
 

A variational convergence result for functionals
of Ginzburg-Landau type in any dimension (*)

Giovanni Alberti

Abstract. – We describe an approach via Γ-convergence to the asymptotic behaviour of
(minimizers of) complex Ginzburg-Landau functionals in any space dimension, sum-
marizing some results of a joint research with S. Baldo and G. Orlandi [3], [4].

Summary. – The asymptotic behaviour of solutions of certain variational

elliptic equations depending on a parameter, or, better, of the minimizers of

the associated energy functionals, can be studied by defining a suitable limit

variational problem, e.g. using the notion of Γ-convergence. In collaboration

with S. Baldo (**) and G. Orlandi (***) (cf. [3], [4]), we have followed this

approach to study the asymptotics of minimizers of functionals of Ginzburg-

Landau type in any dimension, namely

Fε(u) :=

∫
|∇u|2 +

1

ε2
W (u),

where u is defined on a regular domain in R
n and takes values in R

2, and

W (u) is a positive potential vanishing when |u| = 1 only. We have obtained

that in the limit ε → 0 the minimizers of Fε, or better the corresponding

Jacobians, converge in a suitable sense to a minimal surface of codimension

two.

The asymptotics of these functionals has been been object of extensive

research in recent years, a from the results of F. Bethuel, H. Brezis, and F.

Hélein in dimension two (cf. [9]), to the recent results of T. Riviére, F.-H.

Lin, E. Sandier and others in higher dimension (cf. [21], [25], [26]). One

of the relevant features of the variational approach we follow is the almost

immediate reduction of the problem to two space dimensions, which underlines

the essentially bidimensional nature of this problem. From this viewpoint,

(*) Note presented at the XVI Congress of the Italian Mathematical Union. En-
glish version of the paper “Un risultato di convergenza variazionale per funzionali di tipo
Ginzburg-Landau in dimensione qualunque”, appeared on Boll. Un. Mat. It. B (8), 4
(2001), 289-310.

(**) Dipartimento di Matematica, Università della Basilicata, 85100 Potenza.

(***) Dipartimento Scientifico e Tecnologico, Università di Verona, 37100 Verona.
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it is important to keep in mind the analogy with scalar Ginzburg-Landau

functionals, or Cahn-Hilliard functionals, the equivalent of our convergence

result in that case being the well-known theorem of L. Modica and S. Mortola

(cf. [22], [23], [24]). Variational convergence results similar to ours have been

also the object of an independent research by R. Jerrard and H.M. Soner [18].

The basic problem. – We are interested in the asymptotic behaviour in

the limit ε → 0 of minimizers uε of

Fε(u) :=

∫
|∇u|2 +

1

ε2
W (u) (1)

where

◦ u : Ω ⊂ R
n → R

2, n ≥ 2, and |∇u| is the euclidean norm of the matrix

∇u,

◦ W (u) is a positive potential which vanishes for |u| = 1 only.

Notice that Fε vanishes for all constant functions of modulus one, and there-

fore we get non-trivial minimizers only under some additional constraint, typ-

ically on the boundary values. However, it is usually assumed that the actual

nature of these constraints is essentially unrelevant, at least for the qualitative

features of solutions we are looking for.

Some variants. – The above mentioned problem admits many variants

and generalizations, not all of which can be directly reduced to the original

problem. Among these, I would like to mention the following:

◦ u : Ω ⊂ R
n → R

k with n ≥ k, and Fε(u) is given by (1)

Fε(u) :=

∫
|∇u|p +

1

ε2
W (u); (2)

◦ Fε is defined for sections of fiber bundles on a manifold, instead of

functions on a domain of R
n (cf. [6], [25]);

◦ the null set of W has a more complicated topology than the sphere Sk−1;

◦ some additional terms appears in (1) (as for most functionals derived by

physical models);

◦ the term
∫
|∇u|2 in (1), or

∫
|∇u|p in (2), is replaced by an anisotropic

integral of the gradient, or by a non-local term (interaction energy) like
∫∫

J(x′ − x)|u(x′) − u(x)|2 dx′ dx, (3)

suitably rescaled in ε.

(1) More precisely, for p = 2 and k = 1 we obtain the so-called scalar G.-L.

functionals, or Cahn-Hilliard functionals, while for p = 2, k = 2 we obtain the

complex G.-L. functionals, namely those given in (1).

Motivations. – There are two different orders of reasons to consider this

kind of singular perturbation problems. From a strictly mathematical view-

point, it has been observed long ago that scalar G.-L. functionals, namely

those defined in (2) for k = 1 and p = 2, approximate the perimeter func-

tional, and the corresponding minimizers converge to sets of minimal perime-

ter (see Theorem 3 and following remarks). By analogy, one would expect

that for arbitrary k the functionals in (2) approximate, in some sense, the

area functionals for surfaces of codimension k, that is, of codimension two

in the case of the complex G.-L. functionals in (1). A rigorous proof of this

statement is the main goal of our research.

From a different viewpoint, minimizers of (1) in dimension two with pre-

scribed boundary value g can be used to study harmonic maps from Ω into

S1 when there exist no maps from Ω into S1 with trace g on the boundary

and finite energy (2).

Finally, functionals of type (1) were used to model phase separation in

certain fluids (cf. [11] (3)), phase transitions in superconductors or in certain

superfluids (cf. [13], [14] (4), see also [15] for a more mathematical viewpoint),

and several other physical phenomena as well (5).

(2) For instance, when Ω is the unit disk B2 in the plane and the degree of

g : ∂B2 = S1 → S1 is not 0. The obstruction is topological: the maps in the

Sobolev space W 1,2(B2, S1), although not necessarily continuous, behave like

continuous ones under many aspects. The reason is that p = 2 is the critical

exponent for Sobolev immersion in dimension two; indeed the picture changes

completely for maps in W 1,2(B3, S2), like, for example, x/|x|. For this and

related questions, see [10], [8].

