
 

Journal of Statistical Physics, Vol. 82, Nos. 3/4, 1996

Surface Tension in Ising Systems with
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We consider an Ising spin system with Kac potentials in a torus of Z
d, d≥2,

and fix the temperature below its Lebowitz-Penrose critical value. We prove
that when the Kac scaling parameter γ vanishes, the log of the probability of
an interface becomes proportional to its area and the surface tension, related
to the proportionality constant, converges to the van der Waals surface tension.
The results are based on the analysis of the rate functionals for Gibbsian large
deviations and on the proof that they Γ-converge to the perimeter functional
of geometric measure theory (which extends the notion of area). Our consider-
ations include non smooth interfaces proving that the Gibbsian probability of
an interface depends only on its area and not on its regularity.
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1. INTRODUCTION

The thermodynamic free energy excess of a simple fluid when two pure phases
coexist is

F =

∫

Σ

dλ(r)sβ(n(r)) (1.1)

where Σ is the interface that separates the two phases, dλ(r) is the surface
area element, and n(r) is the unit normal to Σ at r; finally, sβ(n) is the
surface tension at the inverse temperature β of a flat interface perpendicular
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to n. The purpose of this paper is to derive (1.1) in the context of Ising spin
systems with Kac potentials. In particular we compute the surface tension,
proving the validity of the expression proposed by the van der Waals theory.

In this introduction we stress the more physical aspects, leaving the
mathematical details to the next sections. The surface tension is usually
defined in Ising systems by a formula like

sβ,Λ :=
1

β|∂Λ| log
Z++

β,Λ

Z+−
β,Λ

(1.2)

where Λ is (for instance) a cube in R
d with unit vector n normal to its top

face, |∂Λ| being the corresponding area; Z++
β,Λ and Z+−

β,Λ are then the partition
functions with ++ and +−, respectively; boundary conditions on the top and
the bottom of Λ and periodic conditions on the other sides.

The relation with (1.1) comes from the assumption that the main contri-
bution to the free energy difference when changing + into − in the bottom is
due to the appearance of a flat interface normal on the average to n. Accord-
ing to (1.1), this excess free energy should then be |∂Λ|sβ(n), which gives
(1.2), but an exact equality can be achieved only in the thermodynamic limit
where fluctuations are depressed. The existence of this thermodynamic limit
has been proved for several classes of models; see, for instance, Bricmont et

al. [2]. A definition of the surface tension in terms of (1.2) is thus based on
a preliminary assumption of the validity of (1.1), which conceptually should
be derived first.

Let us now turn to the probabilistic aspects of the issue, which lead
us to large deviations, as can be most clearly seen in a formulation where
(1.1) appears again in a somewhat oblique fashion. Call mΛ the empirical
average (i.e., the total magnetization density) of the spins in the cube Λ,
where the Gibbs measure with periodic boundary conditions is defined. In
our context the Gibbs distribution of mΛ when Λ invades the whole space
becomes supported by two values that we call ±mβ (in the case we consider
there is a spin flip symmetry). Thus ±mβ are the pure phase equilibrium
magnetizations. The analysis of the distribution of mΛ away from ±mβ is a
large-deviation problem. Remarkably, in Ising systems in d = 2 dimensions
and nearest neighbor ferromagnetic interactions there is a complete answer
for all temperatures below the critical one [15, 27]. The probability that mΛ

is “close” to a value m in (−mβ , mβ) is found to vanish as exp(−c|∂Λ|) when
|Λ| → +∞. The rate c comes from the solution (Wulff Construction) of a
variational problem involving (1.1) whose validity is an indirect consequence
of the proof.

A direct proof of (1.1) is the true goal of this paper. First of all we
need a well-defined setting of the problem which involves an interpretation
of (1.1) as a functional in an appropriate function space. To this end it is
better to regard F as a function of the magnetization profile that has Σ as
its interface. We this consider functions u(r), r ∈ �

, with only two values
±mβ . Then Σ is defined as the boundary of the set {r ∈ �

: u(r) = +mβ}.
The minimal requirement on u for (1.1) to hold is that this should be finite.
A general notion of area has been developed in “geometric measure theory”
(see, for instance, [6], [17], [18], [20], [30]), where it is defined as a functional
P (u) with u (in our context) in BV (

�
; {±mβ}). Then P (u) generalizes the

classical notion of area of the interface of u and it is finite on each element
of BV (

�
; {±mβ}). On such a space the formula (1.1) is well defined with

dλ(r) the Hausdorff measure on the “reduced boundary” of Σ [17], provided
sβ(n) is measurable on the unit sphere of R

d.
While smooth bounded surfaces are included, in this class there are also

highly irregular surfaces with finite area. The choice of the domain where
F is defined therefore has important implications in the derivation of (1.1),
namely whether it is the area the only factor that determines the probability
of an interface or there are other features such as the regularity of the surface
which play an effective role. We will see that for Ising systems with Kac
potentials the area alone determines the probability of an interface.

The next question concerns the quantity which should play the statis-
tical mechanical role of the functional (1.1). Since u(r) is a “macroscopic
density magnetization profile”, the relevant quantity is the Gibbsian prob-
ability of “recognizing such a profile” out of the actual spin configurations.
The region Λ where the Ising spins are defined should then be scaled down
to a fixed region to be identified with the above unit torus

�
where spin

configurations will be represented in terms of piecewise constant functions
with values ±1; precise definitions are given in the next section. The Gibbs
measures can be regarded as probabilities on L∞(

�
; [−1, 1]) and we are in-

terested in computing the probability of sets Aζ(u) which are neighborhoods
of u ∈ BV (

�
; {±mβ}) (in the L1(

�
; [−1, 1])-topology, as justified in the

next section) with “width” determined by ζ, a positive parameter. Call-
ing Mβ,ε,ζ(u) such a probability, where β is the inverse temperature (of the
Gibbs measure) and ε the scaling parameter which gives the ratio between
microscopic and macroscopic units, the quantity that approximates F in (1.1)
should then be

εd−1

β
log Mβ,ε,ζ(u) (1.3)

in the limit where first ε → 0+ (thermodynamic limit) and then ζ → 0+, i.e.,
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the limit of high accuracy in the recognition of u. The quantity εd−1 scales
as a surface and plays the role of |∂Λ|−1 in the previous considerations.

The quantity (1.3) has to be compared with the previous large-deviation
probabilities, and in fact F in (1.1) should be regarded as the rate function
of large deviations associated with (1.3). It is, however, convenient at this
point to particularize the discussion to the case of the Ising ferromagnetic
Kac potentials [22] that we actually study in this paper. Here we have
another parameter γ > 0 that determines the range of the interaction. One is
interested in the limit as γ → 0+, where the range of the interaction diverges
as γ−1, as recalled in the next section. We will study the simultaneous limit
where ε → 0+ (thermodynamic limit) and γ → 0+ (scaling limit) and for
technical reasons we will ask for a strict relation between the two. One
of the features of the Kac potentials is that large-deviation rate functional
as γ → 0+ has an explicit form in terms of the nonlocal van der Waals
functional that we called Fε(u), u ∈ L∞(

�
, [−1, 1]) (β is not made explicit

here). According to this statement we can replace (in the limit when ε and
γ vanish) (1.3) by

inf
v∈Aζ(u)

Fε(v) (1.4)

The validity of (1.1) is then in this setup just the statement that F (u) in
(1.1) is the limit of (1.4) as ε → 0+ and then ζ → 0+, which on the other
hand is exactly the setting of De Giorgi’s notion of Γ-convergence (of Fε to
F ) [4, 7].

