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We give an example of an autonomous functional F (u) =
∫

Ω
f(u, Du)dx (Ω open

subset of R
2, u : Ω → R

2 in the Sobolev space W 1,1) which is sequentially weakly
lower semicontinuous in W 1,p for every p ≥ 1 but does not agree with the relaxation
of the same functional restricted to smooth functions when p < 2. A Lavrentiev
phenomenon occurs for a related boundary problem.
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1. - Introduction

When dealing with variational problems involving integral functionals, a very sur-
prising and interesting phenomenon is the so-called Lavrentiev phenomenon; let T be
a space of weakly differentiable functions, X a dense subset of smooth functions and
F a weakly lower semicontinuous integral functional on T : then it may happen that
the infimum of F on T is strictly lower than the infimum on X (the first example of
such behaviour was given in [18], many examples and references may be found in [6],
[10] and [9], section 3.4.3).

For example Lavrentiev phenomenon may occur with T =
{

u ∈ W 1,2(0, 1) : u(0) =

0, u(1) = 1
}

, X = {u ∈ T : u is Lipschitz} and F (u) =
∫ 1

0
f(x, u, u′)dx with f con-

tinuous, convex in the third variable and satisfying f(x, u, s) ≥ |s|2 (cf. [2]). Notice
that in this particular case F is coercive on T (endowed with the weak topology) and
then it attains a ”natural” minimum on T .

Following [6], we consider Lavrentiev phenomenon in a more abstract framework:
let T be a topological space, X a dense subset of T and F a lower semicontinuous
function on T and set for all u ∈ T

F (X, T )(u) := inf(lim inf
n→∞

F (un)) : un ∈ X and un → u. (1.1)
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Then we have that F (X, T ) ≥ F but it may happen that equality does not hold:
in this case we say that F has a gap from X to T (see Definition 2.1). Notice that
when there is no gap, then there is no Lavrentiev phenomenon (indeed the infima
of F on T and X are the same). In particular we have that F (X, T )(u) = F (u) if
and only if there exists a sequence (un) ⊂ X such that un → u and F (un) → F (u);
hence there is no gap when F is continuous with respect to any topology τ finer than
the topology of T and such that X is still τ -dense in T (for example, this happens
when T is a Sobolev space W 1,p endowed with the weak topology, X includes C∞

functions, and F is strongly W 1,p continuous).

A lot of result are available for integral functional on Sobolev spaces, giving examples
of gap and Lavrentiev phenomenon or showing that under some assumption they
never occur (see references in [6], [7] and [10]). An interesting case is the one of
autonomous integral functionals, i.e., T = W 1,p(Ω, Rn), X is the subset of all smooth
functions (Lipschitz or C1) and F (u) =

∫

Ω
f(u, Du)dx.

When Ω is one-dimensional and the integrand f is continuous, it may be proved
that gap never occurs (see [1] for a direct proof, even if this can be obtained as a
corollary of the regularity of minima of variational integrals proved in [8]). In this
paper we show that a gap may occur when T = W 1,p(Ω, R2) with p < 2 and Ω
two-dimensional. In particular, if we take

F (u) =

∫

Ω

(

|u|2 − 1
)2
|Du|2dx (1.2)

and u0(x) = (x−x0)/|x−x0| where x0 ∈ Ω, then F (u0) = 0 but lim inf F (un) ≥ 2π/3
whenever un are smooth functions which weakly converge to u0 in W 1,1 (see Theorem
2.3). In Theorem 2.12 we give an example of Lavrentiev phenomenon for a related
boundary value problem.
The heuristic idea of the proof is the following: recalling that |Du|2 ≥ 2|det Du|,
by area formula we have that for all smooth functions u

F (u) ≥ 2

∫

Ω

(

|u|2 − 1
)2
|det Du| dx ≥ 2

∫

u(Ω)

(

|y|2 − 1
)2

dy . (1.3)

Now F (u0) = 0 because the image of u0 is included in the unit circle in R
2 but since

the functions un are smooth and converge to u0, their images have to ”cover” the
unit ball B of R

2 and then (1.3) yields

lim inf
n→∞

F (un) ≥ 2

∫

B

(

|y|2 − 1
)2

dy =
2π

3
.

Notice that if we replace weak convergence in W 1,1 by a weaker one (for example,
Lp convergence), this argument does not work; indeed we can approximate u0 by
smooth functions un with images included in the unit circle, and then F (un) = 0 for
all n (see Remark 2.8).
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Another important remark is that the occurrence of a gap in this example is tightly
connected with the structure of the singularity of u0. In particular we cannot extend
this example to Sobolev spaces W 1,p with p ≥ 2 or to the scalar case W 1,p(Ω, R),
even taking functionals with different growth. We think it should be very interesting
to understand what happens in these cases.
Finally, we want to point out the analogy of our example with the problem of relax-
ation of Dirichlet energy F (u) =

∫

|Du|2dx for mappings which takes values into
the sphere (see [3], [4], [15] and [16]), and indeed the function f in our integrand
plays a role which is very close to the geometrical constraints of this problem.