(3) In this case u is a scalar order parameter which represents the relative

density of the two phases of the fluid at every point, so that the values +1

and −1 correspond to the presence of only one phase (pure states). Thus

the part of the energy Fε given by the potential W prefers the pure states

±1 (phase separation), while the gradient term penalizes the variation of u

(surface tension); the energy is minimized keeping the volumetric fraction

of the phases fixed, that is, prescribing the average of u (not the boundary

values).

(4) In both cases u is a complex order parameter; instead of a constraint

on the boundary values, there is an additional term in the energy, which

corresponds in the second case to the energy contribution due to an applied

magnetic field. The behaviour of minimizers of these functionals cannot be

really deduced form that of minimizers of (1), but has been studied by similar

methods.

(5) Functionals like
∫
|∇∇u|2 + ε−2W (∇u) have been recently proposed in

a model for “blisters” induced in thin films by compression of the substrate;
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In all these cases the parameter ε represents a length with a precise physical

meaning, usually very small with respect to all other relevant parameters; for

this reason it makes sense to study the behaviour of minimizers in the limit

ε → 0 instead of a fixed ε.

A simple computation in the scalar case. – Now I present a simple

computation which gives a certain understanding of the behaviour of minimiz-

ers of Fε. We begin with the scalar G.-L. functionals, subject to the volume

constraint
∫

u = m, where m is a fixed number between −1 and 1 (cf. Note

3).

In this case, the second term in Fε prefers functions u with values close to

±1, while the first term penalizes the variation of u. For small ε, the second

term prevails, and the minimizer uε will take values close to ±1. On the other

hand, both the phase {uε ' +1} and the phase {uε ' −1} are not empty

because of the constraint on the average of u, and are separated by a thin

layer T where u makes the transition of from −1 to +1.

uε≈+1
uε≈−1

 Ω
 S

T = δ-intorno di S

Figure 1

Assuming that W (uε) is negligible out of T , T is a δ-neighborhood of an

hypersurface S depending on ε (cf. Fig. 1), and thus the gradient of uε is of

order 1/δ in T , we can give a rough estimate of Fε(uε):

∫
|∇uε|

2 +
1

ε2
W (uε) ∼

( 1

δ2
+

1

ε2

)
· vol(T ) ∼

( 1

δ2
+

1

ε2

)
δ · area(S)

(where “vol” and “area” stand for the n- and (n − 1)-dimensional measures,

respectively). The last term can be optimized by taking δ ∼ ε, so that

Fε(uε) ∼
1

ε
area(S). (4)

We deduce that for ε → 0 the transition layer of the minimizer uε has thickness

of order ε, while S minimizes the area among all admissible surfaces, namely

those which divide Ω into two parts Ω+ and Ω− which satisfy the volume

there are moreover strong similarities with the energies used to model certain

liquid crystals, or in micromagnetics, in particular for ferromagnetic films (cf.

[19]).

constraint vol(Ω+) − vol(Ω−) = m vol(Ω). In other words, the minimizers uε

converge to a function u with values ±1 which satisfy the volume constraint∫
u = m, and minimizes the area of the interface between the phases {u = +1}

and {u = −1}.

Even if obtained through very rough approximations, this conclusion is

essentially correct, and can be easily confirmed by a more accurate formal

asymptotic expansion (6). However, even if more accurate, this methods is

still based on some a priori assumption (e.g., that the transition layer T is

more or less a δ-neighborhood of some regular surface S). On the other hand,

a rigorous proof of this statement was given by L. Modica and S. Mortola

(cf. [22], [23], [24]), who found the limit in the sense of Γ-convergence of the

functionals Fε.

Γ-convergence and Modica-Mortola theorem. – It is now the right

moment to briefly recall recall the notion of Γ-convergence, in a suitably

simplified version (cf. [2], see [12] for a more detailed exposition).

Definition 1. Let X be a metric space, and Fε : X → [0, +∞] a sequence

(6) Indeed formula (4) suggest an expansion Fε(uε) = ε−1Ψ(S) + o(ε−1),

where Ψ(S) is of the order of the area of S. This does not necessarily imply

that Ψ(S) agree up to a constant factor with area(S)—even though this looks

extremely reasonable for isotropy reasons—and therefore it is not correct to

deduce the minimality of S from this expansion. The lack of accuracy in (4)

is essentially due to the fact that we replaced |∇u| by a rough estimate of

the Lipschitz constant of u inside the transition layer T . We can obtain a

more precise expansion assuming that uε is of the form uε(x) = φ(ε−1dS(x)),

where φ : R → [−1, 1] is an unknown function with limits ±1 at ±∞, dS is

the oriented distance from an unknown surface S, while the term ε−1 takes

into account the fact that the thickness of the transition layer T is of order ε.

Then

Fε(uε) =
1

ε

[ ∫

R

|φ′|2 + W (φ)
]
· area(S) + O(1).

The minimum of the integral between square brackets is achieved when φ

agrees up to translations with the solution of the Cauchy problem φ(0) = 0,

φ′ = W 1/2(φ)—namely the Euler-Lagrange equation 2φ′′ = W ′(φ), suitably

integrated—and is equal to σ := 2
∫

R
W 1/2(φ) φ′ = 2

∫ 1

−1
W 1/2; hence

Fε(uε) =
σ

ε
area(S) + O(1).

This particular φ is called optimal profile for the phase transition, and plays

a fundamental rôle also in the proof of Theorem 3 (cf. [2]).
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of lower-semicontinuous functions. We say that Fε Γ-converges to F when

the following conditions are verified (7):

◦ ∀x ∈ X, ∀xε → x there holds lim inf
ε→0

Fε(xε) ≥ F (x);

◦ ∀x ∈ X, ∃xε → x such that lim
ε→0

Fε(xε) = F (x).

Moreover, we say that the functions Fε are equi-coercive when the following

compactness condition is verified:

◦ if Fε(xε) ≤ C < +∞, then the sequence (xε) is pre-compact in X.