We actually prove (see Theorem 2.5) that Fε Γ-converge to the perimeter
functional P (u), up to a multiplicative factor sβ , which is then the isotropic
surface tension of the system. In agreement with the van der Waals theory
[see (2.22)], sβ can be expressed as the free energy of the instanton solution
of a nonlocal Euler-Lagrange equation for the functionals Fε.

Let us briefly describe the content of the paper. In Section 2 we state
the main definitions and results; we also outline the proofs, whose details are
reported in the next two sections and in the appendices. In Section 3 we show
how the probability estimates involving the Gibbs measures are expressed in
terms of the functional Fε and the validity of (1.1) related to a problem of
Γ-convergence, which is the solved in Section 4; more technical problems are
left to the appendices. As the relation with the Γ-convergence of Fε may have
interest in its own right, we have isolated the whole argument: the problem
of Γ-convergence is formulated at the end of Section 2 and studied in Section
4, which can be read independently of Section 3.

In a forthcoming paper [1], the above results are extended to include an
analysis of the Wulff and other constrained variational problems. It is also

proved that the interfaces with infinite area have superexponentially small
probability.

2. MAIN RESULT

We start by recalling the notion of Ising systems with Kac potentials.
Maybe our notation will not be the most usual ones, see the Remarks after
Definition 2.1d below, but this is going to be the most convenient setup for
our analysis. We split the main definition into several ones.

Definition 2.1a. Partitions of R
d. For any k ∈ Z, � (k) denotes the

partition of R
d into the d-dimensional cubes

{

r = (r1, .., rd) ∈ R
d : 2−kxi ≤ ri < 2−k(xi + 1); xi ∈ Z, i = 1, .., d

}

(2.1)

The atoms of � (k) are denoted by C(k). C(k)(r) is the unique atom of � (k)

that contains the point r. A function f ∈ L∞(Rd) is � (k)-measurable if it
is constant on the atoms of � (k) and a set A ⊂ R

d is � (k)-measurable if its
characteristic function 1A is � (k)-measurable.

Definition 2.1b. Spin configurations. We denote by γ a parameter
that takes values in {2−k, k ∈ N}. Let γ = 2−kγ , kγ ∈ N, and ε−1 ∈ N;
we say that σγ is a spin configuration with mesh γ and period ε−1 if σγ ∈
L∞(Rd; {±1}), σγ is � (kγ)-measurable and if

σγ(r) = σγ(r′) whenever ri − r′i = ε−1xi, where xi ∈ Z for i = 1, .., d

Denoting by
�

ε the torus in R
d of period ε−1, a spin configuration on

�
ε

will be identified with its ε−1-periodic extension to R
d.

The values of σγ in each atom of � (k) are the spins of the configuration
σγ .

Definition 2.1c. Energy. The interaction strength J(|r|) is a non-
negative � ∞ function of r ∈ R

d, supported in the unit ball, with sup{s > 0 :
J(s) > 0} = 1 and such that

∫

Rd

drJ(|r|) = 1 (2.2)

Let Λ be a bounded measurable region in R
d and m ∈ L∞(Λ; [−1, 1]). The

energy of m in Λ is defined as

H(m; Λ) := −1

2

∫

Λ

dr

∫

Λ

dr′J(|r − r′|)m(r) m(r′) (2.3)
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If Λ is a torus then |r − r′| in (2.3) is the distance between r and r′ in the
torus.

The ferromagnetic condition J ≥ 0 will be essential in most of the proofs.

Definition 2.1d. Gibbs measure. The Gibbs measure on the torus
�

ε,
with Kac potential J(|r|), scaling parameter γ and inverse temperature β is
the probability µβ,γ,ε on the space of spin configurations on

�
ε with mesh γ

defined as

µβ,γ,ε(σγ) :=
1

Zβ,γ,ε
exp[−βγ−dH(σγ ;

�
ε)] (2.4)

where

Zβ,γ,ε :=
∑

σγ

exp[−βγ−dH(σγ ;
�

ε)]. (2.5)

is the partition function.

Remarks. Calling

S(x) := σγ(γx), x ∈ Z
d

and Tε := {x ∈ Z
d : γx ∈ �

ε}, we have

γ−dH(σγ ;
�

ε) = −1

2

∑

x,y∈Tε

x6=y

Jγ(x, y)S(x)S(y) + cε (2.6)

where cε (which takes into account the sum over x = y) is independent of
σγ , and, recalling γ = 2−kγ ,

Jγ(x, y) := γ−d

∫

C(kγ )(γx)

dr

∫

C(kγ )(γy)

dr′J(|r − r′|) (2.7)

Observe that the coefficient cε drops from the expression for the Gibbs mea-
sure and it is therefore irrelevant. Then, using the variables S(x), the energy
and the Gibbs formula take the usual form, in particular neglecting the vari-
ation of J in the integral in (2.7) we get

Jγ(x, y) ≈ γdJ(γ|x − y|) (2.8)

which has the typical scaling properties of the original Kac potential. To
simplify the notation we have directly defined the model with the interaction

(2.7), but the results in this paper hold as well when the energy is given by
(2.6) with (2.8) holding as an equality.

The system in Definition 2.1 is thus included in the class introduced by
Kac to model the van der Waals theory of phase transition, which is in fact
derived by taking the limit γ → 0+ [22]. The physically correct procedure
would be to let first ε−1 → +∞ and then γ → 0+, but we will instead study
the much simpler problem where ε−1 diverges “not too fast” as γ → 0+,
see (2.10) below. As we shall see even, in this regime there are interesting
phenomena.

Definition 2.1e. Choice of parameters. In the sequel we fix β > 1 and,
setting

0 < α <
1

d + 1
(2.9)

we choose
ε−1 := [γ−α] (2.10)

where [a] denotes the integer part of a.

The system with β > 1 has a phase transition when γ → 0+, that is in
the Lebowitz-Penrose limit [23]. There are two equilibrium magnetizations,
±mβ , where

mβ = tanh{βmβ}, mβ > 0 (2.11)

(which has a solution 0 < mβ < 1 if and only if β > 1). The equilibrium
magnetizations are defined in [23] in terms of the partition function. We will
extend the result by showing that ±mβ are also the magnetization densities
of the typical Gibbs spin configurations. We will in fact prove in Theorem 2.3
that the probability of the configurations which have either magnetization
mβ or −mβ converges in the limit γ → 0+ to 1. We will then investigate the
residual configurations, in particular those which have an interface. Since by
Theorem 2.3 they have vanishing probability, this will be a problem of large
deviations, but, as we shall see [Eq. (2.16)], with an “anomalous normaliza-
tion”.

For any r ∈ R
d and R > 0 we set BR(r) = {r′ ∈ R

d : |r − r′| ≤ R} and
use the shorthand notation

∫

BR(r)

dr′f(r′) =
1

|BR(r)|

∫

BR(r)

dr′f(r′) (2.12)

Definition 2.2. Given −1 ≤ m ≤ 1, R > 0 and ζ > 0, we say that a
spin configuration σγ on

�
ε has magnetization constantly equal to m with
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accuracy (R, ζ) if

εd

∫

�
ε

dr
∣

∣

∣
m −

∫

BR(r)

dr′σγ(r′)
∣

∣

∣
< ζ (2.13)

and write σγ ∈ �±
R,ζ,γ if σγ satisfies (2.13) with m = ±mβ .

It is clearly necessary to define the magnetization of a spin configuration
via an averaging procedure because the spins have only values ±1. There is,
however, some degree of arbitrariness about the size of the averaging region,
we have chosen regions with finite volumes (in interaction range units). Ob-
serve that (2.13) does not imply that the averages are uniformly close to m,
but that this only happens in a large fraction of the whole volume. Such
a weaker condition is more likely to extend to systems where the condition
that α in (2.9) is small is either relaxed or dropped.

