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BV has the bounded approximation property
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Abstract: We prove that the space BV (R") of functions with bounded variation on R™ has the
bounded approximation property.
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Introduction

Given an integer n > 1, BV (R™) denotes the Banach space of real functions
with bounded variation on R™, namely the functions u in L!(R") whose distri-
butional gradient Du is a bounded (vector-valued) Radon measure. As usual,
lullsv := ||u|lx + || Dul||, where ||Dul| is the total variation of the measure Du.

A Banach space I has the bounded approximation property if for every e > 0
and every compact set K C F one can find a finite-rank operator T from F
into itself with norm ||T'|] < C, where C is a finite constant which depends only
on F', so that | Ty — y||r < € for every y € K (cf. [4], Definition 1.e.11). In this
definition, it is clearly equivalent to consider only sets K which are finite and
contained in a prescribed dense subset of F.

We prove the following:

THEOREM 1. - The space BV (R™) has the bounded approximation property.

REMARKS. - (i) The operators T' given in our proof are projections.

(ii) The result can be extended to the space BV (R™, R¥) of BV functions
valued in R¥, as well as the corresponding Banach spaces on over the complex
scalars. Moreover, it holds for the space BV (2, R¥) of BV functions on an
open subset ) of R™ with the extension property, namely when there exists a
bounded extension operator from BV (€2) to BV(R™). This class includes all
bounded open sets Q) with Lipschitz boundary. We do not know if the result
holds for Q an arbitrary open set.

(iii) A careful analysis of the proof of Theorem 1 shows that for every
separable subspace X of BV (R™) there is a sequence (Py) of commuting finite
rank projections from BV (R™) into itself with uniformly bounded norms such
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that Pyf — f in BV(R"™) for every f € X. Moreover there is a separable
subspace Y of BV (R™) with a Schauder basis which contains X.

Specific aspects of Banach space theory and approximation theory of these
spaces have been recently studied in [3], [7] (non linear approximation by Haar
polynomial, boundedness of some averaging projections), and [6] (failure of
lattice structure). Theorem 1 provides further information on Banach space
properties of spaces of functions of bounded variation.
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Proof of the result

Let us fix some notation: .£" is the Lebesgue measure on R” and #¢ is the
d-dimensional Hausdorff measure.

Let i be a positive measure on R, D a Borel set, and f : R® — RF a
function whose restriction to D is p-summable; if 0 < u(D) < oo, we denote
by fup = (fD fdu)/u(D) the average of f on D with respect to the measure
p. We set f, p := 0 when p(D) = 0. If p is the Lebesgue measure we simply
write fp. Since no confusion may arise, we denote by 14 the characteristic
function of a set A in R” (and not the average of 1 on A).

Given a finite Borel measure A on R", real- or R¥-valued, || is the variation
of A\, while A\, and \s are the absolutely continuous and the singular part of A
with respect to the Lebesgue measure. Given a positive locally finite measure
won R™ % is the Radon-Nikodym derivative of A with respect to yu; so % is
defined even if X is not absolutely continuous with respect to u, in which case
it is the Radon-Nikodym derivative of the absolutely continuous part of A with
respect to . Note that A — A\, and A — A, are bounded linear operators from

the space of measures . (R"™) into itself, while A — 92 is a bounded linear

dp
operator from . (R") into L' (p).

If w is a BV function, we write D,u and Dsu for the absolutely continuous
and the singular part of the measure Du. We denote by BVj,.(R™) the class
of all functions on R™ which belong to BV (A) for every bounded open set
A C R™; in this case |Dul is a locally finite Borel measure on R"”. We will need
the following scaled version of Poincaré inequality (cf. [2], Remark 3.50): for

BV HAS THE BOUNDED APPROXIMATION PROPERTY 3

every open cube @ in R™ and every u € BV (Q) there holds
[ 1u- ugl iz < € diam(@) IDul(@) M)
Q

The letter C' denotes any constant that might depend only on the dimension
of the space n; the actual value of C' may change at every occurrence.

LEMMA 2. - Let & be a locally finite family of pairwise disjoint open cubes
Q in R™ whose closures cover R™. If u is a function in BVio.(R™) with average

0 on each cube Q € & then
[ Dul| < C[Dul(€2)

where §) is the the union of all Q € L.

PROOF. - We must show that |Du|(F) < C|Dul(Q) for F := R™\ Q. Since
the covering & is locally finite, F is the union of all boundaries 0Q) with @ € .
Thus E is an (n — 1)-rectifiable set, and the restriction of the measure |Dul
to E is given by |Du| L E = |tr},(u) — trg(u)| "1 L E, where tr},(u) and
tr;(u) are the traces of u on the two sides of E with respect to some choice of
orientation for E, and #" 1L E denotes the restriction of the measure J#" 1
to the set E (see [2], Theorem 3.77). Hence

Dul(E) = [ Jerp) = trp(a] ae!
< /E ()] + [ ()| doen !