2. - Statements and proofs of the results

In the following (unless differently stated) Ω is a bounded open subset of R
2, u is a

function of Ω into R
2 and we denote a point of the domain Ω as x = (x1, x2) and a

point of the codomain R
2 as y = (y1, y2). B is the unit ball in R

2 and S = ∂B is the
unit circle in R

2.
If A = (Aij) is a matrix in R

2×2, then the norm of A is given as usual by |A| :=
(
∑

i,j A2
ij)

1/2. Notice that |A| ≥ 2|det A|. I denotes both the 2 × 2 identity matrix

and the identity map on R
2.

If F is a function on the set T and X is a subset of T , then F X denotes the
restriction of F to X.
If u : Ω → R

2 is a continuous function, A is an open set relatively compact in Ω and
y belongs to R

2 \ u(∂A), then deg(u, A, y) is the degree of u restricted to A over the
point y. For the basic results about degree we refer essentially to [11], chapters 1-3.
W 1,p(Ω, R2) (with 1 ≤ p ≤ ∞), Lip(Ω, R2) and Ck(Ω, R2) are the usual spaces of
Sobolev, Lipschitz and Ck functions from Ω into R

2. They are usually endowed with
their strong topologies; we write W 1,p

w to indicate the Sobolev space W 1,p endowed
with its weak topology. For every function u ∈ W 1,2(Ω, R2) we denote by Ju(x) the
determinant of the matrix Du(x).
If T and V are topological spaces, we write T ↪→ V when T is included in V with
continuous inclusion (i.e., when the topology of T is finer than the topology induced
on T by V ) and sequentially dense image.

Definition 2.1. Let T be a Hausdorff topological space and let F be a sequentially
lower semicontinuous function on T . We say that a sequence {un} ⊂ T approximates
u in energy if un → u and F (un) → F (u).
Let X be a sequentially dense subset of T (i.e., every point of T is limit of some
sequences of points of X). Then we define the following functions on T :
(i) F1(X, T )(u) := inf(lim infn F (un)) with un ∈ X and un → u,
(ii) F2(X, T ) is the sequential relaxation of F X on T (namely, the maximal

sequentially lower semicontinuous function on T which is less than or equal to
F on X).

Then F1(X, T ) ≥ F2(X, T ) ≥ F . When T is first countable (i.e., every point has a
countable neighborhood basis) then F1(X, T ) and F2(X, T ) are the same function,
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that is the relaxation of F X on T . If we drop the first countability assumption
(for example when T is a Sobolev space endowed with the weak topology instead
of the norm topology) we have to be more careful; in particular F1(X, T ) may be
not sequentially l.s.c. and it may not agree with F2(X, T ) (and also F2(X, T ) may
be not l.s.c.). Hence we have two slightly different problems: the approximation
problem, that is determine whether F1(X, T )(u) = F (u) (in other words, whether u
can be approximated in energy by functions in X) and the relaxation problem, that
is determine whether F2(X, T )(u) = F (u).
Equality F1(X, T ) = F may not hold in general: in this case we say that F has a
gap from X to T .
Notice that this equality hold when F is sequentially continuous with respect to some
topology τ finer than the topology of T and such that X is τ dense in T .

Definition 2.2. For all u ∈ W 1,1(Ω, R2), set

F (u) :=

∫

Ω

f(u)|Du|2dx (2.1)

where f : R
2 → [0,∞[ is a continuous map such that f(y) = 0 whenever |y| = 1, and

set

C := 2

∫

B

f(y) dy . (2.2)

Take x0 ∈ Ω and let u0 be the function given by

u0(x) := (x − x0)/|x − x0| . (2.3)

Then u0 belongs to W 1,p(Ω, R2) for all p ∈ [1, 2[), and the following facts hold:

Theorem 2.3. Let F and u0 be given as in (2.1) and (2.2), and assume that C > 0.
Then
(i) F is sequentially lower semicontinuous in the L1 topology;
(ii) F is (strongly) continuous in W 1,p for all p ≥ 2;
(iii) F1(X, W 1,p) = F2(X, W 1,p) = F W 1,p whenever p ≥ 2, and then F has no

gap from X to W 1,p;
(iv) F1(X, T ) = F1(W

1,2, T ) and F2(X, T ) = F2(W
1,2, T ) whenever X is a dense

subset of W 1,2 and W 1,2 ↪→ T ;
(v) F1(X, W 1,p

w ) ≥ F2(X, W 1,p
w ) 6= F whenever p ∈ [1, 2[ and X is a dense subset of

W 1,2, and then F has a gap from X to W 1,p
w .