In the next Section we will prove the following result.

Theorem 2.3 Let α, ε be as in (2.9), (2.10) respectively, and let R > 0.
Then there is ζγ → 0+ as γ → 0+ so that

lim
γ→0+

µβ,γ,ε(
�−

R,ζγ ,γ ∪ �+
R,ζγ ,γ) = 1. (2.14)

In the complement of
�−

R,ζγ ,γ ∪ �+
R,ζγ ,γ there are configurations that

describe coexistence of phases and interfaces, to see this we need to generalize
Definition 2.2, replacing the number m by a function m(·). Denoting by

�

the unit torus in R
d and by L∞(

�
; [−1, 1]) the space of integrable functions

on
�

with values in [−1, 1], we set:

Definition 2.4. Let m ∈ L∞(
�

; [−1, 1]), and R, ζ ∈ R
+. We say that

a spin configuration σγ on
�

ε has magnetization m with accuracy (R, ζ) if
σγ ∈ �

R,ζ,γ(m) where

�
R,ζ,γ(m) =

{

m∗ ∈ L∞(
�

ε; [−1, 1]) :

εd

∫

�
ε

dr
∣

∣

∣

∫

BR(r)

dr′
(

m(εr′) − m∗(r′)
)

∣

∣

∣
< ζ

}

(2.15)

Let m ∈ L∞(
�

; {±mβ}), we then call the regions {r ∈ �
: m(r) =

±mβ} as the ± phases of m and define the interface of m as the boundary
of the plus-phase. On physical grounds the cost in free energy to create an
interface is proportional to its area, the proportionality constant being the
surface tension. Usually the surface tension is defined by imposing plus and

minus conditions at the top and the bottom of a rectangular region, see for
instance [2], so that the interface is (in the average) flat and parallel to the
bases of the rectangle. We will prove that the free energy is still proportional
to the area times the surface tension even when the surface is not regular.
Let P (m) be the perimeter functional on BV (

�
; {±mβ}) (the functions of

bounded variation on
�

with values ±mβ) that defines the area of the plus-
phase of m, see Appendix D. Then:

Theorem 2.5. There is sβ > 0, given in (2.22) below, so that the
following holds. For all u ∈ BV (

�
; {±mβ}) and all R > 0 there is ζγ → 0+

as γ → 0+ so that

lim
γ→0+

−γdεd−1 log[µβ,γ,ε(
�

R,ζγ ,γ(u))] = βsβP (u) (2.16)

Remarks. The number of spins in a spin configuration is proportional
to (γε)−d. Then, “in normal conditions”, the large deviation normalization
factor is (γε)d. In this sense the normalization in (2.16) is anomalous, the
anomaly is due to the presence of a phase transition. Since there are two
equilibrium magnetization values, ±mβ , it is possible to have a non constant
profile with equilibrium magnetization at all points: such profiles only cost a
surface price. To get the prefactor γdεd−1 recall that the surfaces scale like
ε1−d, as

�
ε = ε−1

�
. As shown in the sequel, the thickness of the interface

(in
�

ε) is of the order of unity, thus the volume of the region around the
interface scales also as ε1−d. The number of spins in a region is proportional
to the volume of the region times γ−d, we thus obtain γ−dε1−d which is the
inverse of the prefactor in (2.16).

To give an expression to sβ we need several intermediate definitions. We
start by recalling a result proved in [14]:

Theorem 2.6. There is a unique function m̄ : R → [−1, 1] such that
m̄(0) = 0,

lim inf
s→+∞

m̄(s) > 0, lim sup
s→−∞

m̄(s) < 0

and such that for all s ∈ R

m̄(s) = tanh{βJ̄ ∗ m̄(s)} (2.17)

where ∗ denotes convolution and for every s ∈ R

J̄(s) :=

∫

Rd−1

drJ((s2 + r2)1/2) (2.18)
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Moreover m̄ ∈ � ∞(R), it is antisymmetric, strictly increasing and with as-
ymptotic values at ±∞ equal to ±mβ , to which it converges exponentially
fast.

As we shall see m̄, called the instanton, describes the magnetization
pattern at the interface. We next define the excess free energy functional � :

Definition 2.7. Given a measurable set Λ ⊂ R
d and m ∈ L∞(Λ; [−1, 1])

we define the map � (m; Λ) with values in [0,+∞] as

� (m; Λ) :=

∫

Λ

dr [f(m(r)) − f(mβ)] +

+
1

4

∫∫

Λ×Λ

dr dr′J(|r − r′|)[m(r) − m(r′)]2 (2.19)

where, if s ∈ R, f(s) and i(s) are the free energy and the entropy density,
namely

f(s) := −1

2
s2 − β−1i(s) (2.20)

i(s) := −1 + s

2
log

(1 + s

2

)

− 1 − s

2
log

(1 − s

2

)

(2.21)

If Λ is a torus, |r − r′| is the distance between r and r′ in the torus. We
further set � (m) := � (m; Rd) and � ε(m) := � (m;

�
ε).

We call �̄ (m) the d = 1 version of � (m) with J replaced by J̄ , see
(2.18). Together with Theorem 2.5 we shall prove that

sβ = �̄ (m̄) (2.22)

The proof of Theorem 2.5 starts from a large deviation estimate for the
Gibbs measure. Because of the assumption on the size of the region we are
essentially reduced to the case considered by Eisele and Ellis, [16], and the
large deviation rate function is the functional � ε.

Given m ∈ L∞(
�

ε; [−1, 1]) we set

u(r) := m(ε−1r), r ∈ �

and define the functional

Fε(u) := εd−1� ε(m) (2.23)

on L∞(
�

; [−1, 1]), thus

Fε(u) =ε−1

∫

�
dr [f

(

u(r)
)

− f(mβ)] +

+
ε

4

∫∫

�
×
�

dr dr′Jε(|r − r′|)
[

u(r) − u(r′)

ε

]2

, (2.24)

where
Jε(|r|) := ε−dJ(ε−1|r|). (2.25)

In the next Section we will prove that Theorem 2.5 follows by proving that
{Fε} Γ-converges to F (u) := sβP (u) as ε → 0+. This means that given any
u ∈ BV (

�
; {±mβ}) the following holds.

1. For any family {uε} ⊆ L∞(
�

; [−1, 1]) that converges to u in
L1(

�
; [−1, 1]) as ε → 0+ we have

lim inf
ε→0+

Fε(uε) ≥ F (u); (2.26)

2. there exists a sequence {uε} ⊆ L∞(
�

; [−mβ , mβ ]) that converges to
u in L1(

�
; [−1, 1]) as ε → 0+ and such that

lim
ε→0+

Fε(uε) = F (u) (2.27)

Since Jε in (2.25) is an approximated delta function it might look rea-
sonable to replace the second integral in (2.24) by

D
ε

4

∫

�
dr|∇u|2, where D :=

∫

Rd

drJ(|r|)r2. (2.28)

We then obtain the classical example of functionals that Γ-converge to P (u)

(modulo the constant factor
√

D/2), as conjectured by De Giorgi in 1975 [7]
and proved by Modica and Mortola, [26]. However the constant is not the
surface tension of our model!

In Section 4 we will prove that {Fε} Γ-converges to sβP (u).

3. REDUCTION TO A VARIATIONAL PRINCIPLE

In the first part of this Section we prove a relation between the Gibbs
probability µβ,γ,ε and the functional � ε(m) by showing that, for small γ,
µβ,γ,ε is well approximated by

µβ,γ,ε(·) ≈ exp[−βγ−d� ε(·)] (3.1)
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The sense in which (3.1) holds is specified in Lemma 3.2 below. We can
already say however that (3.1) will not refer to single spin configurations for
which it is not valid, but rather to a coarse grained version of the configura-
tion itself that we will define in the sequel.

