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ABSTRACT

Let F (u) =
∫ 1

0
f(u, u′) dt be a weakly lower semicontinuous autonomous

functional defined for all functions u : [0, 1] → R
n in the Sobolev space W 1,p.

We show that under suitable hypotheses F agrees with the relaxation of the
same functional restricted to regular functions, i.e., that for every function
u there exist regular functions uh such that uh → u in the W 1,p norm and
F (uh) → F (u).

1991 AMS Subject Classification: 49J45

1. Introduction

When dealing with minimization problems related to variational integrals, the
following problem arises: let T be a topological space of weakly differentiable func-
tions, X a sequentially dense subset of regular functions, and F : T → [0,∞] a
sequentially lower semicontinuous (integral) functional; then the infima of F on the
sets T and X may not agree, i.e.,

inf
u∈T

F (u) < inf
u∈X

F (u) . (1.1)

When this happen, we say that a Lavrentiev phenomenon occurs, after the name of
M. Lavrentiev, who gave in 1926 the first example of such behaviour in [L], where T
is the space of all absolutely continuous functions u on the interval [a, b] such that
u(a) = α, u(b) = β, X is the subset of all functions of class C1, F is an integral

functional of the form F (u) =
∫ b

a
f(t, u, u′) dt, and (1.1) holds for suitable f , α, β.

On the other hand, the Lavrentiev phenomenon is forestalled if we replace F
with the relaxed functional F : T → [0,∞] given by

F (u) = inf
{

lim inf
h→∞

F (uh) : (uh) ⊂ X, uh → u
}

. (1.2)
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It is easy to verify that F agrees with F on X and

inf
u∈T

F (u) = inf
u∈X

F (u) . (1.3)

Then it is natural to study when F and F agree on the whole T : in general we
have that F ≥ F on T and it may happen that equality does not hold. In this case
we say that F has a gap from X to T . We remark that when there is no gap, by
(1.3) there is no Lavrentiev phenomenon. Moreover, since F is lower semicontinuous,
equality F (u) = F (u) holds if and only if there exists a sequence (uh) ⊂ X such that
F (uh) → F (u) (and we say that (uh) approximates u in energy) and uh → u in T .

Typically, these problems have been studied when T is a subset of a Sobolev
space W 1,p(Ω, Rn) endowed with the weak topology or the Lp strong topology, X
is a subset of regular functions, and F is a variational integral of the form F (u) =
∫

Ω
f(x, u, Du) dx, where Ω is an open subset of R

h, p ≥ 1, h and n are positive

integers, and f : Ω × R
n × R

h×n → [0,∞].
Many results are available in this case, giving examples of gap and Lavrentiev

phenomenon, or showing that under suitable assumptions on the integrand f , they
never occur (many examples and references may be found in [D], section 3.4.3, [DA]
and [BuM], see [BaM] and [BuM] for the case h = 1, n ≥ 1, [S], [Bu], [DA], [CEDA]
and [CPSG] for the case h ≥ 1, n = 1, [AM], [BCL] and [GMS] for the case h, n ≥ 1).

In this paper we consider the case of one-dimensional autonomous functionals,
i.e., h = 1, n ≥ 1, T = W 1,p(I, Rn) with I =]0, 1[ and

F (u) =

∫

I

f(u, u′) dt .

In particular we show that under very mild assumptions on f there is no gap from
the set X of all Lipschitz functions on I, to W 1,p (endowed with any topology weaker
than the norm topology). By a previous remark, this is essentially an approximation
result, and indeed we prove that every function u ∈ W 1,p can be approximated in
energy by a sequence of Lipschitz functions which converges to u in the W 1,p norm
(Theorems 2.2 and 2.4, see also Corollaries 2.3, 2.5, and Remarks 2.8, 2.9).

We remark that Theorem 2.2 is weaker than Theorem 2.4, but its proof is very
simple and relies essentially on a regularity result for minimizers of one-dimensional
integral functionals established by Clarke and Vinter [CV]; on the other hand the
proof of Theorem 2.4 is more complicated but gives an explicit construction of the
approximating sequence and allows a more general result.

Finally we recall that in the case of autonomous integral functionals of the form

F (u) =

∫

Ω

f(u, Du) dx

with Ω ⊂ R
h, h > 1, and u ∈ W 1,p(Ω, Rn), n > 1, the gap may occur even for very

regular integrands (see [AM]). It remains still open the case h > 1, n = 1, in the

sense that it is not clear whether gap or Lavrentiev phenomenon may occur in this
case.

2. Statement and Proof of the Results

In the following, I is the open interval ]0, 1[, and I the closed interval [0, 1]. For
every Lebesgue measurable set B ⊂ R, |B| denotes the Lebesgue measure of B.

