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Boundary effects in phase transitions

G. Alberti, G. Bouchitté, P. Seppecher

Abstract: We study the asymptotic behaviour of Cahn and Hilliard
model under the assumption that the boundary surface energy is a two-
wells positive function very large for intermediate values. We show
that the limit energy is non local, taking into account boundary sur-
face phases. When these phases coincide with the trace of the volume
phases, the limit energy is the classical capillary energy with an extra
term corresponding to line tension.

1. – Introduction

An usual way to study multiphase materials is to consider homogeneous phases
separated by bidimensional interfaces of constant surface tension. The contact angle
of these interfaces with the boundary of the container is prescribed and depends on
the boundary surface energies through the so-called Young’s law [7]. Sometimes,
an energy per unit length concentrated on the contact line (line tension) is added
to the model [10]. This paper is an attempt to show that the classical Cahn and
Hilliard model can lead mathematically to such a line tension.

The model of Cahn and Hilliard [4] is the simplest continuum model for phase
transition: the total energy of a fluid whose mass density is denoted u is the sum
of a non convex volume energy W1(u) and of a term λ | Du |2 taking into account
the non homogeneity of the fluid. The function W1 is a two-wells positive function
vanishing only for u ∈ {α1, β1}. The coefficient λ (capillarity coefficient) introduces
an intrinsic length (characteristic of the thickness of an interface). As this length
is in general much smaller than the characteristic length of the container, a small
parameter ε appears. The equilibrium of such a fluid can be studied in an asymptotic
way. This has been done by Modica [9] who considered the Γ-convergence of the
functional

(1.1) Fε(u) := ε

∫

Ω

|Du|2 +
1

ε

∫

Ω

W1(u) +

∫

∂Ω

σ(Tu)

Here σ(Tu) is the surface energy on the boundaries of the container and Tu denotes
the trace of u. Under the implicit assumption that σ(Tu) is of order ε0, L. Modica
proved that going to the limit ε → 0 the resulting model is the classical one with
constant surface tension, constant surface energies on the boundary of the domain.
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The contact angle predicted by Young’s law is recovered. Indeed the limit of Fε is
given by:

(1.2) F0(u) := c1
� N−1(∂A ∩ Ω) + ĉ1

� N−1(∂Ω ∩ A)

if u is equal to α1 inside A and to β1 outside. The coefficients c1 and ĉ1 in (1.2)
are explicitly determined by W1 and σ (see [9]). Cahn and Hilliard model leads
to qualitatively correct predictions although it does not take into account any long
range forces near the boundary ∂Ω (the importance of these forces is well known
for boundary effects in phase transition [5]).

A lot of variants of problem (1.1) can be considered by assuming different
behaviors for every quantity with respect to ε. A first variant was described in [3]
where we considered a wall with roughness of order ε (in this case Ω depends upon
ε) and, using homogenization techniques, we made explicit the dependence of the
contact angle on the roughness parameters of the boundary.

The variant we propose in this paper is quite new: it rests upon the observation
that a concentration of energy appears in the vicinity of the contact line where the
trace of uε (a minimizer of Fε) differs from its values far away on the wall. So we
choose a surface energy which becomes very large for intermediate values: σ in (1.1)
is replaced by λεW2 where W2 is a positive two-wells function vanishing only on
{α2, β2} and λε is a parameter tending to infinity with a appropriate scaling. Then
we study the asymptotic behaviour of the following functional:

(1.3) Fε(u) := ε

∫

Ω

|Du|2 +
1

ε

∫

Ω

W1(u) + λε

∫

∂Ω

W2(Tu)

expecting a limit energy generalizing (1.2):

(1.4) F0(u) := c1
� N−1(∂A ∩ Ω) + ĉ1

� N−1(∂Ω ∩ A) + c2
� N−2(∂A ∩ ∂Ω)

where the coefficient c2 represents the line tension. Unfortunately F0 cannot be
the limit in the sense of Γ-convergence since it is not lower semicontinuous with
respect to L1(Ω)-convergence. The point is that the limit v of the trace of u may
not coincide with the trace of the limit of u. From a mechanical point of view, a
surface phase separation appears on the boundary (v ∈ {α2, β2}) and the dividing
line Sv does not necessarily coincide with the contact line (i.e. the trace of the
interface Su on the boundary ∂Ω, see Fig. 2).