In the second part of the Section we will see, with the help of (3.1), that
the problem of computing a probability may be reduced to finding minima
of the functional � ε. In this way we will relate the proof of Theorem 2.5 to
the Γ-convergence problem stated at the end of Section 2.

We begin with a few definitions aimed at introducing the basic notion
of coarse grained configurations.

3.1. The Partition �γ

Recalling the definition of α in (2.9) we choose δ > 0 so that

dα < δ < 1 − α (3.2)

and call �γ the partition � (k) of Definition 2.1a with k = nγ and

nγ :=
[δ log(γ−1)

log 2

]

, so that γδ ≤ 2−nγ < 2γδ (3.3)

3.2. The Coarse Grained Configurations

Recalling that C(k)(r) is the atom of � (k) that contains r, we let π(k)

be the map from L∞(Rd) into itself defined by

π(k)f(r) :=
1

|C(k)|

∫

C(k)(r)

dr′f(r′) (3.4)

We then set πγ := π(nγ), s(k) := π(k)σγ and sγ := πγσγ , where σγ is a
spin configuration, Definition 2.1b; sγ will be called a coarse grained (spin)
configuration

3.3. Weights and Energies of the Coarse-Grained (Spin)
Configurations

The weight W (sγ) of the coarse grained configuration sγ is the number
of spin configurations σγ such that πγσγ = sγ .

We denote by Hε(·) := H(·; �ε), see (2.3). The energy of a coarse
grained configuration sγ is then denoted by Hε(sγ) = H(sγ ;

�
ε).

We finally write, by an abuse of notation,

µβ,γ,ε(sγ) = µβ,γ,ε

(

{σγ : πγσγ = sγ}
)

(3.5)

namely µβ,γ,ε(sγ) is the probability of all the spin configurations σγ whose
coarse grained image is sγ .

In the next Lemma we relate the energy and the weight of the coarse
grained configurations respectively to the original energy of the spin con-
figurations and to the entropy functional I. The latter is defined, for any
given bounded measurable region Λ in R

d, as the functional I(m; Λ) on
L∞(Λ; [−1, 1]):

I(m; Λ) :=

∫

Λ

dr i
(

m(r)
)

(3.6)

with i(m) as in (2.21). We set Iε(m) := I(m;
�

ε).

Lemma 3.1. There are positive constants c1, c2, c3 and c4 such that
for all spin configurations σγ , all r ∈ R

d and all R > 0

∣

∣

∣

∫

BR(r)

dr′σγ(r′) −
∫

BR(r)

dr′πγσγ(r′)
∣

∣

∣
≤ c1R

−1γδ (3.7)

Moreover
∣

∣Hε(σγ) − Hε

(

πγσγ

)∣

∣ ≤ c2γ
δε−d (3.8)

and for all coarse grained configurations sγ

∣

∣ log W (sγ) − γ−dIε(sγ)
∣

∣ ≤ c3(γε)−dγ2(1−δ)d log(γ−1) (3.9)

Finally, denoting by Nγ the total number of distinct coarse grained configu-
rations sγ :

log Nγ ≤ c4(γε)−dγ(1−δ)d log(γ−1) (3.10)

We prove the lemma in Appendix A.
The functionals Iε and Hε are related to � ε in a simple way: by ex-

panding the square in the last term of (2.19), recalling the definition (2.20)
of f(m) and using (2.2), we get

� ε(m) = [Hε(m) − β−1Iε(m)] − [Hε(m̂β) − β−1Iε(m̂β)]

where m̂β(r) ≡ mβ , r ∈ �
ε (3.11)



  

14 Alberti et al. Surface tension in Ising Systems with Kac Potentials 15

Then, as a corollary of Lemma 3.1, we have the following version of (3.1).

Lemma 3.2. There is a constant C1 > 0 so that for any coarse grained
spin configuration sγ

| log µβ,γ,ε(sγ) + βγ−d� ε(sγ)| ≤ C1(γε)−d[γ(1−δ)d log(γ−1) + γδ] (3.12)

Proof. By (3.5) and (2.4)

µβ,γ,ε(sγ) =
∑

πγσγ=sγ

1

Zβ,γ,ε
exp[−βγ−dHε(σγ)]

where Zβ,γ,ε denotes the partition function in the torus
�

ε. Using (3.8) we
write

∑

πγσγ=sγ

exp[−βγ−dHε(σγ)]

≥
∑

πγσγ=sγ

exp[−βγ−dHε(sγ) − βc2γ
δ(γε)−d]

= exp[−βγ−dHε(sγ) − βc2γ
δ(γε)−d]W (sγ)

(and similarly for the upper bound). We call

ψγ = (γε)−d
{

c2γ
δ + c3γ

2(1−δ)d log(γ−1)
}

(3.13)

and we get, using (3.9),

exp[−γ−d[βHε(sγ) − Iε(sγ)] − ψγ ]

≤
∑

πγσγ=sγ

exp[−βγ−dHε(σγ)] ≤ exp[−γ−d[βHε(sγ) − Iε(sγ)] + ψγ ]

(3.14)
Calling mβ,γ the closest number to mβ which belongs to the range of sγ(r),
we have

|mβ − mβ,γ | ≤ c5γ
(1−δ)d (3.15)

and setting m̂β,γ(r) ≡ mβ,γ ,

|[βHε(m̂β,γ) − Iε(m̂β,γ)] − [βHε(m̂β) − Iε(m̂β)]| ≤ c6(γε)−dγ(1−δ)d. (3.16)

Therefore, using the lower bound in (3.14),

Zβ,γ,ε ≥
∑

πγσγ=m̂β,γ

exp[−βγ−dHε(σγ)]

≥ exp
{

− γ−d[βHε(m̂β) − Iε(m̂β)] − ψγ − c6(γε)−dγ(1−δ)d
}

(3.17)

Hence, recalling (3.11), we find

log(µβ,γ,ε(sγ)) ≤ −γ−dβ� ε(sγ) + 2ψγ + c6(γε)−dγ(1−δ)d (3.18)

For the upper bound we write

Zβ,γ,ε =
∑

{sγ}

∑

πγσγ=sγ

exp[−βγ−dHε(σγ)]

≤
∑

{sγ}

exp
{

− γ−d[βHε(sγ) − Iε(sγ)] + ψγ

}

(3.19)

Since for all sγ

βHε(sγ) − Iε(sγ) ≥ βHε(m̂β) − Iε(m̂β)

we get

log Zβ,γ,ε ≤ −γ−d[βHε(m̂β) − Iε(m̂β)] + ψγ + log Nγ

≤ −γ−d[βHε(m̂β) − Iε(m̂β)] + ψγ + c4(γε)−dγ(1−δ)d log(γ−1)
(3.20)

having used (3.10) in the last inequality. In conclusion

log(µβ,γ,ε(sγ)) ≥ −γ−dβ� ε(sγ) − 2ψγ − c4(γε)−dγ(1−δ)d log(γ−1) (3.21)

The bounds (3.18) and (3.21) together with the obvious inequalities

γ(1−δ)d log(γ−1) ≥ γ(1−δ)d ≥ γ2(1−δ)d log(γ−1)

prove (3.12). The proof of the Lemma is complete.