Let p be a real number in [1,∞[ and let n be a positive integer; as usual Lp(I, Rn)
is the (Banach) space of all p-summable functions from I into R

n, and W 1,p(I, Rn)
is the Sobolev space of all functions from I into R

n with p-summable distributional
derivative, endowed with the norm ‖u‖W 1,p = ‖u‖p + ‖u′‖p (we write Lp(I) and
W 1,p(I) when n = 1).

For every integer k in [0,∞], Ck(I, Rn) is the space of all functions u : I → R
n

of class Ck on I, such that Dhu admits a continuous extension to I for every h with
h ≤ k (as usual, we write C(I, Rn) when k = 0).

We recall that every Sobolev function u : I → R
n agrees a.e. on I with a con-

tinuous function on I: we shall always identify u and this continuous representative.

Definition 2.1. Let f : R
n × R

n → [0,∞] be a Borel function, and for every
u ∈ W 1,1(I, Rn), let F (u) be the integral functional

F (u) :=

∫

I

f(u, u′) dt . (2.1)

We say that a sequence (uh) approximates u in energy when F (uh) converge to F (u).

In Theorems 2.2 and 2.4 we show that under suitable hypotheses on f , each u
may be approximated in energy by a sequence of more regular functions (uh) which
converges to u with respect to some prescribed topology.

Let’s start from the first approximation result.

Theorem 2.2. Assume that f is finite valued, continuous and convex in the second
variable (i.e., f(u, ·) is a finite convex function on R

n for every u ∈ R
n). Then, for

every p ∈]1,∞[ and every u ∈ W 1,p(I, Rn), there exists a sequence of functions in
C1(I, Rn) which converge to u in the W 1,p norm and approximate u in energy.

Once proved the C1 approximation in the previous theorem, we can easily obtain
a slight improvement in the regularity of approximating functions:

Corollary 2.3. In Theorem 2.2, the approximating sequence may be taken in
C∞(I, Rn), and not only in C1.

Proof of Theorem 2.2.

Let u0 ∈ W 1,p be fixed. For every ε with 1 ≥ ε > 0, take vε ∈ C1(I, Rn) such
that

‖u0 − vε‖W 1,p ≤ ε . (2.2)
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We note that the function (u, s) 7→ f(u, s) + |s|p satisfies the hypothesis of
Theorem 3.11, and then (cf. Definition 3.6) for every ε > 0 there exists a function
fε : R

n × R
n → [0,∞[ of class C∞ and convex in the second variable such that

f(v, s) + |s|p − ε ≤ fε(v, s) ≤ f(v, s) + |s|p ∀(v, s) ∈ R
n × R

n. (2.3)

Finally, for every u ∈ W 1,p(I, Rn) we set

Gε(u) :=

∫

I

[

fε(u, u′) +
1

ε
|u − vε|

p
]

dt . (2.4)

Each Gε is a weakly lower semicontinuous and coercive functional on W 1,p(I, Rn)
because f is continuous, convex in the second variable and has growth p (cf. (2.3)),
and then well-known theorems ensure that there exists a minimum point uε. We
claim that the functions uε belong to C1, uε → u in W 1,p and F (uε) → F (u0) when
ε → 0.

The integrand of Gε is gε(t, v, s) = fε(v, s)+ε−1|v−vε(t)|
p. Then it is a function

of class C1 on I × R
n × R

n and

∂gε

∂t
(t, v, s) =

p

ε
|v − vε|

p−1
[
sgn(vε(t) − v)

]
·
[
v′ε(t)

]

(where sgn(x) = x/|x| for every x 6= 0), and then

∫

I

∣
∣
∣
∂gε

∂t
(t, uε, u

′
ε)

∣
∣
∣ dt ≤

p

ε
‖uε − vε‖

p−1
∞ ‖v′ε‖1 < ∞ .

Hence, by Proposition 3.1 of [CV], uε belongs to C1(I, Rn).

Now we want to show that uε → u0 in W 1,p and F (uε) → F (u0) as ε → 0. For
every ε, (2.2), (2.3) and (2.4) yield

Gε(uε) ≤ Gε(u0) ≤

∫

I

[

f(u0, u
′
0) + |u′

0|
p +

1

ε
|u0 − vε|

p
]

dt

≤ F (u0) + ‖u′
0‖

p
p + εp−1

(2.5)

and then the values Gε(uε) are bounded by the constant C = F (u0) + ‖u′
0‖

p
p + 1 for

every ε ∈]0, 1]. Hence, recalling that |s|p ≤ fε(u, s) + ε (cf. (2.3)) and the definition
of Gε,

‖u′
ε‖

p
p +

1

ε
‖uε − vε‖

p
p ≤ Gε(uε) + ε ≤ C + 1 .

Then ‖u′
ε‖p is bounded and ‖uε − vε‖p → 0 as ε → 0, and since ‖vε − u0‖p → 0, we

obtain that uε weakly converge to u0 in W 1,p(I, Rn).