Our result (theorem 2.1) takes into account this possible dissociation between
surface and volume phases and brings to the fore the interesting scaling for λε:

(1.5) lim
ε→0

ε log λε = K ∈ ]0,+∞[

which ensures the relative strong compactness in L1(∂Ω) of the traces Tuε under
the equiboundedness assumption of energies Fε(uε). Moreover we show that Fε

considered as a functional of the pair (u, Tu) converges to a function Φ(u, v) defined
for (u, v) ∈ BV (Ω, {α1, β1}) × BV (∂Ω, {α2, β2}) by:

(1.6) Φ(u, v) := c1
� N−1(Su) +

∫

∂Ω

∣∣H(Tu) − H(v)
∣∣d
� N−1 + c2

� N−2(Sv)
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where H denotes a primitive of 2
√

W1.
The limit of Fε in the sense of Γ-convergence in L1(Ω) reads as

(1.7) F (u) := inf
v

Φ(u, v)

In proposition (2.3) we show that this limit F is nothing else but the relaxed func-
tional associated with the functional F0 as defined in (1.4). In that sense the model
of capillarity with line tension is mathematically justified as the singular limit of
Cahn and Hilliard model (1.3).

The consequences of this new model for equilibrium and contact angle are
discussed in section 3 where examples are considered. A complete version of the
results presented in section 2 will appear in a forecoming paper [2].

2. – The convergence result

In the following Ω denotes a bounded open subset of R
N with boundary

of class C2, W1 and W2 are non-negative continuous functions on R such that
limt→∞(Wi(t)/|t|) = +∞ and Wi(t) = 0 ⇔ t ∈ {αi, βi} (with αi < βi) for i = 1, 2
and H denotes a function on R such that H ′ = 2

√
W1. Finally, λε is a parameter

tending to infinity with a suitable scale while ε decreases to 0.
We consider the following functional on the space L1(Ω):

(2.1) Fε(u) :=

{
ε
∫
Ω
|Du|2 + 1

ε

∫
Ω

W1(u) + λε

∫
∂Ω

W2(Tu) if u ∈ H1(Ω),

+∞ otherwise.

To describe the limit of Fε, we need to introduce spaces of functions with bounded
variations: if A is an open subset of R

h or of some h-dimensional smooth embedded
manifold, BV (A) denotes the space of all real functions in L1(A) (the measure on
A being the h-dimensional-Hausdorff measure), whose distributional derivatives are
bounded Borel measures on A. When u ∈ BV (A) and A is an open subset of R

h,
the measure Du takes values in R

h, and when A is a subset of a smooth manifold M
embedded in R

k, then Du takes values in R
k and the density of Du with respect to

the total variation |Du| takes values in the tangent space of M in x for |Du| almost
all x. The jump set Su of a function u ∈ BV (A) (i.e. the set of all points where
u has no approximate limit with respect to the h-dimensional Hausdorff measure
on A) is

� h−1-countably rectifiable . If u ∈ BV (A) is the characteristic function
1E of some Borel subset E, we will say that E has finite perimeter in A. In that
case Su coincides with the essential boundary of E denoted ∂E ∩ A and we have
:

∫
A
|D1E | =

�
h−1(∂E ∩ A). When A has Lipschitz boundary and u belongs to

H1(A) (or BV (A)), we denote by Tu the trace of u on A. When u = 1E , this trace
is the characteristic function of some Borel subset of ∂A we shall denote E ∩ ∂A.
For futher properties of BV spaces , we refer to [6] [8].