One easily derive from this definition the following fundamental property

of Γ-convergence.

Proposition 2. If Fε −→
Γ F on X, also the corresponding minimal values

(or the infima of values) converge. If in addition xε is a minimizer of Fε for

every ε, and x is a limit point of xε, then x is a minimizer F .

Hence the asymptotic behaviour of minimizers of a sequence of functionals

Fε (on some function space X) can be at least partly understood by mean

of the Γ-limit of Fε. It must be pointed out that the knowledge of the Γ-

limit gives some information on the behaviour of minimizers only if they are

pre-compact in X. This requirement plays an essential rôle in the choice of

the topology on X, and consequently also on the shape of the Γ-limit (8), and

explains the importance, together with Γ-convergence, of the compactness

condition given in Definition 1.

Finally, the Γ-limit F must be non-trivial: if it is, for instance, identically

equal to some constant, then every point would be a minimizer, which gives no

information on the limit points of minimizers of Fε. To this regard, notice that

scaling the functionals Fε by suitably chosen positive constants (depending on

ε) does not affect minimizers, but can change significantly the Γ-limit. One

typically looks for a rescaling such that the minimal values converge neither

to 0 nor to +∞.

Going back to scalar G.-L. functionals, in the previous paragraph we ob-

tained an expansion like Fε(u) ∼ ε−1 · area(S) (cf. formula (4) and Note 6);

this suggests that, provided we rescale Fε by a factor ε, the Γ-limit is finite

(7) Called respectively Γ-liminf and Γ-limsup inequalities. Together, they

are equivalent to the convergence in the sense of Kuratowski of the epigraphs

of Fε, viewed as closed sets in X × R.

(8) For instance, let φ be a periodic function on R bounded between two

positive constants, then the Γ-limit of Fε(u) :=
∫ 1

0
φ(t/ε)|u̇|2dt on the space

W 1,2
g (0, 1) of Sobolev functions with boundary values g depends on whether

the metric on W 1,2
g (0, 1) is induced by the W 1,2-norm or by the L2-norm.

Yet, only the second one ensures the required compactness of minimizers.

only on those functions u = such that |u| = 1 a.e., and in that case is propor-

tional to the area of the interface between the phases {u = +1} and {u = −1},

that is, the area of the singular set Su. Indeed the following theorem holds

(cf. [22], [23], [24]):

Theorem 3. The rescaled functionals εFε are equi-coercive on L1(Ω), and

Γ-converge to

F (u) :=

{
σ · area(Su) if |u| = 1 a.e.,

+∞ otherwise,
(5)

where σ is the constant 2
∫ 1

−1
W 1/2 (cf. Note 6).

It follows from this result (9) and Proposition 2 that the minimizers of

Fεunder the usual volume constraint converge to minimizers of F , that is,

functions u with values ±1 which satisfy the volume constraint
∫

u = m and

minimize the area of the interface between the phases.

Remark 4. A comment is required at this point: as F is formulated in

(5), it is well-defined on functions u with values ±1, the singular set of which

is a sufficiently regular surface of codimension one. On the other hand, our

variational approach is based on compactness in L1, and therefore assumes

that F is defined for every measurable function u : Ω → ±1; but it is not

that clear what the area of the singular set of such a function should be, or,

equivalently, what the perimeter of a generic measurable set (like {u = +1})

should be (10). In this case, the right concept is the perimeter in the sense of

Caccioppoli of {u = +1} within Ω, that is, half of the total variation
∫
|Du|

of the distributional derivative of u. This also corresponds to the (Hausdorff)

(n − 1)-dimensional measure of the set of essential singularities of u, namely

the points where u has no approximate limit.

(9) More precisely, from the same Γ-convergence statement on the space X

of all u ∈ L1(Ω) which satisfy the volume constraint
∫

u = m. Notice that this

is not an immediate corollary of Theorem 3, since in general Γ-convergence

is not inherited to subspaces (the Γ-limsup inequality may no longer holds).

However, in this case switching from one space to the other requires only

minimal modifications in the proof.

(10) Indeed, whichever notion of (n−1)-dimensional measure we adopt, if we

define the perimeter of a set in R
n simply as the (n−1)-dimensional measure of

the topological boundary, there would exist sets with infinite perimeter which

can be approximated by regular sets with uniformly bounded perimeters (for

instance, a disjoint union of balls Bi with radius 2−i the topological boundary

of which has positive Lebesgue measure). In other words, this perimeter is

not lower semicontinuous (e.g., with respect to the L1 metric), while we know

that F must be lower semicontinuous, as every Γ-limit.
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A simple computation in the complex case. – We consider now the

minimizers of complex G.-L. functionals when Ω is a simply connected do-

main in the plane, and the boundary values are given by a prescribed smooth

function g : ∂Ω → S1 of degree d > 0. For small ε, the second term in Fε

forces the minimizers uε to take values close to 1 in modulus. On the other

hand, for any positive ρ < 1, the set T where |uε| ≤ ρ cannot be empty: if it

were, the map uε/|uε| would be well-defined and continuous on Ω, and once

superimposed to an homotopy valued in Ω which takes ∂Ω to a point (which

must exist, because Ω is simply connected),it would produce an homotopy of

g to a constant (as maps from ∂Ω into S1), thus violating the invariance of

degree under homotopy (11).

Since the rôle of T is, in a sense, to make Ω \ T not simply connected (but

not necessarily disconnected, as it happens in the scalar case), it is reasonable

to assume at first that T is the union of a certain number of disks Ti with

radius δi on the boundary of which the degree of uε is di (cf. Fig. 2). Clearly∑
di = d.

corona circolare di 
raggio esterno R

|uε|≈1
 Ωdeg(uε,∂Ω,S1)=d

Ti , “singolarità” di 
grado di e raggio δi

Figure 2

To estimate the value of Fε(uε) we assume that |∇uε| is of order 1/δi within

each Ti, and that the contribution of W (uε) in Ω \ T is negligible. Since the

restriction of uε to any circle of radius r concentric with Ti is an S1-valued

map of degree di, the integral of the square of its tangential derivative must

be larger than 2πd2
i /r. Therefore we take the maximal R such that the disks

of radius R concentric with each Ti are disjoint and contained in Ω (cf. Fig.