In particular, F (u0) = 0 but F1(X, W 1,p
w )(u0) = F2(X, W 1,p

w )(u0) = C.

Remark 2.4. Statement (iii) means that every u ∈ W 1,p with p ≥ 2 may be
approximated in energy in the W 1,p topology by smooth functions (Lipschitz or even
C∞). Statement (v) shows that this is false when p < 2 and in particular we can
prove that no sequences in W 1,2 approximates u0 in energy. More precisely, we have
that F1(X, W 1,p

w )(u0) = F2(X, W 1,p
w )(u0) = C.

The difficult part of this theorem is to prove inequalities F1(X, W 1,p
w )(u0) ≥ C and

F2(X, W 1,p
w )(u0) ≥ C: the proof of the second inequality relies on a result on currents
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we develop in section 3. Of course the first inequality may be deduced directly from
the other (recalling that there always holds F1(X, T ) ≥ F2(X, T )), but since this is
the key lemma of this paper, we prefer to give also another independent proof which
relies on simple properties of degree.

Proof of Theorem 2.3

(i). Using Corollary 4.1 in [14], we can prove the lower semicontinuity with respect
to the L1 topology of all functionals of the form

u 7→

∫

Ω

g(u)h(Du) dx, u ∈ W 1,1(Ω, R2),

where g is bounded and continuous and h is a convex function with linear growth.
Since F is (trivially) the limit of an increasing sequence of such functionals, also F
is lower semicontinuous.
(ii) is well-known (cf. [9], chapter 3, and [5], chapter 2).
(iii) and (iv) follows from (ii).
(v). We may assume with no loss in generality that x0 = 0.
Taking into account (iv), inequalities C ≥ F1(X, W 1,p

w ) ≥ F2(X, W 1,p
w ) are proved if

there exists a sequence of Lipschitz functions (vn) which converges to u0 in W 1,p for
all p ∈ [1, 2[ and verifies limn F (vn) = C.
Take indeed ρn ↓ 0 so that ρnB ⊂ Ω for all n and set

vn :=

{

x/ρn if x ∈ ρnB,
x/|x| otherwise.

(2.4)

The sequence (vn) converges to u0 in W 1,p for all p ∈ [1, 2[ and recalling that f(y) = 0
when |y| = 1,

lim
n

F (vn) = lim
n

∫

ρnB

f(x/ρn)
2

ρ2
n

dx = 2

∫

B

f(y) dy = C .

Taking into account (iv), it is enough to prove inequalities F1(X, W 1,p
w )(u0) ≥ C and

F2(X, W 1,p
w )(u0) ≥ C when X is C1. This follows from Lemmas 2.5 and 2.6.

Lemma 2.5. Let F , C and u0 be as in (2.1), (2.2) and (2.3) respectively, and let un

be a sequence of functions in C1(Ω, R2) which converges to u0 in the weak topology
of W 1,1. Then

lim inf
n→∞

F (un) ≥ 2

∫

B

f(y)dy = C . (2.5)

In other words, F1(C
1, W 1,1

w )(u0) ≥ C.

Proof. First of all, notice that it is enough to prove that for every sequence (un)
satisfying the hypothesis of Lemma 2.5 there exists a subsequence which satisfies
(2.5).
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Now, let (un) be fixed and take r > 0 so that rB ⊂ Ω. By Lemma 3.9 below, we
may find ρ ∈]0, r[ and a subsequence (uk) such that uk ρS converge to u0 ρS
uniformly. We claim that this subsequence satisfies inequality (2.5).
For every integer k, set gk(y) := card

(

u−1
k (y)

)

for all y ∈ R
2.

Since |A|2 ≥ 2|det A| for every matrix A ∈ R
2×2, recalling area formula we obtain

∫

Ω

f(uk)|Duk|
2dx ≥ 2

∫

Ω

f(uk)|Juk| dx = 2

∫

R2

f(y)gk(y) dy .

Thus conclusion follows from Fatou’s Lemma once we show that lim inf gk(y) ≥ 1 for
almost all y in B. To this end, define for all k

vk(x) :=
|x|

ρ
uk

(ρx

|x|

)

∀x ∈ Ω .