The asymptotic behaviour of the functionals Fε(u) as ε → 0 is described by
a functional Φ which depends on two variables u and v. The variable u (volume
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density) ranging into {α1, β1} is related to the limit of minimizers uε of (1.1) in
L1(Ω). The variable v (surface density) ranging into {α2, β2} corresponds to the
limit of Tuε the trace of uε in L1(∂Ω). Since this limit v differs from the trace Tu,
a boundary layer appears contributing to the global energy by a equivalent surface
density on ∂Ω equal to |H(Tu)−H(v)|. The interface energy in Ω concentrated on
the surface separating the volume phases A1 := {u = α1} and B1 := {u = β1} is
described as in [9] by the capillarity coefficient c1 defined by:

(2.2) c1 := |H(β1) − H(α1)| = 2

∫ β1

α1

√
W1(s)ds

The main feature of our model is that a minimal interface criterium appears between
the surface phases A2 := {v = α2} and B2 := {v = β2} represented by a line tension
coefficient c2 which depends on our scaling :

(2.3) c2 := (β2 − α2)
2 K

π
, K := lim

ε→0
ε log λε

The limit energy Φ reads as:

(2.4) Φ(u, v) :=






c1
� N−1(Su) +

∫
∂Ω

∣∣H(Tu) − H(v)
∣∣ + c2

� N−2(Sv)

if u ∈ BV (Ω, {α1, β1}) , v ∈ BV (∂Ω, {α2, β2})

+∞ otherwise.

We have:

Theorem 2.1. (i) Let (uε) be a sequence such that Fε(uε) is bounded . Then
(uε, T (uε) is strongly relatively compact in L1(Ω) × L1(∂Ω). Moreover, for every
cluster point (u, v), the following lower bound inequality holds:

lim inf Fε(uε) ≥ Φ(u, v) .

(ii) Conversely, for every (u, v) in L1(Ω) × L1(∂Ω) , there exists an approximating
sequence (uε) in L1(Ω) such that

uε → u in L1(Ω), T (uε) → v in L1(∂Ω), lim sup
ε→0

Fε(uε) ≤ Φ(u, v)

Remark. In (ii) we can choose uε so that
∫
Ω

uεdx =
∫
Ω

udx for every ε. This
way we can fit with a prescribed total mass constraint.

We may easily reformulate the theorem 2.1 after elimination of the variable v.
Setting

(2.5) F (u) := inf{Φ(u, v) : v ∈ L1(∂Ω) }

and, using the remark above, we have:
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Corollary 2.2. The sequence Fε Γ-converges to F in L1(Ω). Therefore if m
satisfies α1 < m

/
|Ω| < β1 and uε is a minimizer for the problem:

(2.6) inf{Fε(v) :

∫

Ω

vdx = m }

Then (uε) is strongly relatively compact in L1(Ω) (as the trace Tuε in L1(∂Ω) by
the assertion (i) of theorem 2.1) and every cluster point u is solution of

(2.7) inf{F (v) :

∫

Ω

vdx = m }

Note that the functional F (u) defined by (2.5) is non local with respect to u
in the sense that it cannot be expressed by integration of a local density depending
on the variables u and Du.

From a mechanical point of view, line tension is usually understood as a concen-
tration of a part of the total energy on the contact line � := Su∩∂Ω proportionally
to its length. Of course this has sense only if � (that is the jump set of the trace
Tu) is

�
N−2-rectifiable. In that case the expected energy should take the form

(1.4).
To recover this form in our limit model, we must assume that � coincides with

Sv(= ∂A2) i.e. that the infimum of Φ(u, .) defined by (2.4) is achieved for v = α2

on A1 (and β2 on B1) or for v = β2 on A1 (and α2 on B1). An easy computation
shows that the second configuration cannot be optimal among the other possible
choices for v corresponding to A2 = A1 ∩ ∂Ω, A2 = ø or A2 = ∂Ω. So we define

p(α1) := α2 , p(β1) := β2

and

(2.8) F0(u) :=

{
Φ(u, p(Tu)) if u ∈ BV (Ω, {α1, β1}) , Tu ∈ BV (∂Ω)