2), and get

Fε(uε) ∼
∑

i

πδ2
i

( 1

δ2
i

+
1

ε2

)
+

∫ R

δi

2πd2
i

r
dr ∼ π

∑

i

1 +
δ2
i

ε2
− 2d2

i log δi.

Each addendum in the last term can be optimized by taking δi ∼ ε, so that

Fε(uε) ∼ 2π| log ε|
∑

i

d2
i ; (6)

finally, the sum
∑

d2
i can be optimized with respect to the constraint

∑
di = d

by taking di = 1 for every i. We infer that in the limit ε → 0 the transition

(11) The classical formulation of this argument requires the continuity of

uε, but it works as well for maps of class W 1,2 (cf. Note 2).

set of uε consists of d “singularities” of degree 1 and radius of order ε. In

other words, the minimizer uε converge to functions u : Ω → S1 which are

smooth (harmonic) out of d singular points of degree 1.

Even if these conclusions have been drawn on the basis of very rough es-

timates (12), they are essentially correct; a detailed analysis of the behaviour

of this minima, including rigorous proofs of these and other statements (13),

was provided in the fundamental monograph by F. Bethuel, H. Brezis, and F.

Hélein [9], to which the reader is also referred for an extensive bibliography

on the subject.

Passing to higher dimension. – We consider now the three-dimensional

case. Given a convex domain Ω, one typically consider minimizers of Fε with

prescribed boundary values gε, where gε : Ω → B2 are smooth functions with

modulus equal to 1 out of a finite number of “singularities” Ui of radius ε, with

center xi and degree di = ±1 independent of ε (since ∂Ω is simply connected,

the number of +1 singularities must equals that of −1’s).

Proceeding as in the previous paragraph, one quickly convince himself that

for small ε the minimizers uε have modulus close to 1 out of a transition set T

which looks approximately like an ε-neighborhood of a 1-manifold S (a finite

union of oriented curves) the boundary of which corresponds to the points xi

(cf. Fig. 3), and

Fε(uε) ∼ 2π| log ε| · length(S) (7)

(for the time being we do not consider the multiplicity which may arise in

connection with the degree of “winding” of u around S).

 S
 T

Ui“ singolarità” 
di grado −1

+1

+1 −1

Figure 3

(12) However, the expansion in (6), unlike the one in (4), is extremely pre-

cise; in fact, one could show that Fε(uε) = 2π| log ε|
∑

d2
i + O(1). This sur-

prising accuracy is due to the fact that the energy does not concentrate in the

transition set—that is, the disks Ti, where we used very drastic estimates—

but rather in the annuli around, where the estimates we used turn out to be

very precise. Thus in the complex case W does not appear in the expansion

(6), and for much the same reason there is not optimal profile to be found (cf.

Note 6).

(13) Cf. the comments following Theorem 10.
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Hence, we expect that uε converge (up to subsequences) to functions u :

Ω → S1 smooth (harmonic) out of a one-dimensional singular set S which

minimizes the length among all 1-manifolds with boundary given by the points

xi (with multiplicity taken into account).

Consequently one can’t help conjecturing that in any dimension the min-

imizers uε of the complex G.-L. functionals (under suitable boundary con-

straints) converge to functions u : Ω → S1 smooth (harmonic) out of a

codimension-two singular set S which minimizes the (n−2)-dimensional mea-

sure.

Indeed a result in this direction has been proved by F.H. Lin and T. Rivière

[21] (cf. also [25], [26]). The approach followed in this paper, like for almost all

papers on complex G.-L. functionals, consists essentially of a direct analysis

of the behaviour of minimizers uε.

The variational approach. – In collaboration with S. Baldo and G.

Orlandi, we have followed a different way, based on the analysis of the asymp-

totic behaviour of the functionals Fε rather than that of minimizers—that is,

we have given a theorem à la Modica-Mortola for the complex G.-L. function-

als (14). If several are the analogies between Γ-convergence in the complex

and in the scalar case, the differences are at least as many, and unfortunately

the relatively simple statement and proof of the Modica-Mortola theorem are

mirrored in the complex case by a less effective statement (compare Theorems

9 and 10 to Theorem 3) together with a definitely more complicated proof—

which perhaps partly explains the over twenty years since the first papers by

Modica and Mortola [22], [23].

In the following I will try to describe the main difficulties in giving a correct

formulation of the Γ-convergence theorem for complex G.-L. functionals, and

briefly sketch the crucial points of the proof. However, I will first quickly

comment upon our methodological choice.

It is worth noticing that once compactness and lower bound have been

proved in dimension two, they can be extended to higher dimension by a

very general “slicing” method; this underlines the intrinsically bidimensional

nature of this problem (see [2] for a description of this method for scalar

G.-L. functionals). On the other hand, no dimension-reduction principle (by

slicing or whatever) can be proved just for minimizers. More generally, unlike

the direct analysis of minimizers, which is usually based on very sharp and

specific elliptic estimates, the study of the Γ-limit of the functionals makes

only use of estimates which are very general, and under many regards more

elementary. For this reason proofs are less dependent on the specific form of

(14) The same approach has been proposed independently by R. Jerrard

and H.M. Soner [18].

the functional, and can be (more or less easily) adapted to different variants

of the original problem.

If Γ-convergence results are in a sense more “robust” than those obtained

by a direct analysis of minimizers, yet they are also inevitably weaker; for

instance, the compactness properties of minimizers is usually stronger than

what can be deduced by the equi-coercivity of functionals (cf. Note 22).