Finally, from (2.3) and (2.5) we obtain

F (uε) + ‖u′
ε‖

p
p − ε ≤

∫

I

fε(uε, u
′
ε) dt

≤ Gε(uε) ≤ F (u0) + ‖u′
0‖

p
p + εp−1

and then

lim sup
ε→0

[
F (uε) + ‖u′

ε‖
p
p

]
≤ F (u0) + ‖u′

0‖
p
p .

Taking into account that F is weakly lower semicontinuous, this means

lim
ε→0

F (uε) = F (u0) and lim
ε→0

‖u′
ε‖p = ‖u′

0‖p ,

and since Lp is an uniformly strictly convex space for p > 1, the second equality
yields that uε converge to u0 strongly in W 1,p(I, Rn).

Proof of Corollary 2.3.

Since the integrand f is continuous, F is continuous with respect to the C1 norm
and then every function in C1(I, Rn) can be approximated in energy by any sequence
of C∞ functions which converge to it in the C1 norm. Thereafter Theorem 2.2 and
a diagonal argument show that every function u in W 1,p(I, Rn) (with p > 1) can be
approximated in energy by a sequence of functions in C∞(I, Rn) which converge to
u in the W 1,p norm.

In Theorem 2.4, we improve the basic approximation result given in Theorem
2.2. In particular we weaken the hypotheses on f , by assuming that it only satisfies
condition (B) below. Notice that in this case f is allowed to assume the value +∞
in large zones (see also Remark 2.9) and F may be not lower semicontinuous.

Theorem 2.4. Assume that the following condition holds:

(B) for every r > 0 there exists c > 0 such that f is bounded on Br × Bc.

(where Bρ denotes the closed ball of R
n with center 0 and radius ρ). Then, for every

p ∈ [1,∞[ and every u ∈ W 1,p(I, Rn), there exists a sequence of Lipschitz functions
which converge to u in the W 1,p norm and approximate u in energy.

As for Theorem 2.2, also in Theorem 2.4 the regularity of the approximating
functions can be improved under very mild assumptions.

Corollary 2.5. In Theorem 2.4, when the integrand f is bounded on bounded sets,
the approximating sequence can be taken in C1(I, Rn) (and not only Lipschitz); and
moreover, when f is continuous, it can be taken in C∞(I, Rn).

We recall some elementary facts we shall need in the proof of Theorem 2.4 and
Corollary 2.5.
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Lemma 2.6. Let g : I → [0,∞] be a (Lebesgue) measurable function and let Bh be
a sequence of measurable subsets of I such that |I \ Bh| → 0. Then

∫

Bh

g dt →

∫

I

g dt .

Proof. Possibly passing to subsequences, we may assume that the characteristic func-
tions of Bh converge to 1 a.e. in I and then Fatou’s lemma yields lim inf

∫

Bh
g dt ≥

∫

I
g dt. Moreover, since g is positive and Bh ⊂ I for every n, we have that

∫

Bh
g dt ≤

∫

I
g dt, and this concludes the proof.

Lemma 2.7. Let φh : I → R be a sequence of Lipschitz functions such that φ′
h ≥ 1

a.e. for every h and φh(t) → t as h → ∞ for every t ∈ I. Then f(φh) → f in Lp(I)
for every f ∈ Lp(R).

Proof. Let Th be the linear operator which maps each function f : R → R into the
function f(φh) : I → R . Then a simple computation shows that Th maps Lp(R)
into Lp(I) and ‖Th‖ ≤ 1. Moreover Thf → f in Lp(I) whenever f is a continuous
function with compact support (i.e. f ∈ Cc(R)) and since Cc(R) is a dense subspace
of Lp(R), the same holds for every f ∈ Lp(R).

Proof of Theorem 2.4.

Take r > ‖u‖∞: by hypothesis (B) we may find c > 0 and M < ∞ such that

f(v, s) ≤ M whenever |v| ≤ r and |s| ≤ c. (2.6)

Notice that since u belongs to W 1,1, well-known theorems (see for instance section
3.10 in [Z]) shows that for every positive integer n there exist a Lipschitz function
vh : I → R

n and an open set Ah such that

vh = u and v′h = u′ in I \ Ah, (2.7a)

|Ah| ≤ 1/h . (2.7b)

Moreover, it is not difficult to see that the functions vh can be taken such that

vh is affine on each connected components of Ah, (2.7c)

vh(0) = u(0). (2.7d)

What happens if we use the functions vh to approximate u? One can easily
prove that vh → u in W 1,p, and by (2.7a) it holds

F (vh) =

∫

I\Ah

f(u, u′) dt +

∫

Ah

f(vh, v′h) dt .

The first integral in the right term of this equality converges to F (u) because |Ah| → 0
(cf. Lemma 2.6), but we cannot prove that the second integral converges to 0, because
we have no good estimates of it (unless we assume that f has p-growth).