+∞ otherwise

This new functional can be expressed in term of the subset A1. For admissible
u, A1 has finite perimeter in Ω and its trace on ∂Ω has bounded perimeter in ∂Ω
considered as a (N−1)-dimensional manifold. Hence this set ∂Ω∩A1 has a (N−2)-
rectifiable reduced boundary (denoted ∂A1 ∩ ∂Ω) corresponding to the geometrical
contact line. We have:

(2.9)
F0(u) = c1

� N−1(∂A1 ∩ Ω) + ĉ1
� N−1(∂Ω ∩ A1)

+c2
� N−2(∂A1 ∩ ∂Ω) + d

where

(2.10)
ĉ1 := |H(α2) − H(α1)| − |H(β2) − H(β1)|
d := |H(β2) − H(β1)|

� N−1(∂Ω)
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A capillarity problem with line tension is associated :

(2.11) inf{F0(v) :

∫

Ω

vdx = m }

The following proposition makes the connection between F0 and the functional F
defined in (2.4):

Proposition 2.3. Assume that the following inequalities hold :

(2.12) α2 ≤ α1 < β1 ≤ β2

Then F is the relaxation of F0 with respect to the strong topology of L1(Ω): for
every u in L1(Ω)

F (u) = inf{ lim inf
n→∞

F0(un) : un → u in L1 }

Therefore the problems (2.6) and (2.11) have the same infimum and every minimizer
for (2.11) (if it exists) is also a minimizer for (2.6).

Proof. By (2.2) and (2.12), the following equality holds for every s and t in
{α1, β1}:
(2.13) |H(p(s)) − H(t)| = |H(p(s)) − H(s)| + c1 1{s 6=t} .

The inequality F ≤ F0 is trivial . To prove the opposite inequality, we need to
prove that for every u ∈ BV (Ω, {α1, β1}) , v ∈ BV (∂Ω, {α2, β2}), we can find an
approximating sequence (un) such that:

(2.14) (un, Tun) → (u, v) in L1(Ω) × L1(∂Ω) , lim sup
n→∞

F0(un) ≤ Φ(u, v) .

To that aim, we need an approximation lemma.

Lemma. Let A a subset of Ω with finite perimeter, ∂A∩Ω its reduced boundary,
θ a function in L1(∂Ω; {0, 1}). Then there exists a sequence of sets (An) with finite
perimeter in Ω such that |An4A| → 0 and

(2.15)
� N−1(∂An ∩ Ω) → � N−1(∂A ∩ Ω) + HN−1({T (1A 6= θ})

For given (u, v), we use the sequence (An) defined by this lemma with A :=
{u = α1} and θ := 1{v=α2}. Then (2.14) is obtained by taking un := α11An

+
β11Ω−An

. Indeed we have p(Tun) = v and applying (2.13) with (s, t) = (p−1(v), v),
by (2.15), one gets:

lim sup
n→∞

F0(un) ≤ lim sup
n→∞

(c1
� N−1(∂An ∩ Ω) + c2

� N−2(Sv)+

+

∫

∂Ω

|H(v) − H(p−1(v))|d� N−1)

≤ c1
� N−1(∂A ∩ Ω) + c2

� N−2(Sv)+

+

∫

∂Ω

(|H(v) − H(p−1(v))| + c11{p−1(v) 6=Tu})d
� N−1

≤ c1
� N−1(∂A ∩ Ω) + c2

� N−2(Sv)+

+

∫

∂Ω

(|H(v) − H(Tu)|d� N−1 = Φ(u, v) .
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Proof of the lemma

As well known [8] there exists an approximating sequence (un) in BV (Ω) such
that un → 1A, T (un) = θ and

(2.16)

∫

Ω

|Dun| →
∫

Ω

|D1A| +
∫

∂Ω

|θ − 1A| d
� N−1

Moreover, by using truncation, we can assume that: | un |≤ 1. For every t ∈]0, 1[
let us consider the level set {un > t}. As θ ∈ {0, 1} the Lebesgue density (with
respect to Ω) of this set at a point of ∂Ω is