Optimal rescaling. – Prior to any Γ-convergence result is the choice of

optimal rescaling for the functionals under consideration. Estimates (6) and

(7) clearly suggest for Fε the rescaling | log ε|−1. Therefore we define Fε anew

as:

Fε(u) :=
1

| log ε|

∫
|∇u|2 +

1

ε2
W (u), (8)

with u : Ω ⊂ R
n → R

2, as usual.

Identifying the Γ-limit. – We already know that the Γ-limit F should

be finite only for functions u : Ω → S1, and in this case should agree up to

a factor 2π, with the (n− 2)-dimensional measure of the singular set Su (15),

counted with the right multiplicity. Thus F is clearly defined for functions

u which are smooth out of a codimension-two surface, but since this class

is not large enough to prove a compactness result for the minimizers uε, we

face a problem similar that already discussed in the scalar case (cf. Remark

4), namely, which is the appropriate notion of measure of the singular set for

maps from Ω into S1. At least in dimension two, a solution is provided by

the distributional Jacobian (cf. [7]).

Definition 5. Given a bounded function u = (u1, u2) : Ω ⊂ R
2 → R

2 of

class W 1,1, the Jacobian of u is the distribution

Ju :=
∂

∂x1

(
u1 ∂u2

∂x2

)
−

∂

∂x2

(
u1 ∂u2

∂x1

)
. (9)

One easily verify that Ju agrees with the usual det(∇u) for every function

of class C2, and indeed the same holds even for functions of class W 1,2. On

the other hand, for functions of class W 1,1, the determinant may be not well-

defined, while Ju always is, at least as a distribution; typical example is the

function x/|x|, which belongs to W 1,p
loc (R2) for every p < 2, and has Jacobian

equal to the Dirac mass π · δ0.

(15) The singular set cannot be empty because of the boundary conditions

imposed on Fε, which in the limit ε → 0 become a boundary constraint on

Su.
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Remark 6. If u : Ω → S1 is smooth out of a finite singular set S =

{xi} (16), then Ju is a measure of the form

Ju =
∑

i

πdi · δxi
, (10)

where di is the degree of the restriction of u to any circle which contains xi

and no other point of S. This yields the following general formula: given a

regular domain A relatively compact in Ω and such that ∂A ∩ S = ø

∫

A

Ju = π deg(u, ∂A, S1) = π link(∂A, S), (11)

where link(∂A, S) denotes the winding number of the curve ∂A around the

set of all points xi, counted with multiplicity di. Conversely, for a function

u : Ω → S1 such that Ju is a finite measure, Ju can re written as in (10)

for suitable xi ∈ Ω and di ∈ Z. Formula (11) still holds, provided that the

middle term is correctly interpreted.

This remark suggests that a good candidate for the Γ-limit F (u) in dimen-

sion two, is, up to a constant factor, ‖Ju‖, that is, the mass of Ju when it is

a finite measure, and +∞ otherwise. This functional is indeed lower semicon-

tinuous (17) and agrees for sufficiently regular maps with the total number of

singularities, (counted with multiplicity).

Definition 5 can be generalized to higher dimension introducing the notions

of form and current—cf. [27], Chapter 6 (18).

(16) Like, for instance, u(x) :=
∏

i(x − xi)
/
|x − xi|, where the product is

induced by the identification of R
2 and the complex field.

(17) With respect to the weak convergence in W 1,1; indeed it immediately

follows from (9) that Ju is a weakly continuous operator from W 1,1 into the

space of distributions.

(18) k-currents generalize oriented k-surfaces in much the same way distri-

butions generalize functions. In fact, they are usually defined as the dual of

the space of k-forms of class C∞

c , the action of a regular oriented k-surface

on such a form being given by integration. Are called integral all currents T

of the form

〈T ;ω〉 :=

∫

S

ξ · 〈ω; τ〉 · d
� k,

where S is a k-dimensional rectifiable set, i.e., it is covered by countably many

k-surfaces of class C1, τ is an orientation of S, namely a unitary (simple) k-

vector which identifies the tangent space to S at (almost) every point of S, ξ is

an integer multiplicity, and finally
� k denotes the (Hausdorff) k-dimensional

Definition 7. For a bounded function u = (u1, u2) : Ω ⊂ R
n → R

2 of

class W 1,1, the two-dimensional Jacobian is the 2-form (with distributional

coefficients)

Ju := d(u1 · du2) (12)

Moreover, we denote by ?Ju the (n − 2)-current without boundary (19) which

is obtained by the canonical identification ? of 2-covectors and (n− 2)-vectors

in R
n (20).

The class of all functions u : Ω ⊂ R
n → R

2 such that Ju is a Radon

measure has been introduced by R. Jerrard and H.M. Soner in [17], and called

B2V (Ω, R2) by analogy with the space BV (Ω) of functions with bounded

variation. In this context, S1-valued functions play a rôle similar to finite

perimeter sets within BV theory. In particular there holds a rectifiability

result, analogous to De Giorgi’s theorem for finite perimeter sets: given u :

Ω → S1 of class B2V , Ju is supported on a rectifiable set of codimension

two, and more precisely ?Ju is, up to a factor π, an integral current without

boundary in Ω—cf. Notes 18 and 19.

ξ=+2

ξ=−1

ξ=−3D A

x

link(∂A,S)=deg(u,∂A,S1)=−3 ξ(x):=deg(u,∂D,S1)=−3

ξ=+2S

Figure 4

Remark 8. For a better understanding, it is convenient to see what hap-

pens in dimension three. In this case ?Ju agrees with the vector product

measure. Within currents, integral ones represent in a sense the closure of

regular surfaces (more precisely, of polyhedral chains). If the current T is

represented by a measure (valued in k-vectors), its total variation ‖T‖ is

called mass; for integral currents it is just the k-dimensional measure of S,

counted with the multiplicity ξ

(19) As the distributional derivative is defined by the integration-by-parts

formula, so the boundary of a k-current T is defined via Stokes theorem,

namely by setting 〈∂T ;ω〉 := 〈T ; dω〉 for every (k− 1)-form ω of class C∞

c . In

this case ∂(?Ju) = 0 because d(Ju) = d2(u1 · du2) = 0, and d2ω = 0 of every

ω.