Clearly each vk is Lipschitz (and C1 in Ω \ {0}) and vk ρS = uk ρS. Hence
deg(vk, ρB, y) = deg(uk, ρB, y) for all y ∈ R

2 \ vk(ρS) (cf. [11], Theorem 3.1).
Moreover, by the choice of ρ, vk converges uniformly to I/ρ on Ω. Hence for all
y ∈ B there holds definitively y /∈ vk(ρS) and deg(vk, ρB, y) = deg(I/ρ, ρB, y) (cf.
[11], Theorem 3.1) and then

gk(y) ≥ deg(uk, ρB, y) = deg(vk, ρB, y) = deg(I/ρ, ρB, y) = 1 , (2.6)

which ends the proof.

Lemma 2.6. Take F , C and u0 as in (2.1), (2.2) and (2.3) respectively. Then

F2(C
1, W 1,1

w )(u0) ≥ 2

∫

B

f(y)dy = C .

Proof. Let ε > 0 be fixed. Since f is continuous we may find a smooth map φ on
Ω × R

n with compact support so that 0 ≤ φ(x, y) ≤ f(y) for all x, y and

∫

φ(0, y) dy ≥

∫

B

f(y) dy − ε = C/2 − ε . (2.7)

Recalling that |A|2 ≥ 2(detA) for every matrix A, for all v ∈ C1(Ω, R2) we get

F (v) =

∫

Ω

f(v)|Dv|2dx ≥ 2

∫

Ω

φ(x, v)Jv dx = 2〈Tv;ω〉 (2.8)

where ω = φ dy1 ∧ dy2 is a 2-form in Ω × R
2 and Tv is the 2-dimensional current in

Ω × R
2 associated to the graph of v as in definition 3.1.

Since the map v 7→ 〈Tv;ω〉 is sequentially weakly continuous on W 1,1 (Theorem 3.2),
by (2.8) and definition 2.1 we get

F2(C
1, W 1,1

w )(u0) ≥ 〈Tu0;ω〉
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and we claim that 〈Tu0;ω〉 = 2
∫

B
φ(0, y)dy: taking into account (2.7) and recalling

that ε is arbitrarily taken, this would end the proof. To prove our claim, we take
indeed vn as in formula (2.4). The functions vn converge to u0 in W 1,1 and then

〈Tu0;ω〉 = lim
n
〈Tvn;ω〉 = lim

n

∫

Ω

φ(x, vn)Jvndx

= lim
n

∫

ρnB

φ(x, x/ρn)ρ−2
n dx = lim

n

∫

B

φ(ρny, y)dy

=

∫

B

φ(0, y)dy

Remark 2.7. Lemma 2.6 may be proved without GMT framework using a recent
result in [12] about functions with given jacobian determinant. Take a smooth func-
tion φ : Ω → [0, 1] with compact support such that φ(0) = 1 and let g : R

2 → [0,∞]
be the continuous function which agrees with f in B and is 0 elsewhere.
Following [12], we may find a Lipschitz function G : R

2 → B so that detDG = g
everywhere and then, for every u ∈ C1, g(u)Ju = J(G(u)), and

F (u) =

∫

Ω

f(u)|Du|2dx ≥

∫

Ω

g(u)Ju φ dx =

∫

Ω

J(G(u)) φ dx .

One can show that the map u → 〈DetD(G(u));φ〉 is sequentially weakly continuous
on W 1,1 (cf. [17] and [9], section 4.2). Hence

F2(C
1, W 1,1

w )(u0) ≥ 〈DetD(G(u0));φ〉 .

Moreover we may compute explicitly the right term of this inequality taking suitable
vn converging to u0 (e.g., as in formula (2.4)), and we get

F2(C
1, W 1,1

w )(u0) ≥ 2

∫

B

g(y)dy = C .

Remark 2.8. It is important to notice the following fact: Lemmas 2.5 and 2.6 do
not hold if we replace the W 1,1 weak topology with the BV topology or any other
weaker topology (we recall that a sequence in W 1,1 converges in the BV topology if
it converges in the L1 norm and is bounded in the W 1,1 norm).
In particular we can find a sequence of C∞ functions un which converges to u0 in
the BV topology and F (un) = 0 for all n (and then limn F (un) = F (u0) = 0). As
usual, we assume x0 = 0 and then u0(x) = x/|x|.
Take r > 0 such that rB ⊃ Ω and set K := [0, 2π] × [0, r], and for all integers n, let
φn : K → [0, 1] be a C∞ function s.t.
(i) φn = 0 in a neighborhood of ∂K,
(ii) φn = 1 out of a set An with measure less than 1/n,
(iii) ‖Dφn‖1 are uniformly bounded.
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Now let un be the function which takes each point x = (ρ cos t, ρ sin t) with (t, ρ) ∈ K
into

un(x) :=
(

cos(φn(t, ρ) t), sin(φn(t, ρ) t)
)

.