So we have to consider a different approximating sequence which we shall obtain
from vh by modifying the “bad” set Ah. More precisely, our idea is to “fatten”
each connected component of Ah so that vh become an affine function with growth
less than c in this component, and then we use inequality (2.6) to obtain suitable
estimates.

We write each Ah as the (countable) disjoint union of all connected components:
Ah = ∪kIh,k where Ih,k =]ah,k, a′

h,k[ for every k. Thus we set

αh,k := |Ih,k| = a′
h,k − ah,k ,

βh,k := vh(a′
h,k) − vh(ah,k) .

(2.8)

By (2.7c) we obtain that for every h, k,

v′h =
βh,k

αh,k
in Ih,k , (2.9)

and since ah,k, a′
h,k belongs to I \ Ah, (2.7a) yields

βh,k = u(a′
h,k) − u(ah,k)

and then
∑

k

|βh,k| ≤
∑

k

∫

Ih,k

|u′| dt =

∫

Ah

|u′| dt < ∞ . (2.10)

Now, taking into account that the measure of Ah converges to 0 as h → ∞ and u′ is
a summable function, the last term in (2.10) converges to 0 and then

[ ∑

k

|βh,k|
]

→ 0 as h → ∞. (2.11)

For every h, let φh ∈ W 1,1(I) be such that:

φh(0) = 0 (2.12a)

φ′
h =







1 in I \ Ah,

|βh,k|
c αh,k

∨ 1 in Ih,k for every k
(2.12b)

(where c is the constant taken in the beginning of this proof, cf. (2.6)). Taking into
account (2.10),

∫

I

|φ′
h| dt ≤ 1 +

1

c

∑

k

|βh,k| < ∞ .

Statement 1: the sequence φh converges to the identity function Id(t) = t in W 1,1(I).
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Since φh(0) = 0 for all n, it is enough to prove that φ′
h converge to the constant

function 1 in the L1 norm. In fact we have (cf. (2.11))
∫

I

|φ′
h − 1| dt =

∑

k

[ |βh,k|

c αh,k
∨ 1 − 1

]

αh,k ≤
1

c

∑

k

|βh,k| → 0

Statement 2: the measure of φh(Ah) converges to 0 as h → ∞. We have indeed

|φh(Ah)| =
∑

k

|φh(Ih,k)| =
∑

k

( |βh,k|

c
∨ αh,k

)

≤
∑

k

αh,k +
1

c

∑

k

|βh,k| = |Ah| +
1

c

∑

k

|βh,k| → 0

(we used (2.7b) and (2.11)).

Formula (2.12b) shows that φ′
h ≥ 1 a.e., and then each φh is a strictly increasing

function on I and φh(I) ⊃ I. Hence there exists a left inverse φ−1
h : I → I which is

a 1-Lipschitz function and by (2.12) satisfies

φ−1
h (0) = 0 (2.13a)

(φ−1
h )′ =







1 in I \ φh(Ah),

c αh,k

|βh,k|
∧ 1 in φh(Ih,k) for every k.

(2.13b)

Finally we set for every h
uh = vh(φ−1

h ) , (2.14)

and we claim that this sequence of functions satisfies our requirements. First of
all we note that each uh is a Lipschitz function, being a superposition of Lipschitz
functions, and from (2.7a), (2.9), (2.13) and the usual chain-rule we deduce

uh(0) = u(0) (2.15a)

u′
h = v′h(φ−1

h ) (φ−1
h )′ =







u′(φ−1
h ) in I \ φh(Ah),

c
βh,k

|βh,k|

∨ βh,k
αh,k

in φh(Ih,k) for every k.
(2.15b)

Statement 3: the sequence uh converge to u in W 1,p(I, Rn).

Since uh(0) = u(0) for all h, it is enough to prove that the convergence of
derivatives in the Lp norm. Thus we have

‖u′
h−u′‖p ≤

≤

( ∫

I\φh(Ah)

|u′
h − u′|pdt

︸ ︷︷ ︸

P 1
h

)1/p

+

( ∫

I∩φh(Ah)

|u′
h|

pdt

︸ ︷︷ ︸

P 2
h

)1/p

+

( ∫

I∩φh(Ah)

|u′|pdt

︸ ︷︷ ︸

P 3
h

)1/p

.

We claim that both P 1
h , P 2

h and P 3
h converge to 0.

About P 1
h , from (2.15b) we get

P 1
h =

∫

I\φh(Ah)

|u′(φ−1
h ) − u′|pdt ,

and if we apply the change of variable s = φ−1
h (t), taking into account that (φ−1

h )′ = 1
a.e. in I \ φh(Ah) (see (2.13b)), we get

P 1
h =

∫

φ−1

h
(Ah)\Ah

|u′ − u′(φh)|pds ≤

∫

I

|u′ − u′(φh)|pds

(we have set u′ = 0 in R \ I) and then P 1
h → 0 by Lemma 2.7 and Statement 1.