(20) More precisely, ? is defined by ?(dxi ∧ dxj) := (−1)i+je
îj

for every

i < j, where e
îj

stands for the (n − 2)-vector given by the wedge product of

all e1, . . . , en except ei and ej .
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∇u1 × ∇u2 for every u sufficiently regular (e.g. of class W 1,2); if u is an

S1-valued map which is smooth out of a 1-manifold S without boundary in

Ω (namely, the union of finitely many rectifiable curves in Ω with boundary

included in ∂Ω), then ?Ju is a singular vector measure supported on S of the

form

?Ju = πξ · τ ·
� 1 S, (13)

where
� 1 S denotes the restriction of (Hausdorff) 1-dimensional measure

to S, τ(x) is the tangent vector to S at x, and the multiplicity ξ(x) si given

by deg(u, ∂D, S1) where D is any embedded disk such that D ∩ S consist of

the point x only (21).

The functional ‖Ju‖, that is, ‖ ? Ju‖, is weakly lower semicontinuous on

W 1,1 (cf. Note 17) and agrees with the (n − 2)-dimensional measure of the

singular set of u when u is sufficiently regular (cf. (13)). Hence it is a good

candidate to Γ-limit of the functionals in (8) in every dimension (up to a

suitable factor).

The compactness problem. – We face now an essential difficulty: it is

possible to prove that the functionals Fε in (8) Γ-converge to a functional of

type F (u) := σ‖ ? Ju‖ with respect to the weak topology of W 1,1 (or some

more or less equivalent metric), but not to prove the coerciveness condition

in Definition 1.

Indeed a sequence (uε) such that Fε(uε) ≤ C < +∞, is at most weakly

compact in some Lp (22). On the other hand, the Γ-limit of Fε with respect to

any Lp metric (thus in the strong topology) is identically zero on all functions

u such that |u| = 1 a.e. (23), and is therefore meaningless, in the sense that it

yields no selection criteria for S1-valued functions.

(21) In particular, the following equivalent of formula (11) holds: if A is a

two-surface relatively compact in Ω and such that ∂A ∩ S = ø (cf. Fig. 4),

then
∫

A
η · ?Ju = π · deg(u, ∂A, S1) = π · link(∂A, S), where η is the unit

normal to A, and thus the first integral is the flux of Ju through A.

(22) For the sequence of minimizers uε there actually holds something more

(cf. [21]), but the proof is quite complicated, and it is deeply rooted in the

fact that uε solves a certain elliptic system—exactly the kind of difficulties

that the variational approach is supposed to bypass.

(23) In fact, every measurable function u : Ω → S1 is a.e. the pointwise

of a sequence of smooth functions uh : Ω → S1. In general
∫
|∇uh|

2 diverge

as h → +∞, but if we set uε := uh(ε), then Fε(uε) = | log ε|−1
∫
|∇uh(ε)|

2

is infinitesimal provided that h(ε) tends to +∞ slowly enough as ε → 0.

Everything changes if we consider the weak W 1,1 convergence: for instance,

the function x/|x| cannot be approximated by smooth S1-valued functions,

e.g., because the Jacobian of x/|x| is non-trivial, unlike that of any smooth

The Γ-convergence theorem, revised version. – If we think a sec-

ond about it, the lack of coercivity in a sufficiently strong topology is not

a surprise: if our conjecture on the Γ-limit of Fε is correct, a bound like

Fε(uε) ≤ C < +∞ can imply at most that the Jacobians Juε are uniformly

bounded in L1, which notoriously induce no compactness whatsoever for the

functions. This simply means that one cannot go for the compactness of

functions, but rather for that of Jacobians (24), and the Γ-convergence result

for the functionals Fε must be reformulated accordingly. Let us begin for

simplicity from the dimension two.

Theorem 9. Let Fε be given in (8) with n = 2. Then

◦ for every sequence (uε) such that Fε(uε) ≤ C < +∞, the functions Juε

converge flat (25) to measures µ of the form

µ =
∑

πdi · δxi
(14)

with xi ∈ Ω and di integer;

◦ for every µ of the form (14) and every (uε) such that Juε −→
flat µ, there

holds

lim inf
ε→0

Fε(uε) ≥ 2π
∑

|di| = 2‖µ‖; (15)

◦ for every µ of the form (14) there exists (uε) such that Juε −→
flat µ and

(15) holds with the limit instead of the lower limit, and the equality instead of

the inequality.

S1-valued function. The point is that convergence almost everywhere (un-

like weak W 1,1 convergence) is too weak to sense any kind of topological

obstruction—this is not unrelated to the fact that the Jacobian operator de-

fined in (9) and (12) is not continuous with respect to such a convergence.

(24) Here is the big difference between the vector and the scalar G.-L.

functionals: for the latter ones, the Γ-limit F (u) corresponds to the mass of

the distributional derivative Du (cf. Remark 4), and indeed a bound like

εFε(uε) ≤ C < +∞ (almost) implies that the gradients ∇uε are uniformly

bounded in L1, and consequently the functions uε are pre-compact in L1 by

Rellich theorem. I insist on “almost”: a bound on the energies does not

imply exactly a bound on the L1 norms of the derivatives in the scalar case,

nor of the Jacobians in the complex case. Indeed the Jacobians Juε are not

pre-compact in the weak topology of measures, but in the flat topology (cf.

Theorems 9 and 10), which is a source of many technical difficulties.