By using Lemma 3.2 it is easy to prove Theorem 2.3:

Proof of Theorem 2.3. Recalling the definition (3.4) of π(k), for any
ζ∗ > 0 we set

�
:=

{

m ∈L∞(
�

ε; [−1, 1]) :

there is r ∈ R
d such that ||π(k)m(r)| − mβ | ≥ ζ∗

}

(3.22)
�

:=
{

m ∈L∞(
�

ε; [−1, 1]) ∩ � c :

there are r′, r′′ ∈ R
d such that |π(k)m(r′) − mβ | < ζ∗

and |π(k)m(r′′) + mβ | < ζ∗
}

(3.23)
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We need the following lemma:

Lemma. For any k large enough and any ζ∗ small enough there is a
constant c7 > 0 independent of ε such that

inf
m∈� ∪�

� ε(m) ≥ c7 (3.24)

Proof of the Lemma. Suppose m ∈ �
. Call C = C(k)(r) the cube in

� (k) that contains the point r appearing in (3.22). We set

ζ :=
ζ∗

2
, α :=

ζ|C|
8

Calling

Λ± := {r ∈ C : |m(r) ∓ mβ | ≤ ζ}; Λ0 := C \ (Λ+ ∪ Λ−)

we first consider the case when |Λ0| > α. Then there is a function κ(ζ) > 0
such that

� ε(m) ≥
∫

Λ0

dr[f(m(r)) − f(mβ)] ≥ κ(ζ)α

When |Λ0| ≤ α we may also suppose, without loss of generality, that
|Λ+| ≥ |Λ−|. By definition

∫

C

dr m(r) < (mβ − ζ∗)|C|

hence, since m ≥ −1 on Λ0, we find

|Λ+|(mβ − ζ) − |Λ0| + |Λ−|(−mβ − ζ) < (mβ − ζ∗)|C|

Substituting |C| = |Λ+| + |Λ−| + |Λ0|, we get

|Λ−|(2mβ − ζ∗ + ζ) > |Λ+|(ζ∗ − ζ) − 2|Λ0|

Since |Λ+| ≥ (|C| − α)/2 we have

2|Λ−| >
|C| − α

2
ζ − 2α =

|C|ζ
4

− αζ

2
≥ |C|ζ

8

having supposed that mβ + ζ ≤ 1. Then

|Λ+| ≥ |Λ−| ≥
|C|ζ
16

We can then conclude that in C there are two sets A±, |A±| = |C|ζ/16,
where m(r) is respectively close to ±mβ by at most ζ; moreover, by the
isomorphism of Lebesgue measures, see [29], there is a one to one map ψ
from A+ onto A− which preserves the Lebesgue measure.

If |C| is small enough (i.e. k large), there is another cube C ′ in
�

ε and
a > 0 such that J(|r− r′|) ≥ a for all r ∈ C and r′ ∈ C ′. We can then bound

� ε(m) ≥ a

4

∫

C′

dr′
∫

A+∪A−

dr[m(r′) − m(r)]2

We write the integral over r as

∫

A+

dr
{

[m(r′) − m(r)]2 + [m(r′) − m
(

ψ(r)
)

]2
}

≥ 1

2

∫

A+

dr[m
(

ψ(r)
)

− m(r)]2

thus proving the bound (3.24) limited to m ∈ � .
If m ∈ � , by definition it is not in

�
, then, without loss of generality,

we may suppose that the closures of the two cubes of � (k) that contain r′

and r′′, see (3.23), have non empty intersection. We can then apply the same
argument used for

�
and the lemma is proved.

We proceed in the proof of Theorem 2.3. Using (3.12), we have

µβ,γ,ε

({

s(k) ∈ � ∪ �
})

≤ Nγexp
{

− βc7γ
−d + (γε)−dC1[γ

δ + γ(1−δ)d log(γ−1]
}

(3.25)

that vanishes as γ → 0 because of (3.10) and (3.3).
We have thus proved that the union of the two sets

{

|s(k)(r) − mβ | < ζ∗
}

,
{

|s(k)(r) + mβ | < ζ∗
}

(3.26)

has probability going to 1 as γ → 0+, for any given k.
On the other hand, similarly to (3.7), we have, for any r ∈ R

d and R > 0,

∣

∣

∣

∫

BR(r)

dr′σγ(r′) −
∫

BR(r)

dr′π(k)σγ(r′)
∣

∣

∣
≤ c8R

−12−k (3.27)

Therefore if s(k) is in the first set in (3.26) then σγ is in the set
�+

R,ζ,γ of

Definition 2.2 with ζ = ζ∗ + c8R
−12−k. Since the similar property holds
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for
�−

R,ζ,γ we conclude that the statement in Theorem 2.3 is verified for
the special case when ζγ is equal to a constant independent of γ. Because
this holds for any value of the constant, by a diagonalization procedure we
conclude that there is a sequence {ζγ} infinitesimal as γ → 0+ for which the
assertion remains true. The proof of Theorem 2.3 is thus completed.

In the remaining part of this Section we will use Lemmas 3.1 and 3.2
to reduce the proof of Theorem 2.5 to the Γ-convergence problem for the
functionals Fε stated at the end of Section 2.

Let
m∗

ε(r) := u∗
ε(εr), r ∈ �

ε (3.28)

where {u∗
ε} is the minimizing sequence in the condition 2 for Γ-convergence.

Let

ζ∗γ :=

∫

�
dr|u∗

ε(r) − u(r)| (3.29)

(recall that ε−1 = [γ−α]) and let R > 0; we specify the sequence ζγ in
Theorem 2.5 as

ζγ := ζ∗γ + c1R
−1γδ (3.30)

where c1 is defined in Lemma 3.1, see (3.7). The reason for this choice will
become clear in the sequel.

Observe that given ζ and R positive and setting

ζ± := ζ ± c1R
−1γδ, thus ζ−γ = ζ∗γ (3.31)

by (3.7) we have

µβ,γ,ε

(

{πγσγ ∈ �
R,ζ∗

γ ,γ(m)}
)

≤ µβ,γ,ε

(

{σγ ∈ �
R,ζγ ,γ(m)}

)

≤ µβ,γ,ε

(

{πγσγ ∈ �

R,ζ+
γ ,γ(m)}

)

(3.32)

The upper bound. By (3.12)

log
[

µβ,γ,ε({σγ ∈ �
R,ζγ ,γ(m)})

]

≤ −βγ−d inf
sγ∈�

R,ζ
+
γ ,γ

(m)
� ε(sγ) +

+ log Nγ + (γε)−dC1

{

γ(1−δ)d log(γ−1) + γδ
}

(3.33)

We multiply both sides by γdεd−1 and let γ → 0+. By (3.10)

lim
γ→0+

γdεd−1 log Nγ = 0

because γ(1−δ)dε−1 = γ(1−δ)d−α and by (3.2) (1 − δ)d > dα ≥ α. Similarly
also the last term in (3.33) vanishes, after having been multiplied by γdεd−1.
Thus supposing the validity of the condition 1 of Γ-convergence, by (2.26)
we get

lim sup
γ→0+

γdεd−1 log
[

µβ,γ,ε({σγ ∈ �
R,ζγ ,γ(m)})

]

≤ −βF (m) (3.34)

The lower bound. We use (3.12), like in the upper bound, to get

log
[

µβ,γ,ε({σγ ∈ �
R,ζγ ,γ(m)})

]

≥− βγ−d inf
sγ∈�R,ζ∗

γ ,γ(m)
� ε(sγ)

− (γε)−dC1

{

γ(1−δ)d log(γ−1) + γδ
}

(3.35)

We have already seen in the proof of the upper bound that the last term
in (3.35) multiplied by γdεd−1 vanishes as γ → 0+. We would like to use
condition 2 of the Γ-convergence, (2.27), for the first term on the right hand
side of (3.35), but the minimizing sequence m∗

ε is not necessarily a coarse
grained configuration. However, by (3.11), we have

� ε(m
∗
ε) = [Hε(m

∗
ε) − Iε(m

∗
ε)] − [Hε(m̂β) − Iε(m̂β)] (3.36)