-y /{9 (] dr

Qe

< > CIDu|(Q) = C|Dul() .

Qe

The inequality in the fourth line is obtained as follows. For every open cube @
with size 1 in R™ and every u € BV(Q) there holds

troq (w1 0g) < Cllullsv (@)

by the continuity of the trace operator, cf. [2], Theorem 3.87 (here L!(9Q)
stands, as usual, for L'(s#"~1 L 0Q)). If in addition u has average 0 on Q
then [lul|z1(g) < C|Du|(Q) by (1), and therefore

[trpq (w)|lL1ag) < ClDu|(Q) -
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Since the last inequality is scaling invariant, it holds for cubes of any size. O

DEFINITION 3. - Let u be a locally finite, positive measure on R", and let
Z be a countable family of pairwise disjoint, bounded Borel sets. We denote
by Q the union of all D € & and set

o :=sup {diam(D) : D € &} (2)

and, for every map f € L'(u, R¥),
Uf:: Z fu,D1D~ (3)

De2

LEMMA 4. - (a) The operator U defined in (3) is a bounded linear operator
from L*(u, R¥) into L'(u, R*) with norm ||U|| = 1.

(b) Given a sequence of coverings Z;, define Q;, o;, and U; accordingly.
If 5; — 0 as i — +oo, then (U;f — 1q,f) — 0 in L*(u,R¥) for every f in

L'(u,R¥), that is
> [15= funldu—0. (4)

De2;

PROOF. - Statement (a) is immediate. To prove statement (b), we remark
that since the operators U; and the truncation operators f — lg,f are uni-
formly bounded, it suffices to show that (U;f — 1, f) — 0 for f in a suitable
a dense subset of L'(u, R¥). For instance, we can take f continuous and com-
pactly supported, and then (4) is an immediate consequence of the uniform
continuity of f. O

DEFINITION 5. - Fix @ in BV(R") and set p := |Du|. Given a locally finite
family & of mutually disjoint open cubes @) whose closures cover R™, we define
o as in (2), and for every u € BV (R") we set

T 'u(x) := Z ug lg(x)

Qe
dDu
Tu(e) = Y g, (@~ 7a) o)
Qe
dDsu dDu
Tou(e) = Y|S0 S28  (ale) - g) lo(x)
Seo dp  dp Ipe
(here x¢ is the center of @, i.e., the average of the identity map « — z over @,
and the dot “ - ” stands for the usual scalar product in R™). Finally we set
Tu =T 'u+T?u+Tu . (5)
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ot

LEMMA 6. - (a) The operator T defined in (5) is a bounded linear operator
from BV (R™) into itself with norm |T| < C(1+ o). If in addition D,a = 0,
then T is a projection.

(b) Given a sequence of families &P; of cubes which satisfy the assumptions
of Definition 5, we define o; and T; accordingly, and if o; — 0 as i — —+o0,
then Tyu — u in L'(R™) for every u € BV(R™). If in addition Dsu is of the
form Dsu = f - Du with f a scalar function, then Tyu — u in BV(R™).

PROOF. - We first prove (a). The following estimates are immediate:

1T ully < Jlulls (6)
IT%ully < ol| Dul (7)
IT%ully < Co|| Dyul (®)

(for the second estimate we use that |z — zg| < diam(Q) < ¢ and for the third
that fQ |a — ug| < Co|Du|(Q) by estimate (1)). Estimates (6,7,8) imply

[Tully < [ully + Col[Dul| . 9)

In order to estimate || D(Tu)|| we notice that Tu and u have the same average
on every cube ) € &, and therefore we can use Lemma 2 to estimate the total
variation of D(Tu — u); denoting by Q the union of the open cubes Q € & we
obtain

[D(Tw)|| < [ Dul| + | D(Tu —w)||
< [[Dull + C'[D(Tu — u)| ()
< (1 + O)[Dull + C|D(Tu)|(2)
< (1+0)|Dul +C 3 IDT*u)[(Q) + [D(T*w)|(Q) - (10)
Qe

Since T?u is affine on Q and its gradient is the average of % over (), we have

D@ -|[557],| 2 @ < [ |55 |aen < ipuca).

The gradient of T3u on ) agrees with Du times the average of the scalar
product of %}j" and % with respect to the measure p = |Dul, and since

|%| = 1 p-almost everywhere,

D@ =| [ ] w@ < [ [ i< D)
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Hence (10) becomes
ID(Tw)|| < C||[Dul| . (11)
Estimates (9) and (11) imply the first part of statement (a).