(25) That is, the integrals with respect to all test functions C1 converge;

this convergence is weaker than the usual weak convergence of measures, and

is of the same kind of the W−1,p convergence.
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In dimension larger than two we have:

Theorem 10. Let Fε be given in (8) with n ≥ 2. Then

◦ for every sequence (uε) such that Fε(uε) ≤ C < +∞, the currents ?Juε

converge flat, up to a factor π, to codimension-two integral currents T without

boundary in Ω (cf. Notes 18 and 19);

◦ for every current T as above, and every (uε) such that ?Juε −→
flat T , there

holds

lim inf
ε→0

Fε(uε) ≥ 2π‖T‖, (16)

where ‖T‖ is the mass of T ;

◦ for every current T as above, there exists (uε) such that ?Juε −→
flat πT and

(16) holds with the limit instead of the lower limit, and the equality instead of

the inequality.

Consequence of the Γ-convergence theorem and remarks. – If

the functions uε converge weakly in W 1,1 to some u : Ω → S1, then the current

T is ?Ju. Once this is understood, it is not difficult to recognize the last two

statements of Theorem 10 (or 9) as a Γ-liminf and a Γ-limsup inequality, with

‖ ? Ju‖ replaced by ‖T‖. Even so, a suitable modification of Proposition 2

holds, yielding to conclusions of this kind: if the functions uε minimize Fε

under the boundary constraints described above, then the Jacobians ?Juε

converge (up to a factor π) to an integral current T of codimension two which

locally minimizes the mass (or area), and the energies Fε(uε) converge to 2π

times the mass of T (i.e.,
∫

S
|ξ|d
�

n−2; cf. Note 18). The last statement

can be localized, yielding a concentration result for the energies: the rescaled

energy densities eε associated to the minimizer uε, namely the integrand in

(8) with uε instead of u, converge in the sense of measures to 2π|ξ|·
� n−2 S.

The relevance of these results in dimension two is very limited. In fact, in

that case we simply obtain that the Jacobians of minimizers uε converge to

a measure µ of the form (14), which minimizes the mass among those with

integral equal to d (the degree of the boundary datum). Thus µ minimizes∑
|di| under the constraint

∑
di = d, which simply means that all di have

same sign. But we already know from the analysis in [9] that the degrees di,

not only have all the same sign, but are also all equal to +1 (or −1), and

the corresponding singularities xi are located in order to minimize the energy

associated to a certain repulsive potential, which tends to make the distance

of a singularity from another, or from the boundary, as large as possible. The

point is that our Γ-limit represents only the main term in the expansion of Fε

(the one of order | log ε| for the original functionals in (1)). In dimension two

this is not sufficient to determine uniquely the behaviour of minimizers uε; in

particular it does not take into account the repulsion of singularities (which

is due to a lower order term). In higher dimension the situation is different:

unless the geometry of the domain Ω is very special, the criterion of minimal

area usually gives a finite number of integral currents, if not only one, and

provides therefore a good description of the behaviour of minimizers. Let us

consider, for instance, the following situation: Ω is a right cylinder in R
3 of

the form x2 +y2 < 1, 0 < z < 1, and we require that uε agrees on the vertical

part of the boundary S1 × (0, 1) with a given smooth function independent of

the z variable, namely g : S1 → S1 with degree d > 1.

Ω Ω'

Figure 5

From the Γ-convergence result we can only infer that the limit T of the

Jacobians ?Juε is an integral 1-current which minimizes the mass among those

whose boundary consists of d Dirac masses on the top face of the cylinder, and

−d on the bottom—in other words T is the union of d vertical segments in any

possible location (cf. Fig. 5). However, a reduction to the two-dimensional

case shows that the locations of the segments are not at all arbitrary, but

minimize a specific repulsive potential.

On the other hand, if we replace Ω with a cylinder Ω′ with slightly concave

top face, e.g., setting 0 < z < 1− δ(1−x2−y2) instead of 0 < z < 1, then the

minimality criterion determines a unique T , namely a vertical segment located

at the center of the cylinder, thus joining the points of minimal distance

between the top and bottom faces, with multiplicity d.

This difference between dimension two and higher is also seen in the asymp-

totic behaviour of solution of the parabolic equation associated to G.-L. func-

tionals (suitably rescaled in time): in dimension large than two we get, in the

limit ε → 0, an evolution by mean curvature of the singularity, which is the

gradient flow of the (n−2)-dimensional measure (cf. [5]). On the other hand,

in dimension two the gradient flow of the 0-dimensional measures would leave

the singular points still, while their evolution is actually determined by the

repulsive potential mentioned above, and therefore it is completely different

from any kind of curvature-driven evolution (cf. [20]).

To conclude, I shortly comment on the possible generalizations of Theorem

10. If we consider the functionals Fε defined in (2) for R
k-valued functions,

one immediately sees that the problems becomes relevant for p ≥ k, namely

when the functions of class W 1,p do not allow for topological singularities

of codimension k (26). In this case it is reasonable to expect (for a suitable

rescaling) a result similar to Theorem 10. Yet there should be a remarkable

(26) Given p < k and a boundary datum g : ∂Ω → Sk−1, the Γ-limit of
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difference between the case p > k and the limit case p = k. Indeed, for p > k

the energy of minimizers concentrates in the transition zone, and not in a

neighborhood (cf. Note 12), and the right constant in front of ‖T‖ in the

equivalent of (16) is determined by an optimal profile problem very close to

the one which gives the constant σ in Theorem 3 (cf. Note 6). On the other

hand, the case p = k should be essentially equivalent to the one of complex

G.-L. functionals.

Finally, it is not clear what should happen for k > 1 when the integral of

the gradient in (2) is replaced by a non-local interaction energy of the form

(3); so far it is only known that in the scalar case there holds a Γ-convergence

result similar to Theorem 3 (cf. [1]).

Compactness and Γ-liminf inequality. – I briefly sketch now the idea

of the proof of the compactness statement in Theorem 9. For the sake of

simplicity, I only consider the two-dimensional case, and in addition I assume

that the potential W is radially symmetric, i.e., is of the form W (|u|).