Then, similarly to (3.8),

γ−d
∣

∣Hε

(

m∗
ε) − Hε

(

πγm∗
ε

)∣

∣ ≤ c′2γ
δ(γε)−d (3.37)

and, by the concavity of the entropy i(·), see (2.21),

−Iε(m
∗
ε) ≥ −Iε(πγm∗

ε) (3.38)

πγm∗
ε may not yet be a coarse grained function, but, recalling (3.15), there

is a coarse grained function s∗γ(r) such that

sup
r∈
�

ε

∣

∣πγm∗
ε(r) − s∗γ(r)

∣

∣ ≤ c′5γ
(1−δ)d (3.39)

Since the minimizing sequence {m∗
ε} has values in [−mβ , mβ ] (see the end of

Section 4) we have

∣

∣Iε(πγm∗
ε) − Iε(s

∗
γ)

∣

∣ ≤ c9(γε)−dγ2(1−δ)d (3.40)
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By the continuity of the energy Hε(·) we then get

γ−d� ε(m
∗
ε) ≥ γ−d� ε(s

∗
γ) − c′2γ

δ(γε)−d + c10(γε)−dγ2(1−δ)d (3.41)

Thus, going back to the first term on the right hand side of (3.35),

−βγ−d inf
sγ∈�R,ζ∗

γ ,γ(m)
� ε(sγ)

≥− βγ−d� ε(m
∗
ε) − c′2γ

δ(γε)−d − c10(γε)−dγ2(1−δ)d (3.42)

We multiply both sides by γdεd−1 and let γ → 0+. Then by (3.42) and
(2.27),

lim inf
γ→0+

log
[

µβ,γ,ε({σγ ∈ �
R,ζγ ,γ(m)})

]

≥ −βF (m) (3.43)

(3.43) and (3.34) prove (2.16), hence Theorem 2.5 is reduced to the proof of
(2.26) and (2.27), namely to the Γ-convergence of {Fε} to F .

4. GAMMA-CONVERGENCE

In this Section we prove that the functionals Fε converge to F in the
sense of Γ-convergence, see (2.26) and (2.27). While the proof of part 2 of
Γ-convergence is standard the proof of part 1 is less typical, due to the non
local structure of our functionals Fε. As discussed at the end of Section 2, a
local version of Fε is the functional

Mε(u) := ε

∫

Rd

dr |∇u|2 +
1

ε

∫

Rd

dr w(u)

where, for simplicity, we set w(s) := (1−s2)2. The proof of the Γ-convergence
of {Mε}, considered by Modica and Mortola, [26], and Modica, [25], exploits
the following elementary inequality

Mε(u) ≥ 2

∫

Rd

dr |∇u|
√

w(u) =: L(u) (4.1)

where ε has disappeared from the right hand side. Then the family {Lε},
Lε ≡ L, Γ-converges to the lower semicontinuous envelope of the functional
L. On the other hand the minimizing sequence {uε} realizes equipartition of
the energy, i.e.,

ε|∇uε|2 =
1

ε
w(uε)

Hence Mε(uε) = L(uε).
In our case the inequality similar to (4.1) yields, for d = 1, J =

1{r∈R:|r|≤1}/2 and with [f(s) − f(mβ)] replaced by w(s),

Fε(u) ≥ 1

ε

∫

R

dr
( 1

8ε

∫ r+ε

r−ε

dr′ |u(r) − u(r′)|2
)1/2

[w(u)]1/2 =: Lε(u)

However the Γ-limit of {Lε} (which corresponds in the previous case to the
lower semicontinuous envelope of L) vanishes. Indeed, let us consider u := 1
on [0, 1] and u := −1 elsewhere and choose uε := u for all ε. Then Lε(uε) = 0
for all ε, hence its limit vanishes.

Thus inequality (4.1) gives a trivial bound in our case and a different
approach is required. The Γ-convergence of some non local functionals has
also been considered recently by Jost, [21].

After these introductory remarks we begin the proofs. We need some
notation. Recall that given a set E ⊂ R

d, 1E denotes the characteristic
function of E, i.e. 1E(x) = 1 if x ∈ E and 1E(x) = 0 otherwise. We call
R = B × [−h, h] ⊂ �

a parallelepiped in
�

of height 2h and middle section
B (which is supposed in turn to be a parallelepiped in R

d−1 with 2(d − 1)
faces). Thus B divides R into two parts that we call R± and, according to
this choice, we set χ

R
:= mβ(1R+−1R−).

4.1. Proof of condition 1 of Gamma-Convergence

Theorem 4.1. Let u ∈ BV (
�

; {±mβ}) and let {uε} ⊂ L∞(
�

; [−1, 1])
be a sequence converging to u in L1(

�
) as ε → 0+. Then

lim inf
ε→0+

Fε(uε) ≥ sβP (u)

Proof. Let u and uε be as in the statement of the Proposition. In Ap-
pendix D we shall prove that for any ζ ′ > 0 there are n disjoint parallelepipeds
R1, . . . , Rn with bases ((d − 1)-dimensional parallelepipeds) B1, . . . , Bn re-
spectively, and equal height 2h, so that

1

h

n
∑

i=1

∫

Ri

dr|χ
Ri

− u| < ζ ′,
∣

∣

∣

n
∑

i=1

|Bi| − P (u)
∣

∣

∣
< ζ ′ (4.2)

By Proposition 4.2 below there exists an absolute constant c > 0 such that
for any ζ > 0

lim inf
ε→0+

Fε(uε;Ri) ≥ (sβ−cζ)|Bi|−
c

hζ

∫

Ri

dr|χ
Ri

−u|, i = 1, . . . , n (4.3)
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By (2.24) we have Fε(uε) ≥
∑n

i=1 Fε(uε; Ri). We then have, in view of (4.2),

lim inf
ε→0+

Fε(uε) ≥
n

∑

i=1

lim inf
ε→0+

Fε(uε;Ri)

≥ (sβ − cζ)

n
∑

i=1

|Bi| −
c

hζ

n
∑

i=1

∫

Ri

dr|χ
Ri

− u|

≥ sβP (u) − c
ζ ′

ζ
+ O(ζ) + O(ζ ′)

Taking ζ ′ := ζ2 and observing that the previous inequality holds for any
ζ > 0, the proof of the Proposition is concluded.

Proposition 4.2. There is a constant c > 0 so that the following holds.
Let R ⊂ �

be a parallelepiped with basis B and height 2h. If {uε} ⊂
L∞(

�
; [−1, 1]) converges in L1(

�
) to u ∈ BV (

�
; {±mβ}), then for any

ζ > 0

lim inf
ε→0+

Fε(uε;R) ≥ (sβ − cζ)|B| − c

hζ

∫

R

dr|χ
R
− u| (4.4)

Before proving this Proposition we introduce some definitions which
shall be useful in the sequel.

Recalling Definition 2.1a we consider the partition � (−1) of R
d into

cubes D of side 2 and denote by D(r) the cube D ∈ � (−1) that contains the
point r. Given D ∈ � (−1), we define the height λ(D) of D as λ(D) = 2n,
n ∈ Z, if 2n is the smallest value of the coordinate rd of the points r ∈ D. Let
R = B × [−h, h], Rε := ε−1R ⊂ �

ε := ε−1
�

, Bε := ε−1B, R±
ε := ε−1R±.

For simplicity we suppose that R±
ε is � (−1)-measurable, see Definition 2.1a.

For any m ∈ L∞(Rε; [−mβ , mβ ]), any positive integer k and ζ > 0, we
define the function η = ηm,k,ζ as

η(r) :=











1 if π(k)m ≥ mβ − ζ on D(r)

−1 if π(k)m ≤ −mβ + ζ on D(r)

0 otherwise

(4.5)

where π(k) is defined in (3.4).
We introduce now the important notion of cluster, see also Figure 1.