About P 2
h , from (2.15b) we get |u′

h| ≤ c a.e. in I ∩ φh(Ah) and Statement 2
yields

P 2
h =

∫

I∩φh(Ah)

|u′
h|

pdt ≤ cp|φh(Ah)| → 0 .

Finally, Statement 2 and the fact that |u′|p is summable yield P 3
h → 0.

Statement 4: F (uh) → F (u). We write

F (u) =

∫

I\φh(Ah)

f(uh, u′
h) dt

︸ ︷︷ ︸

P 1
h

+

∫

I∩φh(Ah)

f(uh, u′
h) dt

︸ ︷︷ ︸

P 2
h

.

From (2.15b) we get

P 1
h =

∫

I\φh(Ah)

f
(
u(φ−1

h ), u′(φ−1
h ) (φ−1

h )′
)
dt

and if we apply the change of variable s = φ−1
h (t), recalling that (φ−1

h )′ = 1 a.e. in
I \ φh(Ah), we get

P 1
h =

∫

φ−1

h
(I)\Ah

f(u, u′) ds . (2.16)

Now we recall that |Ah| → 0 and, taking into account that (φ−1
h )′ = 1 in I \ φh(Ah)

and Statement 2, we get

|φ−1
h (I)| =

∫

I

(φ−1
h )′dt ≥ |I \ φh(Ah)| → 1 .

So we have shown that the sets φ−1
h (I) \ Ah converge to I in the sense of Lebesgue

measure, and then we may apply Lemma 2.6 to equality (2.16) and we get

P 1
h →

∫

I

f(u, u′) ds = F (u) .
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Now it remains to prove that P 2
h converges to 0. Since uh → u in W 1,p(I, Rn) and

we have taken r so that ‖u‖∞ < r, ‖uh‖ < r for n large enough. Moreover |u′
h| ≤ c

a.e. in φh(Ah) by (2.15b), and taking into account (2.6) and Statement 2, we get

P 2
h ≤ M |φh(Ah)| → 0

and the proof is completed.

Proof of Corollary 2.5.

We say that a sequence of Lipschitz functions uh on I τ∞-converge to u when the
functions uh converge to u uniformly, and the derivatives u′

h are uniformly bounded
in L∞ and converge to u′ almost everywhere in I (and then uh → u in W 1,p for every
p < ∞).

We claim that when f is bounded on bounded sets, every Lipschitz function
u : I → R

n may be approximated in energy by a sequence of functions C1(I, Rn)
which τ∞ converge to u. Then Theorem 2.4 and a diagonal argument show that
every u ∈ W 1,p(I, Rn) may be approximated in energy by a sequence of C1 functions
which converge to u in norm.

Notice that since u is Lipschitz, for every positive integer h there exist uh ∈
C1(I, Rn) and an open set Ah such that |Ah| ≤ 1/h, uh = u and u′

h = u′ in I \ Ah,
‖uh‖W 1,∞ ≤ ‖u‖W 1,∞ .

A simple computation shows that the functions uh τ∞ converge to u and ap-
proximate u in energy.

Furthermore, when f is continuous, the same argument used in the proof of
Corollary 2.3 shows that every u ∈ W 1,p(I, Rn) may be approximated in energy by
a sequence in C∞(I, Rn) which converge to u in norm.

Finally, we add some remarks on the statements and the proofs of previous
theorems.

Remark 2.8. Notice that in Theorems 2.2 and 2.4 (and Corollaries 2.3 and 2.5), we
can replace the space W 1,p(I, Rn) with the subspace T of all u ∈ W 1,p such that
u(0) = α and u(1) = β with α, β ∈ R

n fixed, and every function u ∈ T can still be
approximated in energy by a sequence of Lipschitz functions in T which converge to
u in the W 1,p norm.

Remark 2.9. A careful examination of the proof shows that the result of Theorem
2.4 can be slightly improved.

Let f be the integrand of the functional F . Let D be a subset of R
n,
�

a
family of functions from I to R

n, and k, m positive real numbers: we say that
�

(k, m)-connects D when all the functions v ∈
�

are k-Lipschitz, all the functions
t 7→ f(v(t), v′(t)) with v ∈

�
are uniformly integrable on I, and for every y1, y2 ∈ D

there exist v ∈
�

and x1, x2 ∈ I such that y1 = v(x1), y2 = v(x2), and |x1 − x2| ≤
m|y1 − y2|. Then we have the following generalization of Theorem 2.4.

Let u be a function which belongs to W 1,p(I, Rn) for some p ∈ [1,∞[, and assume
that there exists a family

�
which (k, m)-connects the image of u for some k, m; then

u can be approximated in energy by a sequence of Lipschitz functions which converge
to u in the W 1,p norm.