Recalling (i), it is not difficult to verify that each function un is a well-defined C∞

function from rB into S and then F (un) = 0.
By (ii), un(x) = x/|x| = u0(x) out of the set A′

n of all x = (ρ cos t, ρ sin t) with
(t, ρ) ∈ An and since the measures of An converge to 0, the measures of A′

n converge
to 0, and then un converge to u0 in L1(Ω, R2). Using (iii), a simple computation
shows that the derivatives of un are bounded in the L1 norm, and then we have
convergence in the BV topology.

Notice that the proof of Lemma 2.5 does not work in the BV topology because
Lemma 3.8 fails, and this happens essentially because the BV convergence in
W 1,1(0, 1) does not imply uniform convergence (but the W 1,1 weak convergence
does). The proof of Lemma 2.6 fails because Theorem 3.2 fails (cf. Remark 3.4).

Remark 2.9. Let T be W 1,1 endowed with the BV topology (or any weaker topol-
ogy) and take u0 as in Theorem 2.3: in the previous remark, we have showed that
F1(C

∞, T )(u0) = F2(C
∞, T )(u0) = F (u0) = 0 (and then, taking into account state-

ment (iv) of Theorem 2.3, the same hold if we replace C∞ with any dense subset of
W 1,2). Thus the following question arises: is there a gap (for F ) from C∞ to T?

Remark 2.10. (The higher dimension case).
Let N > 2 be fixed. Let Ω be a bounded open subset of R

N and for all u ∈
W 1,1(Ω, RN ) set

F (u) :=

∫

Ω

f(u)|Du|Ndx

where f : R
N → [0,∞[ is a continuous function such that f(y) = 0 whenever |y| = 1.

Let B be the unit ball of R
N and assume that C := NN/2

∫

B
f(y)dy > 0. Take

x0 ∈ Ω and set u0(x) := (x − x0)/|x − x0| for all x ∈ Ω (u0 belongs to W 1,p for all
p < N).

Then the essential statements of Theorem 2.3 may be generalized as follows (without
essential modifications in the proofs): F is lower semicontinuous on W 1,1 with respect
to the L1 topology, and is continuous on W 1,N with respect to the norm topology.
Then F1(X, W 1,p) = F2(X, W 1,p) = F whenever p ≥ N and X is a dense subset of
W 1,p (and then there is no gap from X to W 1,p).
If p ∈]N − 1, N [, F1(X, W 1,p

w )(u0) = F2(X, W 1,p
w )(u0) = C while F (u0) = 0 (X is a

dense subset of W 1,N ) and then there is a gap from X to W 1,p
w .

If p ∈ [1, N − 1], then F1(X, W 1,p
w )(u0) = F2(X, W 1,p

w )(u0) = F (u0) = 0 whenever X
is a dense subset of W 1,N : in particular we may find a sequence of C∞ functions un

which weakly converge to u0 in W 1,N−1 such that F (un) = 0 for all n (cf. Remark
2.8); in this case we are not able to say whether there is gap or not (cf. Remark 2.9).

We end this section with an example of Lavrentiev phenomenon for some boundary
value problems.
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Definition 2.11. Let ε > 0 and p ∈]1, 2[ be given, and for all u in W 1,p(B, R2), set

G(u) :=

∫

B

[

f(u)|Du|2 + ε|Du − I|p
]

dx (2.9)

where f : R
2 → [0,∞[ is taken as in Definition 2.2 (i.e., f is a continuous function

such that f(y) = 0 whenever |y| = 1) and assume C := 2
∫

B
f(y)dy > 0. As usual

we set u0(x) := x/|x| for all x ∈ B.
Let C1(B, R2) denote the class of all functions in C1(B, R2) which admit a continuous
extension to B.
Thus we have the following result.

Theorem 2.12. G is a weakly lower semicontinuous functional on W 1,p with p-
growth, there exist

M1 := min
{

G(u) : u ∈ W 1,p(B, R2), u = I on ∂B
}

, (2.10)

M2 := min
{

G(u) : u ∈ C1(B, R2), u = I on ∂B,
}

, (2.11)

and we have M1 ≤ G(u0) ≤
5πε

2 − p
, M2 = G(I) = C. Hence M1 < M2 if ε is small

enough.

Proof. G is weakly lower semicontinuous by well-known theorems. Since it has p-
growth, it is coercive on the affine space of all functions u ∈ W 1,p(B, R2) such that
u = I on ∂B, endowed with the weak topology of W 1,p. Hence G attains a minimum
M1 and

M1 ≤ G(u0) = ε

∫

B

|Du0 − I|pdx ≤
5πε

2 − p
.