Concerning the second part, assume that D, = 0. Notice that T, T?, T3
are mutually commuting projections, thus T is a projection, and its range is the
direct sum of the ranges of T, T2, T3, namely the space of all BV functions
whose restriction to each @ € & agrees with a linear combination of @ and an
affine function.

Let us prove statement (b). Inequality (1) yields

ITiu—ulli = 3 /|u—uQ|d.,s,ﬂn< S™ Co; |Dul(Q) < Co; | D,
QEP; QEZ;

and recalling estimates (7), (8) we get
| Teu — ully < 1T = ully + | T2ully + | TPully < Coy || Dul|

which tends to 0 as o; — 0. To prove the second part of statement (b), we
denote by €2; the union of all cubes @ € &7;, and estimate ||D(T;u — u)|| using
Lemma 2 again and taking into account that D(T}u)(Q) = 0 for every Q € Z;:

|D(Tiw — w)|| < C|D(Tyu — u)|(2:)
=C Y |D(Tu) - Dul(Q)
QeP;
<C Y |D(TPu) — Dul(Q) + |D(TPu) — Daul(Q) . (12)
QeP;

Setting g 1= 40% = 40st we have D(T?u) = go-#™ on each Q € Z;, and

then

D(T?u) — Dyul(Q / 9o — gl dL™ (13)

Since Dyu = fDii, a simple computation yields D(TPu) = fu,@Du on each
Q € &;, and then
DT = Dol(@) = [ 1fua 1D (14)

Finally (12,13, 14) yield

IDTu-wl<C Y [/Lq goldL™ + /|f fmw]

QeP;
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By (4) both sums at the right-hand side of this inequality vanish as o; — 0,
and the proof of statement (b) is complete. [

LEMMA 7. - Let u; be a sequence of functions from BV (R™). Then there
exists @ € BV (R"™) such that D,u = 0, and for every j, Dou; can be written
in the form Dsu; = f;Du for some scalar function f; € L*(|Dsal).

PROOF. - This result is essentially contained in [1], but not explicitly stated
there. In the following proof, all numbered statements and definitions are taken
from [1]; we omit to recall the full statements.

Let p := Zj a;|Dsu;|, where the a; are positive numbers chosen so to
make the series converge. Let E(u,z) C R™ be the normal space to p at every
x € R™ in the sense of Definition 2.3, namely a Borel map which takes every
x € R™ into a linear subspace E(z) of R™, satisfies %( x) € E(z) for p-a.e.
and every u € BV (R™), and is p-minimal with respect to inclusion.

It follows immediately that 2= u]( ) € E(u,x) for p-a.e. z and every j,
and then FE(u,x) contains non-zero vectors for p a.e. . Then we can choose
a Borel map f € L*(u, R™) so that f(z) € E(u,z) and f(z) # 0 for p-a.e. x
(cf. Proposition 2.11), and since p is a singular measure, we can also assume
that f(z) = 0 for £™-a.e. z. Set now u' := pu+ £™. By Proposition 2.6(iii),
f(z) € E(W/,x) for y'-a.e. x, and we can apply Theorem 2.12 to f and p’ to
obtain a BV function @ such that

T//(z) = f(z) for p'-a.e. x.
Since f(z) = 0 for Z"-a.e. x, then Du is singular, and since f(z) # 0 for
p-a.e. x, then p < |Dal. In particular |Dsu,| < |Da| for every j.
Finally, by Theorem 3.1 the space F(u, ) has dimension at most 1 for every
d?:j (x) and %(m) belong
E(u,x), then they must be parallel for p-a.e. z. O

The following lemma is well-known (see, for instance, [2, Corollary 3.89],
[5, Section 1.8, Theorem 2|, [7 ,Proposition 5]):

LEMMA 8. - Let Q be any open cube in R™ with edge-length r > 1, and let
Ugq be the associated truncation operator, that is, Ugu := 1lgu. Ug is a linear
projection on BV (R™) with norm bounded by some universal constant C.

PROOF OF THEOREM 1. - Let be given € > 0 and a finite set K = {u;} of
BV functions with compact support in R™.

Take @ as in Lemma 7. Take a sequence of families &Z; of cubes which satisfy
the assumptions of Definition 5, so that ; < 1 and 0; — 0 as i — +oo (cf. (2)),
and consider the corresponding operators 7;. By Lemma 6 these operators are
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projections, their norms ||T;|| are bounded by a universal constant, and there
is i so large that || Tyu; — u;||pv < € for every j.

However, T; has not finite rank. To solve this problem, we choose an open
cube @) which contains the support of all u;, take Ug as in Lemma 8, and set
T := UgQT;. If we have chosen @ so that every cube in &; which intersects @
is actually contained in @), then T is a projection, too. [
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