(We remark that condition (B) in Theorem 2.4 yields that for every r > 0, the
set Br of all y ∈ R

n such that |y| ≤ r is (c, 1/c) connected by the family of all affine
functions v : I → R

n with |v′| ≤ c.)

We may apply this statement when we study the functional F (u) with the con-
straint u ∈ T , where T is the space of all u ∈ W 1,p such that u(t) ∈ M for every
t ∈ [0, 1], and M is a closed Lipschitz submanifold of R

n: if we assume that f is
finite, then every u ∈ T can be approximated in energy by Lipschitz functions in T
which converge to u in the W 1,p norm.

The proof can be achieved by applying the previous statement to the auxiliary
functional

G(u) = F (u) +

∫

I

g(u) dt

where g satisfies g(y) = 0 when y ∈ M , g(y) = +∞ otherwise.

3. Appendix: Approximation of Convex Functions

Let f be a convex function on some convex open set; thus the following problem
may arise: can f be uniformly approximated by smooth convex functions? In this
section we prove that this is true (Theorem 3.5), and then we examine what happens
when we try to approximate a continuous function of two (vector) variables which is
convex in the second variable only (Theorem 3.11).

In the following, n, k are positive integers, Ω is a convex open subset of R
n, and

A an open subset of R
k. By convex function we mean a convex function which takes

values in ]−∞,∞], and by finite convex function a convex function which takes real
values only. By smooth function we mean a function of class C∞.

When f1, f2 are real valued functions, f1 ∨ f2 is the supremum function, i.e.,
[f1 ∨ f2](x) := sup{f1(x), f2(x)} for all x. In general, when F is a family of real
functions, we define [∨F ](x) := sup{f(x) : f ∈ F} for all x.

Definition 3.1. We denote by � (Ω) the class of all finite convex functions on Ω, by
�s(Ω) the subclass of all smooth functions, and by

�
(Ω) the class of all f : Ω → R

such that for every ε > 0 there exists g ∈ �s(Ω) which satisfies

f − ε ≤ g ≤ f . (3.1)

We claim that
�

(Ω) = � (Ω) (Theorem 3.5). The proof is divided in several steps.

Proposition 3.2. �s(Ω) ⊂
�

(Ω) ⊂ � (Ω).
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Proof. The inclusion �s(Ω) ⊂
�

(Ω) is trivial, and by Definition 3.1, every function
f in

�
(Ω) agrees with the supremum of all g ∈ �s(Ω) such that g ≤ f . Hence f is

convex.

Lemma 3.3. Let g1, g2 ∈ �s(Ω) be given. Then for every ε > 0 there exists g ∈ �s(Ω)
such that

g1 ∨ g2 − ε ≤ g ≤ g1 ∨ g2 . (3.2)

Moreover g may be taken so that

g(x) = g1(x) ∨ g2(x) − ε when |g1(x) − g2(x)| ≥ ε . (3.3)

Proof. Take a smooth convex function φ : R → R such that

φ(t) = |t| − ε when |t| ≥ ε . (3.4)

The convexity assumption yields |t| − ε ≤ φ(t) ≤ 0 for every t ∈ [−ε, ε] and then, for
all t ∈ R,

|t| − ε ≤ φ(t) ≤ |t| . (3.5)

Moreover
−1 ≤ φ′(t) ≤ 1 (3.6)

because φ′ is nondecreasing. Now we set

g :=
g1 + g2 + φ(g1 − g2)

2
.

Since g1, g2, φ are smooth, g is smooth too, and

2 D2g = [1 + φ′(g1 − g2)]D
2g1 + [1 − φ′(g1 − g2)]D

2g2+

+ [φ′′(g1 − g2)]D(g1 − g2) ⊗ D(g1 − g2) .
(3.7)

Now, for every x ∈ Ω, D2g1(x) and D2g2(x) are positively semidefinite matrices
because g1 and g2 are convex functions, and D(g1 − g2) ⊗ D(g1 − g2) is positively
semidefinite because this is true for all matrices of the form v ⊗ v with v ∈ R

n.
Moreover [1 + φ′] and [1 − φ′] are non-negative by (3.6) and [φ′′] is non-negative
because φ is convex. Hence (3.7) shows that D2g(x) is always a positively semidefinite
matrix , and g is convex.

Finally, taking into account that g1 ∨ g2 = 1
2

(
g1 + g2 + |g1 − g2|

)
, (3.5) and (3.4)

yield (3.2) and (3.3) respectively.

Proposition 3.4. Let F be a subset of
�

(Ω) such that ∨F < ∞ everywhere. Then
∨F belongs to

�
(Ω).

Proof. The proof is divided in three steps.

Step 1.