On the other side, G(I) =
∫

B
f(y) 2dy = C, and then it is enough to prove that

G(u) ≥ C for all u ∈ C1(B, R2) such that u = I on ∂B. To this end, notice that for
all such u,

deg(u, B, y) = deg(I, B, y) =
{

1 if y ∈ B,
0 otherwise

(cf. Theorem 3.1 in [11]) and then, using area formula,

G(u) =

∫

B

f(u)|Du|2dx ≥ 2

∫

B

f(u)Ju dx

= 2

∫

R2

f(y) deg(u, B, y) dy ≥ 2

∫

B

f(y)dy = C

3. - Appendix

In this appendix we prove two results used above (Theorem 3.2 and Lemma 3.9).
The first one is a theorem in current theory;

�
k(A) is the (locally convex) space of
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all smooth k-forms with compact support in the open set A, and
�

k(A) is the dual of
�

k(A), i.e., the space of all k-dimensional currents on A.
�

k(A) is always endowed
with the dual topology. In this notation

� 0(A) is the space of smooth functions on A
with compact support and

�
0(A) the space of Schwartz distributions. For the basic

results and notation in current theory, we refer to [19].

Definition 3.1. When u : Ω → R
2 is a C1 function, then its graph is a 2-dimensional

submanifold of class C1 of Ω × R
2 without boundary and we may orient it so that

the orientation induced on Ω agrees with the standard orientation of R
2. Thus we

may see it as a current in Ω × R
2 (more precisely, a 2-dimensional current without

boundary) which we denote by Tu.
As usual, the standard basis � of the space of 2-covectors in R

2 × R
2 is given by

dx1∧dx2, dxi ∧dyj (with i = 1, 2 and j = 1, 2) and dy1∧dy2, and then every 2-form
ω ∈

�
2(Ω × R

2) may be written as

ω =
∑

α∈�
ωαα (3.1)

with ωα ∈
�

0(Ω×R
2). Moreover, for every u ∈ C1(Ω, R2) and every φ ∈

�
0(Ω×R

n),
we have

〈Tu;φ dx1 ∧ dx2〉 =

∫

Ω

φ(x, u) dx (3.2)

〈Tu;φ dxi ∧ dyj〉 =

∫

Ω

φ(x, u)(−1)i ∂uj

∂x̂ı
dx (3.3)

〈Tu;φ dy1 ∧ dy2〉 =

∫

Ω

φ(x, u)Ju dx (3.4)

where i = 1, 2, j = 1, 2 and ı̂ = 1 if i = 2, ı̂ = 2 if i = 1.
Let T : C1(Ω, R2) →

�
2(Ω × R

2) be the map which takes each u in Tu: we claim
that T admits a continuous extension to the space W 1,1

loc (Ω, R2). More precisely, we
have the following theorem.

Theorem 3.2. Let T be the function given before. Then there exists a unique
sequentially weakly continuous map (which we still denote as T ) from W 1,1

loc (Ω, R2)
into

�
2(Ω × R

2) which extends T .

Remark 3.3. Uniqueness is obvious, because C1 is dense in W 1,1
loc . To prove exis-

tence, it is enough to show that for every 2-form ω ∈
� 2(Ω, R2) the map which takes

each u ∈ C1 into 〈Tu;ω〉 admits a continuous extension to W 1,1
loc .

In fact, we shall prove that this extension exists for all 2-forms ω with compact
support of class C1, and not only C∞, and taking into account the decomposition
(3.1) and formulas (3.2), . . . , (3.4), it is enough to extend to W 1,1

loc the map

u 7→

∫

Ω

φ(x, u) Mu dx (3.5)
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whenever φ ∈ C1
c (Ω × R

2) and Mu is a minor of the matrix Du.
It is well-known how extend (3.5) to the space W 1,2

loc , because the same formula
makes sense for all functions in this space and gives a sequentially weakly continuous
functional (see [9], section 4.2), and moreover in this case Tu is an integer multiplicity
current without boundary by a well-known compactness theorem (see [19], Theorem
27.3).
In the general case, formula (3.5) does not make sense because the minor of order
2 of Du, namely the Jacobian determinant, is not given for W 1,1 functions. In this
case Tu may be not a locally rectifiable current and may have not locally bounded
mass (but still it has no boundary); more precisely we show that for all u ∈ W 1,1

loc ,
Tu actually belongs to the dual of all 2-forms of class C1 (and not only C∞) with
compact support, but by no means to the dual of all continuous 2-forms with compact
support.