�
N−1 a.e. equal to 1 on {θ = 1}

and to 0 on {θ = 0} so its trace on ∂Ω coincides with θ. Now by the coarea-

formula
∫
Ω
|Dun| =

∫ 1

0
(
∫
Ω
|D1{un>t}|)dt we see that, for every δ > 0, there exists

tn ∈ [δ, 1 − δ] such that:

(2.17)

∫

Ω

|D1{un>tn}| ≤
1

1 − 2δ
(

∫

Ω

|Dun|)

Then the sequence An := {un > tn} satisfies the conditions of lemma. Indeed as
seen above T (1An

) = θ and by (2.16) and (2.17):

lim sup
n→∞

∫

Ω

|D1An
| ≤ 1

1 − 2δ

(∫

Ω

|Du| +
∫

∂Ω

|θ − 1A|d
� N−1

)

which yields (2.15) by letting δ tend to 0. Moreover, due to the identity
∫
Ω
|un −

1A|dx =
∫ 1

0
(
∫
Ω
|1{un>t} − 1A|dx)dt we deduce from the convergence of un to 1A

in L1(Ω) that a subsequence of fn(t) :=
∫
Ω
(1{un>t} − 1A)+dx converges to 0 a.e.,

hence uniformly on [δ, 1− δ] since fn is non increasing with respect to t. The same
conclusion holds for gn(t) :=

∫
Ω
(1{un>t} − 1A)−dx (which is non decreasing with

respect to t). The convergence of |An4A| = fn(tn) + gn(tn) to 0 follows and the
lemma is proved.

Outline of the proof of theorem 2.1

For all details we refer to [2]. The main point in the proof of (i) is the strong
relative compactness of the traces (Tuε) in L1(∂Ω). To that aim, we consider a
neighborhood A of the boundary and the localized part of the total associated
energy, say Fε(u, A). Up to a diffeomorphism, we can assume that A = {x ∈ R

N :
|x| < r, xN > 0}. By a slicing argument we reduce to the case N = 2. Then we show
that Fε(u, A) is lower bounded by Gε(Tuε) where Gε is the following 1-dimensional
energy:

Gε(v) :=
ε

2π

∫ ∫

]−r,r[2

∣∣∣
v(x′) − v(x)

x′ − x

∣∣∣
2

dx′dx + λε

∫

]−r,r[

W2(v)dx

Finally we apply to Gε the compactness and the Γ-convergence result we proved in
[1] (which provides in particular the strong relative compactness in L1(A ∩ ∂Ω) of
(Tuε)).
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Let us now outline the proof of the assertion (ii). By a standard approximation
procedure for sets of finite perimeter, we reduce to the case where the boundary
phases A1 and B1 are separated by a smooth curve � . Far from � , we use the
same approximating sequence (uε) as in [9]. On a neighborhood of � (a rectangular
cylinder Qε as displayed in Fig. 1 where the level sets of uε are drawn) we use the
cylindric coordinates (r, θ).

Defining rε :=
ε

log λε
and Rε := +

ε

2
, we choose for (uε) a function which is

continuous across ∂Qε, affine and depending only on θ in the crown {rε < r < Rε}
and such that:

Tuε = β2 if r ≥ rε and θ = 0 ; Tuε = α2 if r ≥ rε and θ = π

|Duε| ≤ M
ε if r ≥ Rε ; |Duε| ≤ M

rε

if r ≤ rε

The total energy on Qε corresponding to uε is upper bounded:

Fε(uε, Qε) ≤
� N−2(� )

[
ε
|(β2 − α2)|2

π

∫ Rε

rε

dr

r
+ 2λεrε sup

[α2,β2]

W2 + o(ε)

]

so that the limit of this contribution as ε tends to 0 is upper bounded by
ĉ2
� N−2(� ).

rε ε
uε=β2

uε=const .

uε=α2
Rε

Figure 1

3. – Capillary equilibrium with line tension

In this section we give some examples of equilibrium, i.e. minimizers (u, v) of
the functional Φ defined in (2.4). In particular we show how for some particular
geometries of the container, the dissociation between the contact line and the surface
phase transition is possible. Let us consider two phases A1 := {u = α1} and
B1 := {u = β1} in equilibrium in a container Ω as partially drawn in Fig. 2. The
trace of the interface S is the curve � (contact line). We assume that two boundary
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phases A2 := {v = α2} and B2 := {v = β2} lie on ∂Ω and are separated by the
curve � .