When F consist of two elements f1, f2 only, f1 ∨ f2 is a finite convex function
and this statement is an immediate consequence of Lemma 3.3. The same conclusion
holds in general when F is finite.

Step 2.

Assume that F is countable, i.e., F = {fh}h≥0, and set f := ∨hfh; then f is a
finite convex function by hypothesis. Let ε > 0 be fixed: we claim that there exists
g ∈ �s(Ω) such that (3.1) holds.

Let Ω0 ⊂ Ω1 ⊂ Ω2 . . . be a sequence of open sets relatively compact in Ω which
cover Ω.

By Step 1 we may assume that f0 ≤ f1 ≤ f2 ≤ . . . and hence, since each Ωk is
relatively compact in Ω, for every integer k ≥ 0 there exists hk such that

f −
ε

2k+1
≤ fhk

in Ωk.

Since fhk
belongs to

�
(Ω), by Definition 3.1 there exists gk ∈ �s(Ω) such that

fhk
−

ε

2k+1
≤ gk ≤ fhk

in Ω

and then, taking into account that fhk
≤ f ,

f −
ε

2k
≤ gk in Ωk and gk ≤ f in Ω. (3.8)

Now we define by induction on k a sequence {g′k}k≥0 ⊂ �s such that

(i) f −
(

3 − 1
2k−1

)

ε ≤ g′k in Ωk and g′k ≤ f in Ω,

(ii) g′k = g′k−1 −
ε

2k+1 in Ωk−1 (for k > 1).

We set g′1 = g1. If g′k satisfying (i) and (ii) is given, then we apply Lemma 3.3, with
ε/2k+2 instead of ε, to the functions

h1 := g′k and h2 := gk+1 −
(

3 −
1

2k−1
+

1

2k+2

)

ε ,

and we find g′k+1 ∈ �s satisfying (3.2) and (3.3). We claim that g′k+1 satisfies (i) and
(ii).

We have indeed g′k+1 ≤ h1 ∨h2 (cf. (3.2)) and h1, h2 ≤ f (cf. (i) and (3.8)), and

then g′k+1 ≤ f in Ω. Moreover g′k+1 ≥ h2 − ε/2k+2 in Ω (cf. (3.2)) and h2 = gk+1 −
(
3− 1

2k−1 + 1
2k+2

)
ε. Hence, taking into account (3.8) we obtain g′k+1 ≥ f −

(
3− 1

2k

)
ε

in Ωk+1 and then (i) holds for g′k+1.
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Taking into account (ii) and (3.8), for all x ∈ Ωk

h1 = g′k ≥ f −
(

3 −
1

2k−1

)

ε

≥ gk+1 −
(

3 −
1

2k−1
+

1

2k+1

)

ε +
ε

2k+1
= h2 +

ε

2k+1

and since g′k+1(x) = h1(x) ∨ h2(x) − ε/2k+2 whenever |h1(x) − h2(x)| ≥ ε/2k+2 (cf.
(3.3)), we have that

g′k+1 = h1 −
ε

2k+2
= g′k −

ε

2k+2
in Ωk

and (ii) holds for g′k+1 too.

Finally we note that Ω0 ⊂ Ω1 ⊂ Ω2 ⊂ . . . and (ii) yield that when h goes to ∞,
the sequence g′h converge in each Ωk to g′k + ε/2k+1. Hence, taking into account that
the sets Ωk cover Ω, the sequence g′h converge in every point to a convex function g
which agrees with g′k + ε/2k+1 in each Ωk, and then it is smooth, and (i) yields

f − 3ε ≤ g ≤ f in Ω.

Step 3.

Assume that F is arbitrarily taken, and let f be the supremum of all functions
in F . By hypothesis f is a finite convex function, and a simple topological argument
shows that f is the supremum of some countable subfamily of F . Hence f belongs
to
�

(Ω) by Step 2.

Theorem 3.5.
�

(Ω) = � (Ω).

Proof. By Proposition 3.2, it is enough to prove that every finite convex function f
belongs to

�
(Ω). Thus we note that f is the supremum of all functions g ∈ �s(Ω)

which satisfy g ≤ f because �s(Ω) contains all affine functions, and then it is enough
to apply Proposition 3.4.

Now, let A be an open subset of R
k and let f : A × Ω → R be a continuous

function which is convex in the second variable (i.e., f(t, ·) is a convex function on
Ω for every t ∈ A). Then f can be uniformly approximated by smooth functions
which are convex in the second variable if some growth hypotheses are fulfilled (see
Proposition 3.7 and Theorem 3.11). As for the previous case, we begin with some
definitions.

Definition 3.6. We denote by � (A,Ω) the class of all continuous functions f :
A × Ω → R which are convex in the second variable, by �s(A,Ω) the subclass of all

smooth functions, and by
�

(A,Ω) the class of all continuous functions f : A×Ω → R

such that for every ε > 0 there exists g ∈ �s(A,Ω) which satisfies

f − ε ≤ g ≤ f . (3.9)

Now, Propositions 3.2 and 3.4 may be generalized as follows.