Remark 3.4. The (sequential) continuity of the extension does not hold if we
replace in W 1,1

loc the weak topology with the BV topology (cf. Remark 2.8) or any
other weaker topology.
With no loss in generality we may assume that 0 belongs to Ω and then set u0 = x/|x|
for all x ∈ Ω. Now take un as in Remark 2.8 and vn as in formula (2.4): they are
both sequences of Lipschitz functions which converge to u0 in the BV topology, but
Tun and Tvn do not converge to the same current.
Indeed, if we take ω := φ dy1 ∧ dy2 where φ : Ω×R

2 → R is a smooth functions with
compact support such that
(i) φ(x, y) = 1 in a neighborhood of {0} × 1

2B,
(ii) φ(x, y) = 0 whenever |y| = 1,

an explicit computation shows that 〈Tun;ω〉 = 0 for all n and 〈Tvn;ω〉 ≥ π/4
definitively.

Remark 3.5. Of course, the result of Theorem 3.2 can be extended (without any
essential modifications in the proof) to arbitrary dimensions: if Ω is an open subset
of R

N , and T is the map which takes each function u ∈ C1(Ω, RM ) in its (oriented)
graph, considered as an N -dimensional current of Ω × R

M (N, M positive integers
greater than 1), then we may find a unique continuos extension of T to the space
W 1,p

loc (Ω, RM ) for all p ≥ N∧M−1. This extension is (sequentially) weakly continuous
unless p = N ∧M −1 and N ∧M > 2; in this last case we have the strong continuity
only. If N ∧ M = 2 and p = 1, we have (sequential) continuity with respect to the
W 1,1

loc weak topology but not with respect to the BV topology (or any other weaker
topology). If p < N ∧ M − 1, there is no continuous extension.

Proof of Theorem 3.2

Taking into account Remark 3.3, we shall prove that the map u 7→
∫

Ω
φ(x, u)Mu dx

may be extended to W 1,1
loc whenever φ ∈ C1

c (Ω × R
2) and Mu is a minor of Du.

When we consider minors of order 1 or 0, it is enough to recall that the map

u 7→

∫

Ω

φ(x, u)Mu dx u ∈ W 1,1
loc (Ω, R2) (3.6)
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is a (well-defined) continuous map for every φ ∈ Cc(Ω × R
2) (in fact, for every

bounded continuous φ with support included in K × R
2 for some compact K ⊂ Ω,

see Lemma 3.6).
When we consider the minor of order 2 (i.e., the Jacobian determinant) there is no
trivial extension of the function because Ju is not given in general for functions in
W 1,1. Using Lemma 3.8 below, for all φ ∈ C1

c (Ω × R
2) we may find a bounded

Rφ ∈ C(Ω × R
2, R2), with support included in K × R

2 for some compact K ⊂ Ω,
such that

∫

Ω

φ(x, u)Ju dx =

∫

Ω

Rφ(x, u) · Du dx ∀u ∈ C1(Ω, R2) (3.7)

and the right term of this equality is a function which can be easily extended to the
whole space W 1,1

loc using Lemma 3.6.

Lemma 3.6. The following facts hold.
(i) For every bounded continuous function φ on Ω × R

2, the mapping

u 7→

∫

Ω

φ(x, u) dx u ∈ W 1,1
loc (Ω, R2)

is sequentially weakly continuous.
(ii) For every bounded continuous function φ on Ω × R

2 with support included in
K × R

2 for some compact K ⊂ Ω, the mapping

u 7→

∫

Ω

φ(x, u)Du dx u ∈ W 1,1
loc (Ω, R2)

is sequentially weakly continuous.

Proof.

(i). Let un be a sequence in W 1,1
loc which weakly converges to u. Then it strongly

converges in L1
loc and hence, eventually taking a subsequence, we may assume that

un converges to u a.e.. Thus φ(x, un(x)) converges to φ(x, u(x)) for a.a. x because
φ is continuous, and it is enough to apply Lebesgue theorem.
(ii). Let un be a sequence in W 1,1

loc which weakly converges to u and let A be a
relatively compact open subset of Ω which includes K and set vn(x) = φ(x, un(x)),
v(x) = φ(x, u(x)) for all x and n. As before, we may assume that vn converges a.e.
to v. Moreover the functions vn are uniformly bounded and 0 outside A. Since Dun

weakly converges to Du in L1
loc, it is well-known that vnDun weakly converges to

v Du.