Definition 4.3. Given m ∈ L∞(
�

ε; [−1, 1]) a cluster
�

=
�

(m) is a
maximal ∗-connected union of cubes in R+

ε where η(·) < 1 (two cubes are
∗-connected if their closures have non empty intersection).

Rε
+

rd

ε−1h
  2

∈ (−1)

∈  (1) η<1
ε−1h

∈  *

∈  (0)\  *

IRd−1

Fig.1. The cubes D ∈ � (−1) ∩ R+
ε where η < 1. There are three clusters:

the one on the upper left is in � (1), the other two in � (0); the one on the
bottom left is in � (0)\� ∗ the other one in � ∗, as its height exceeds ε−1h/2.

Rε
+

rd

ε−1h
  2

ε−1h

∈  *

IRd−1

III

I
II

mε   =mβ
(2)

Fig.2. A cluster
� ∈ � ∗(m

(1)
ε ).

�
is divided into three parts, I, II, and

III. The shadowed region II is the minimal section of
�

. The modification

m
(2)
ε of m

(1)
ε is equal everywhere to m

(1)
ε except in II, where it has value

mβ ; thus η
m

(2)
ε ,k,ζ

= 1 on II, hence III ∈ � (1)(m
(2)
ε ) and I ∈ � (0)(m

(2)
ε ) but

I /∈ � ∗(m
(2)
ε ), which is thus empty.

� 0 = � 0(m) is the set of clusters in R+
ε which have non empty inter-

section with the basis Bε of Rε. � 1 = � 1(m) collects the others.
Given a cluster

�
, we define its height λ(

�
) as

λ(
�

) := max{λ(D) : D ∈ � }
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and, for any even n, its section B(n;
�

) at height n as

B(n;
�

) :=
{

D ⊂ �
: λ(D) = n

}

(4.6)

Calling

n∗ :=
ε−1h

2
(4.7)

(having supposed for simplicity that ε−1h/2 is even) we define

� ∗ := � ∗(m) := {� ∈ � 0 : λ(
�

) ≥ n∗}

The minimal section S(
�

) of
� ∈ � ∗, see Figure 2, is defined after setting

b(
�

) := min
n even

0<n≤n∗

|B(n,
�

)|

n0 := min{n even, 0 < n ≤ n∗, |B(n,
�

)| = b(
�

)}

as
S(
�

) := B(n0,
�

) (4.8)

Finally, the symbols c, c′ will denote absolute positive constants that may
change from line to line.

Proof of Proposition 4.2. Set

mε(r) := uε(εr), m(r) := u(εr), r ∈ �
ε (4.9)

We will prove the proposition after many successive modifications of the
function mε, each one either decreasing � ε or increasing it by a “controlled”
quantity. The first step is very simple, we just take

m(1)
ε (r) :=

{ ±mβ if mε(r) ≥ mβ , respectively mε(r) ≤ −mβ

mε(r) otherwise

Then, obviously, � ε(mε) ≥ � ε(m
(1)
ε ).

Modulo rotation and reflection of the axes, we may suppose that the
basis of Rε is contained in the coordinate hyperplane {rd = 0}, rd denoting
the last coordinate of r in R

d, and that R+
ε ⊂ {rd > 0}.

We next modify m
(1)
ε in R+

ε (the modification in R−
ε is similar and done

later) by cutting the clusters in � ∗(m
(1)
ε ) at their minimal section, see Figure

2. The clusters are now defined by means of the function η
m

(1)
ε ,k,ζ

, see (4.5).

Let

m(2)
ε :=

{

mβ on S(
�

),
� ∈ � ∗(m

(1)
ε )

m
(1)
ε elsewhere on Rε

Then
� (m(1)

ε ;Rε) ≥ � (m(2)
ε ;Rε) − c

∑

�
∈� ∗(m

(1)
ε )

|S(
�

)| (4.10)

We shall see at the end of the proof of this proposition, that the cost of this
substitution, that is the last term in (4.10), can be controlled in terms of the
L1(R) norm of χ

R
− uε.

By construction � ∗(m
(2)
ε ) = ø, so that the “dangerous clusters” that

intersect the basis of Rε, i.e., those in � 0(m
(2)
ε ), are all “low”, in the sense

that they do not reach the height n∗, which is half of the total height of R+
ε .

We next apply Theorem B.2 of Appendix B to modify m
(2)
ε into a function

m
(3)
ε , which, as we shall see, is positive on the clusters of � 1(m

(2)
ε ), where

instead m
(2)
ε may be negative: the proof exploits the fact that by definition

all the clusters of � 1(m
(2)
ε ) are surrounded by cubes where η(·) = 1. The

precise statement can be found in Theorem B.2 that we apply in the present
context with ∆, Γ and Λ defined as follows:

∆ := ∪{� :
� ∈ � 1(m(2)

ε )}
Γ := {D ∈ � (−1) ∩ R+

ε : D ∩ ∆ = ø, D̄ ∩ ∆ 6= ø}
Λ := Rε \ (∆ ∪ Γ)

The parameters ζ and k of Theorem B.2 are the same parameters as in the
definition of the functions η in (4.5); ` is a number in (0, 1) and the sequence
{ck} (defined in (B.7)) is actually independent of ε (see the Remark at the
end of the proof of Lemma B.1) and tends to 0 as k → +∞; finally we recall
that 0 < θ := ζ + ck < mβ . We choose ζ and k so that θ = ζ + ck ≤ mβ/4.

Since m
(2)
ε satisfies condition (B.4), i.e., π(k)m

(2)
ε ≥ mβ − ζ for all r ∈ Γ,

then, by Theorem B.2, there exists m
(3)
ε := (m

(2)
ε )`,θ on Rε with the following

properties:

1. � (m
(2)
ε ; Rε) ≥ � (m

(3)
ε ;Rε);

2. m
(3)
ε ≥ m

(2)
ε on Rε, and m

(3)
ε (r) = m

(2)
ε (r) for all r ∈ Rε at distance

not smaller than 1 from ∆;

3. m
(3)
ε ≥ mβ − θ on ∆.
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Rε
+

rd

ε−1h
  2

ε−1h

IRd−1

η=1

Fig.3. � (1)(m
(3)
ε ) = � ∗(m

(3)
ε ) = ø, therefore η = 1 on {λ(D) ≥ n∗ + 4}.

In particular η = 1 on the level λ(D) = n∗ + 4, which is shadowed. While

the averages πkm
(3)
ε ≥ mβ − θ above this level, this may not be so point

by point. However for the modification m
(4)
ε of m

(3)
ε , m

(4)
ε ≥ mβ − θ on

{λ(D) > n∗ + 4}.

By construction −mβ ≤ m
(3)
ε ≤ mβ , � ∗(m

(3)
ε ) = ø, and m

(3)
ε ≥ mβ − θ

on all clusters
�

with
� ∩ Bε = ø where η

m
(2)
ε ,k,ζ

< 1 (i.e., where m
(2)
ε is

“far” from the value mβ).

We redefine the clusters (see (4.5)) for m
(3)
ε with ζ replaced by θ, i.e.,

by means of the function η
m

(3)
ε ,k,θ

. By an abuse of notation the new clusters

are denoted by the same symbols as the old ones and we also denote θ again

by ζ. By construction, if
� ∈ � 0(m

(3)
ε ), then B(n,

�
) = ø for n > n∗, see

(4.6) for notation.