∂Ω

∂Ω
contact  line 

phase A1

 phase B1

phase A1

boundary 
phase A2

boundary 
phase B2

boundary phase t ransi tion int erface

Figure 2

Assuming everything smooth, we define ϕ on the curve � as the angle between
the inward normal n to ∂Ω and the principal normal to � and K as the curvature
of � . We define θ on � as the angle between the interface and the boundary (the
contact angle – see Fig. 3). Let us write the conditions of equilibrium corresponding
to a stationary point for Φ(u, v). When � and � do not coincide these conditions
read as:

| H(α1) − H(α2) | − | H(α1) − H(β2) | +c2K sinϕ = 0 on � ,(3.1)

| H(β1) − H(β2) | − | H(α1) − H(β2) | +c1 cos θ = 0 on � .(3.2)

These optimality conditions may be interpreted in term of forces as shown in Fig.
3.

|H(α1)-H(β2)|

n
ν

c2

∂Ω

ϕ

|H(α1)-H(α2)| θ
|H(β1)-H(β2)|

c1τ

∂Ω

|H(α1)-H(β2)|

Figure 3

Equation (3.2) fixes the value of the contact angle. Then for a prescribed
volume of the phase A1, the position of the interface is given. Equation (3.1)
fixes the position of the curve � through the purely geometrical quantities K and
ϕ. When � and � are disconnected the position of � does not depend on the
position of the interface.

When � and � coincide the equilibrium conditions read as:

(3.3) | H(α1) − H(α2) | − | H(β1) − H(β2) | +c2K sinϕ + c1 cos θ = 0
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(3.4)
− | H(α1)−H(α2) | + | H(α1) − H(β2) |≤

≤ c2K sinϕ ≤| H(β1) − H(β2) | − | H(β1) − H(α2) |

Example: a bubble growing in a cylinder

Let us consider a bubble of volume V in a cylinder Ω of radius R. V is sufficient
for the bubble to reach the boundary (V ≥ 4Π

3 R3) (see Fig. 4).

h

R

phase β1 phase α1 phase β1

Figure 4

Two situations have to be considered: 1) There is a unique boundary phase {v =
β2}; 2) The boundary phases coincide with the volume phases (v = p(Tu)).

In the first case the contact angle is:

θ1 = arccos
( | H(β1) − H(β2) | − | H(α1) − H(β2) |

c1

)
,

while in the second case the contact angle is

θ2 = arccos
( | H(β1) − H(β2) | − | H(α1) − H(α2) |

c1

)
.

(Due to the geometry of the container the line tension has no effect on this angle).
For small bubbles only the first situation is less energetic. Indeed let us compute

the energies in the very simple case: α1 = α2 and β1 = β2. Then θ1 = π, θ2 = π/2,
the energy in the first case is:

E1 =
2c1

R
V +

4π

3
c1R

2

while in the second case it is:

E2 = 4πR2c1 + 2πRc2 .

Then the first state is less energetic for

V ≤ V0 := πR2
(c2

c1
+

4

3
R

)
.
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So the contact angle for such a growing bubble will jump from θ1 to θ2 when the
volume reaches the critical value R0.

This example can be extended to a growing bubble on a plane boundary. The
explicit computation is tedious in that case. The bubble will first grow with a
constant contact angle (and a unique boundary phase) then reach a critical volume
V0, the contact angle will suddenly change. For larger bubbles the decreasing of the
effect of line tension will lead to an increasing contact angle.

These examples show that capillary equilibrium with line tension cannot be
studied forgetting boundary phases and the possibility of dissociation between the
support of line tension and the geometrical contact line .
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