Lemma 3.7. Let α be a function in C1(Ω × R
2) with support included in K × R

2

for some compact K ⊂ Ω, and let u = (u1, u2) be a function in C1(Ω, R2). Then we
have the following identity:

∫

Ω

[

α(x, u)+u2 ∂α

∂y2
(x, u)

]

Ju dx =

∫

Ω

(

u2 ∂α

∂x2
(x, u),−u2 ∂α

∂x1
(x, u)

)

·Du dx . (3.8)
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Proof. A simple density argument shows that we may assume α and u of class C∞.
Now, writing Ju as a divergence (cf. [17] and [9], section 4.2)

Ju =
∂

∂x1

(

− u2 ∂u1

∂x2

)

+
∂

∂x2

(

u2 ∂u1

∂x1

)

(3.9)

and integrating by parts α(x, u)Ju we obtain (with some computations)

∫

Ω

α(x, u)Ju dx =

∫

Ω

[ ∂

∂x1
(α(x, u))u2 ∂u1

∂x2
−

∂

∂x2
(α(x, u)) u2 ∂u1

∂x1

]

dx

=

∫

Ω

(

u2 ∂α

∂x2
(x, u),−u2 ∂α

∂x1
(x, u)

)

· Du dx−

−

∫

Ω

[

u2 ∂α

∂y2
(x, u)

]

Ju dx .

Lemma 3.8. For every φ ∈ C1
c (Ω×R

2) there exists a bounded Rφ ∈ C(Ω×R
2, R2)

with support included in K × R
2 for some compact K ⊂ Ω which satisfies

∫

Ω

φ(x, u)Ju dx =

∫

Ω

Rφ(x, u) · Du dx ∀u ∈ C1(Ω, R2) . (3.10)

Proof. Let K be the projection on Ω of the support of φ and set

α(x, y) :=

∫ 1

0

φ(x, y1, ty2)dt ∀(x, y) ∈ Ω × R
2 . (3.11)

A simple computation shows that α is a function of class C1 with support included

in K × R
2 which satisfies the equation φ = α + y2

∂α
∂y2

. Hence formula (3.8) yields

∫

Ω

φ(x, u)Ju dx =

∫

Ω

(

u2 ∂α

∂x2
(x, u),−u2 ∂α

∂x1
(x, u)

)

· Du dx , (3.12)

and then it is enough to take

Rφ :=
(

y2
∂α

∂x2
,−y2

∂α

∂x1

)

. (3.13)

Formulas (3.11) and (3.13) immediately yield that Rφ is bounded and continuous,
with support included in K × R

2.

Lemma 3.9. Let (un) be a sequence of functions in Lip(Ω, R2) which weakly con-
verges to u in W 1,1, and take r such that rB ⊂ Ω. Then for almost all ρ ∈]0, r[,
(un ρS) admits a subsequence which converges to u ρS uniformly.
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Proof. Since the functions un weakly converge to u in W 1,1(Ω, R2), they converge
also in L1 and the functions Dun are uniformly integrable in L1 (by Dunford-Pettis
theorem). Hence there exist a finite constant C and a convex function f : [0,+∞] →
[0,+∞] such that lim

t→∞

f(t)/t = +∞ and

∫

Ω

f(|Dun|)dx ≤ C ∀n (3.14)

(cf. [13], chapter II, section 2). For all n and all ρ ∈]0, r[ set

uρ
n := un ρS, uρ := u ρS

gn(ρ) :=

∫

ρS

|un − u| d� 1

hn(ρ) :=

∫

ρS

f(|Dun|) d� 1 .

Then
∫ r

0
gn(ρ) dρ ≤ ‖un − u‖1 and gn converges to 0 in L1(0, r). Hence, eventually

passing to a subsequence, we may assume that, for a.a. ρ, gn(ρ) converges to 0, i.e.,
uρ

n converge to uρ in L1(ρS, R2). Moreover (3.14) yields

∫ r

0

hn(ρ) dρ ≤

∫

Ω

f(|Dun|)dx ≤ C ∀n

and then Fatou’s lemma yields

∫ r

0

lim inf
n→∞

hn(ρ) dρ ≤ lim inf
n→∞

∫ r

0

hn(ρ) dρ ≤ C .

Thus, for a.a. ρ, uρ
n → uρ, lim infn hn(ρ) < ∞, and we may find a subsequence

nk so that hnk
(ρ) is bounded. Hence uρ

nk
is a sequence of functions in C1(ρS, R2)

which converges to uρ in L1 with uniformly integrable derivatives (cf [13], chapter
II, section 2) and so we have convergence in the weak topology of W 1,1, which yields
uniform convergence.
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[18] M. Lavrentiev: Sur quelques problèmes du calcul des variations. Ann. Mat.
Pura Appl. 4 (1926), 107–124

[19] L.M. Simon: Lectures on Geometric Measure Theory. Proc. of the centre for
Mathematical Analysis 3, Australian National Univ., Canberra 1983