Proposition 3.7. The following statements hold:

(i) �s(A, Ω) ⊂
�

(A,Ω) ⊂ � (A,Ω),
(ii) for every F ⊂

�
(A,Ω) such that ∨F is a finite continuous function on A × Ω,

∨F belongs to
�

(A,Ω),
(iii) a function f in � (A, Ω) belongs to

�
(A,Ω) if and only if

f =
∨ {

g ∈ �s(A,Ω) : g ≤ f
}

. (3.10)

Proof. The proofs of statements (i) and (ii) are the same of Propositions 3.2 and 3.4
respectively. Statement (iii) follows immediately from (ii).

Remark 3.8. What is not trivial in this case is to prove equality (3.10). And indeed it
does not hold for all functions in � (A,Ω). In particular, when Ω = R and f(t, x) =
v(t) x with v : A → R a non-smooth continuous function, then f belongs to � (A, R),
and for every function g ∈ � (A, R) such that |f − g| is bounded, we have g(t, x) =
g(t, 0)+v(t) x, and then g is not smooth. Hence f cannot be uniformly approximated
by smooth functions in � (A, R), and therefore (3.10) cannot hold.

However we have the following result.

Lemma 3.9. Let f : A × Ω → [0,∞] be a lower semicontinuous function which is
convex in the second variable and satisfies

f(t, x) ≥ |x|p for all (t, x) ∈ A × Ω (3.11)

for some p > 1. Then (3.10) holds.

Proof. Let f ′ : A × R
n →] − ∞,∞] be the maximal lower semicontinuous function

which is convex in the second variable and satisfies f ′ ≤ f in A×Ω. Then f ′ satisfies
(3.11) in A × R

n and f ′ = f in A × Ω. Thereafter we may assume Ω = R
n.

Of course it is enough to show that for any (t0, x0) ∈ A×R
n and any a < f(t0, x0)

there exists g ∈ �s(A, Rn) such that a ≤ g(t0, x0) and g ≤ f everywhere. With no
loss in generality we may assume that x0 = 0. Then we set b := f(t0, x0).

Since f is convex in the second variable, there exists v ∈ R
n such that

f(t0, x) ≥ b + v · x for all x ∈ R
n. (3.12)

Since p > 1, there exists a compact set K ⊂ R
n such that

|x|p ≥ b + v · x for all x ∈ R
n \ K. (3.13)
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Taking into account (3.12) and the fact that K is compact and b > a, we may find
an open neighborhood I of t0 such that

f(t, x) ≥ a + v · x for all t ∈ I, x ∈ K. (3.14)

Now, let φ : A → [0, 1] be a smooth function such that φ = 0 out of I and φ(t0) = 1.
Thus we set

g(t, x) := φ(t)(a + v · x) for all t, x.

The function g is smooth, convex in the second variable and g(t0, 0) = a < f(t0, 0),
and moreover 0 ∨ (a + v · x) ≥ g(t, x) everywhere. Then f ≥ g in I × K by (3.14),
f ≥ g in A × (Rn \ K) by (3.11) and (3.13), and f ≥ g in (A \ I) × R

n because f is
positive and g = 0 in (A \ I) × R

n. Thus we have proved that f ≥ g everywhere.

Remark 3.10. Lemma 3.9 may be easily generalized to all lower semicontinuous
functions f : A × Ω →] −∞,∞] which are convex in the second variable and satisfy

f(t, x) ≥ −a(t) + b(t) φ(x) for all (t, x) ∈ A × Ω (3.15)

for some superlinear convex function φ and continuous positive functions a, b on A.
We remark that when Ω is bounded, and f : A × Ω →] −∞,∞] is lower semi-

continuous and convex in the second variable, f(t, ·) is bounded from below for any
t ∈ A. Then it may be proved that (3.15) holds with φ(x) = |x|2, b = 1 and a
suitably chosen a, and hence also (3.10) holds.

Theorem 3.11. Let f be a function in � (A, Ω) such that (3.11) holds for some
p > 1 (more in general, such that (3.15) holds for some superlinear convex function
φ and some continuous positive functions a, b on A). Then f belongs to

�
(A,Ω) and

in particular this holds for every f ∈ � (A, Ω) when Ω is bounded.

Proof. Apply Proposition 3.7 (iii) and Lemma 3.9 (and Remark 3.10).

4. Acknowledgements

We thank Giuseppe Buttazzo for proposing this problem to us.

5. References

[AM] G. Alberti, P. Majer: Gap phenomenon for some autonomous functionals,
Preprint Dipartimento di Matematica dell’ Università di Pisa, (1993)
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