
dDsuj

dµ
(x) ∈ E(µ, x) for µ-a.e. x and every j,

and then E(µ, x) contains non-zero vectors for µ a.e. x. Then we can choose
a Borel map f ∈ L1(µ, Rn) so that f(x) ∈ E(µ, x) and f(x) 6= 0 for µ-a.e. x
(cf. Proposition 2.11), and since µ is a singular measure, we can also assume
that f(x) = 0 for

�
n-a.e. x. Set now µ′ := µ +

�
n. By Proposition 2.6(iii),

f(x) ∈ E(µ′, x) for µ′-a.e. x, and we can apply Theorem 2.12 to f and µ′ to
obtain a BV function ū such that

dDū

dµ′
(x) = f(x) for µ′-a.e. x.

Since f(x) = 0 for
�

n-a.e. x, then Dū is singular, and since f(x) 6= 0 for
µ-a.e. x, then µ ¿ |Dū|. In particular |Dsuj | ¿ |Dū| for every j.

Finally, by Theorem 3.1 the space E(µ, x) has dimension at most 1 for every

x because µ is a singular measure, and since both
dDuj

dµ
(x) and dDū

dµ
(x) belong

E(µ, x), then they must be parallel for µ-a.e. x.

The following lemma is well-known (see, for instance, [2, Corollary 3.89],
[5, Section I.8, Theorem 2], [7 ,Proposition 5]):

Lemma 8. - Let Q be any open cube in R
n with edge-length r ≥ 1, and let

UQ be the associated truncation operator, that is, UQu := 1Q u. UQ is a linear
projection on BV (Rn) with norm bounded by some universal constant C.

Proof of Theorem 1. - Let be given ε > 0 and a finite set K = {uj} of
BV functions with compact support in R

n.
Take ū as in Lemma 7. Take a sequence of families �i of cubes which satisfy

the assumptions of Definition 5, so that σi ≤ 1 and σi → 0 as i → +∞ (cf. (2)),
and consider the corresponding operators Ti. By Lemma 6 these operators are
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projections, their norms ‖Ti‖ are bounded by a universal constant, and there
is i so large that ‖Tiuj − uj‖BV < ε for every j.

However, Ti has not finite rank. To solve this problem, we choose an open
cube Q which contains the support of all uj , take UQ as in Lemma 8, and set
T := UQTi. If we have chosen Q so that every cube in �i which intersects Q
is actually contained in Q, then T is a projection, too.
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00956 Warszawa, Poland (e-mail: olek@ma.amimpan.gov.pl).

David Preiss: Department of Mathematics, University College London, Gower Street, London
WC1E 6BT, UK (e-mail: dp@ma.ammath.ucl.ac.uk).