Let be given functions uε such that Fε(uε) ≤ C < +∞, and denote

by eε the corresponding energy density, namely eε := | log ε|−1
[
|∇uε|

2 +

ε−2W (|uε|)
]
. For every ε let us fix a positive δ = δε, infinitesimal for ε → 0,

and choose a 1-dimensional grid R = Rε with size δ (cf. Fig. 6) so that

Fε(uε) =

∫

Ω

eε ≥ δ

∫

R

eε. (17)

The first remark is that if δ À ε| log ε| then |uε| converge to 1 uniformly

on R (27). From this point on, we consider only the values of ε such that

Fε is simply
∫
|∇u|p for all functions ∈ W 1,p

g (Ω, Sk−1), and +∞ elsewhere,

and unlike what happens for p ≥ k, this class is not empty for any datum g

sufficiently regular, i.e., in the trace space W 1−1/p,p.

(27) The bound on the energies and (17) imply that
∫

R
W (|uε|) → 0, and

since W vanishes only in 1, the functions |uε| converge to 1 in measure on R;

to obtain the uniform convergence it suffices to prove that the oscillation of

|uε| on R tends to 0. We set vε := |uε|, and denote by v′ε the derivative of vε

in the direction tangent to the grid R. Then (17) yields

C ≥ δ

∫

R

eε ≥
δ

| log ε|

∫

R

|v′ε|
2 +

1

ε2
W (vε) ≥

δ

ε| log ε|

∫

R

2W 1/2(vε) |v
′

ε|

where the last step follows by applying the inequality a2 + b2 ≥ 2ab with

a := |v′ε| and b := ε−1W 1/2(vε). Denoting by H a primitive of 2W 1/2, we get

C ≥
δ

ε| log ε|

∫

R

|(H(vε))
′| ≥

δ

ε| log ε|
osc(H(vε), R).

|uε| ≥ 1/2 on R. Then we can talk about the degree di of uε on the boundary

of any cell Di of the grid, meaning di := deg(uε/|uε|, ∂Di, S
1).

 xi Di

R
δ

Figure 6

The second remark, which follows by a very nice estimate of R. Jerrard

[16], is that for δ À ε, the energy inside each cell Di must be not less than

2π|di| in the limit ε → 0 (28), and then

C ≥ Fε(uε) ≥ 2π
∑

i

|di| − o(1). (18)

Thus we set µε :=
∑

i πdi · δxi
, where xi is the center of the cell Di (and

therefore depends on ε, like di and Di), and obtain a bounded sequence of

measures whose limit points (in the weak topology) are measures µ of the

form (14).

Notice that the integral of Juε on each Di is equal to πdi+o(1) because |uε|

converge uniformly to 1 on R. Therefore the integral of Juε and µ on every

cell of the grid R is (almost) the same. Since the grid gets finer and finer as

ε → 0, one can prove that these two sequences of measures are asymptotically

equivalent in the flat metric, and then (Juε) has the same limit points as

(µε). Finally, (18) implies the Γ-liminf inequality (15), while the extension to

higher dimension can be obtained by slicing.

The Γ-limsup inequality. – To prove the Γ-limsup inequality in dimen-

sion two (last statement of Theorem 9) it suffices to take uε as follows (29)

uε(x) := φ(ε−1dS(x)) · u(x)

where dS(x) is the distance of x from the set S := {xi}, φ : [0,+∞] → [0, 1]

is any smooth function such that φ(0) = 0 and φ(t) = 1 for t ≥ 1, and

u : Ω → S1 is any map asymptotically equivalent to [(x − xi)/|x − xi|]
di at

Then, if δ À ε| log ε|, the oscillation of H(vε) on R tends to 0, and the same

happens to vε = |uε| because H is strictly increasing.

(28) Only a suitable refinement of this statement is actually true.

(29) This approximating sequence gives the right value of the energy only

for those measures µ such that di = ±1 for every i. However, this is enough,

because these measures are dense in the class of all µ of type (14).
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any xi, namely a map with Jacobian equal to µ (cf. Remark 6); for instance

one can take (cf. Note 16)

u(x) :=
∏

i

[ x − xi

|x − xi|

]di

.

The first step in the proof of the Γ-limsup inequality in higher dimension

(last statement of Theorem 10) consists in finding a function u such that

?Ju = πT , where T = ξ · τ ·
� n−2 S is any integral current without

boundary (cf. Note 18).

If we assume for simplicity that the support S is an oriented surface of

codimension two without boundary, and the multiplicity ξ is identically 1,

our task becomes finding an S1-valued map u, smooth in the complement of

S, such that (cf. Note 21)

deg(u, γ, S1) = link(γ, S) for every closed curve γ s.t. γ ∩ S = ø.

Such u can be written as u = eiθ, where θ is a smooth function from the

complement of S into R/2πZ the differential of which is a 1-form ωS satisfying

∫

γ

ωS = 2π link(γ, S) for every closed curve γ s.t. γ ∩ S = ø. (19)

Since every 1-form ωS which fulfills (19) is integrable, in the sense that it

agrees with the differential of a map valued into R/2πZ, we just need to

exhibit one.

To begin with, we remark that link(γ, S) is (by definition) the degree of the

restriction γ × S of the canonic map Φ which takes (x, y) ∈ R
n × R

n, x 6= y,

into (x − y)/|x − y| ∈ Sn−1. On the other hand, the degree of Φ times the

(n − 1)-dimensional measure of the sphere Sn−1, is, by the area formula, the

integral on γ × M of the pull-back ω of the volume form on Sn−1 according

to Φ. Hence

vol(Sn−1) · link(γ, S) =

∫

γ×S

ω =

∫

γ

[ ∫

S

ω(x, y) dy
]
dx.

Thus the 1-form defined by the integral between square brackets satisfies, up

to a constant factor, condition (19). Therefore we set

ωS(x) :=
2π

vol(Sn−1)

∫

S

ω(x, y) dy.

Finally one can check that the function u obtained from ωS has the features

required to construct the approximating sequence uε.
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