We now modify m
(3)
ε into m

(4)
ε in such a way that m

(4)
ε ≥ mβ − θ on

all D ∈ � (−1) with λ(D) ≥ n∗ + 4, see Figure 3. Precisely we apply again
Theorem B.2 with ∆, Γ and Λ defined as follows:

∆ := {D ∈ � (−1) ∩ R+
ε : λ(D) ≥ n∗ + 4}

Γ := {D ∈ � (−1) ∩ R+
ε : λ(D) = n∗ + 2}

Λ := Rε \ (∆ ∪ Γ)

(note that η
m

(2)
ε ,k,ζ

(·) = 1 on Γ so that m
(2)
ε satisfies condition (B.4)). Then

by Theorem B.2 there exists m
(4)
ε on Rε with the following properties:

1. � (m
(3)
ε ;Rε) ≥ � (m

(4)
ε ;Rε);

2. m
(4)
ε ≥ m

(3)
ε on Rε, and m

(4)
ε = m

(3)
ε on all D with λ(D) < n∗ + 2;

3. m
(4)
ε ≥ mβ − θ on ∆, i.e., on all D with λ(D) ≥ n∗ + 4.

We conclude this first part of the proof of Proposition 4.2 by introducing

the function m
(5)
ε , obtained by repeating (with opposite sign) the modifica-

tions that led to m
(4)
ε also in the lower part R−

ε of the parallelepiped Rε.

Summary of What Has Been Done so Far. There is a function m
(5)
ε

which is larger than mβ − θ for rd ≥ n∗ + 4 and smaller than −mβ + θ for
rd ≤ −n∗ − 4, such that

� (mε; Rε) ≥ � (m(5)
ε ;Rε) − c

∑

�
∈� ∗(m

(1)
ε )

|S(
�

)| (4.11)

(here � ∗ is referred to the whole Rε).

Let Kε := Bε × (−∞,+∞),

m(6)
ε :=

{

m
(5)
ε on Rε

±mβ on K±
ε \ R±

ε

Then one can verify that

� (m(5)
ε ;Rε) ≥ � (m(6)

ε ;Kε) − cζ|Bε| (4.12)

(choosing k so large that ck < ζ).

We would like to have � (m
(6)
ε ;Kε) ≥ � (m∗;Kε) when m∗ is the in-

stanton m̄ of Theorem 2.6 on each line parallel to the rd-axis of Kε. However

we are not able to make an estimate of � (m
(6)
ε ; Kε) to verify the inequality.

A possible way out would be to prove that the infimum of � (·;Kε) over all
m ∈ L∞(Kε; [−mβ , mβ ]) having asymptotic values ±mβ for rd → ±∞ is just
� (m∗;Kε). This is however ruled out by the fact that m∗ is not a critical
point of � (·;Kε). In fact, all critical points of � (·;Kε) (see the Remark
below) must verify

m(r) = tanh{βJ̃ ∗ m(r)}, J̃ ∗ m(r) :=

∫

Kε

dr′J̃(r, r′) m(r′) (4.13)

where

J̃(r, r′) := J(|r − r′|)1{r,r′∈Kε} + j(r) δ(r − r′)

j(r) :=

∫

{r′′ /∈Kε}

dr′′J(|r − r′′|) (4.14)
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and δ(r − r′) is the delta function. Since m∗(r) = tanh{βJ ∗ m∗(r)} when

the convolution is over the whole R
d, in general m∗(r) 6= tanh{βJ̃ ∗ m∗(r)}

when the distance of r from ∂Kε is smaller than 1.

Remark. The Euler-Lagrange equation for the functional � (m) :=
� (m; Rd) is

f ′(m) + m = J ∗ m (4.15)

Recalling the definition of f in (2.20), (4.15) becomes

−i′(m) = βJ ∗ m

Since −i′(s) =arctanh (s), one deduces that a function m ∈ L∞(Rd; (−1, 1))
solves (4.15) if and only if

m = tanh(βJ ∗ m)

To overcome the problems due to the presence of the delta function in
the interaction, we introduce an auxiliary functional � (1)(·;Kε) ≤ � (·;Kε)
whose critical points can be characterized. We will see that there is a unique
critical point which is an instanton function close to m∗. The minimum is
found by means of an auxiliary dynamics on L∞(Kε; [−1, 1]) under which
the functional � (1)(· ;Kε) is monotonic (non-increasing). The minimum is
then obtained as the limit point when t → +∞ of the orbit mt that starts

from m
(6)
ε . The analysis adapts to the present context results known in

the literature, [13] and [14]. Even though the main ideas are the same, the
extension is not totally trivial and we will report some details in Appendix
C. The dynamics here is merely a technical tool, but the evolution has an
intrinsic interest with many significant applications in the physics of phase
separation and mathematical interest in its own right, see for instance [9],
[10], [11], [12].

As explained above a way to avoid the delta function in (4.14) is
to modify � (·;Kε) into another functional, � (1)(·;Kε), which does not
produce anymore the dangerous local term in the interaction. For any
m ∈ L∞(Kε; [−1, 1]) we set

� (1)(m;Kε) :=

∫

Kε

dr
(

1 − j(r)
)

[f(m(r)) − f(mβ)]

+
1

4

∫∫

Kε×Kε

dr dr′J(|r − r′|)[m(r) − m(r′)]2 (4.16)

Obviously
� (1)(m;Kε) ≤ � (m;Kε) (4.17)

and since
∫

Kε

dr
(

1 − j(r)
)

m(r)2 =

∫∫

Kε×Kε

dr dr′m(r)2J(|r − r′|)

we have, recalling (2.20),

� (1)(m;Kε) = − β−1

∫

Kε

dr [1 − j(r)] i
(

m(r)
)

− 1

2

∫∫

Kε×Kε

dr dr′J(|r − r′|) m(r)m(r′) − C(1)(β)

(4.18)

where C(1)(β) is the sum of the first two terms when m(·) ≡ mβ .

By direct inspection � (1)(·;Kε) does not increase along the solutions of
the equation

dmt(r)

dt
= −mt(r) + tanh{βJ (1) ∗ mt(r)}

J (1) ∗ mt(r) :=

∫

Kε

dr′J (1)(r, r′) mt(r
′)

(4.19)

where

J (1)(r, r′) :=
1

1 − j(r)
J(|r − r′|),

∫

Kε

dr′J (1)(r, r′) = 1 (4.20)

We show in Appendix C that there is a (instanton-like) function m
(7)
ε on

Kε, which is a stationary solution of (4.19) in the whole Kε. This solution
is an antisymmetric function of rd and there are c > 0 and c′ independent of
ε and of the section Bε of the cylinder Kε, so that

m(7)
ε (r) ≥ mβ − c′e−crd , rd ≥ 0 (4.21)

Moreover, if mt is the orbit starting from m
(6)
ε , then there is r0 = (0, r0

d) so
that

lim
t→+∞

mt(r) = m(7)
ε (r − r0) (4.22)

uniformly on the compact subsets of Kε. By the lower semicontinuity of
� (1)(·;Kε) and its invariance under vertical translations,

� (1)(m(6)
ε ;Kε) ≥ lim inf

t→+∞
� (1)

(

(m(6)
ε )t;Kε

)

≥ � (1)(m(7)
ε ; Kε) (4.23)



   

30 Alberti et al. Surface tension in Ising Systems with Kac Potentials 31

By (4.11), (4.12), (4.17) and (4.23) we have

� (mε;Rε) ≥ � (1)(m(6)
ε ;Kε) − cζ|Bε| − c

∑

�
∈� ∗(m

(1)
ε )

|S(
�

)|

≥ � (1)(m(7)
ε ;Kε) − cζ|Bε| − c

∑

�
∈� ∗(m

(1)
ε )

|S(
�

)| (4.24)

where � ∗ is referred to the whole Rε.

Our last effort will be to replace m
(7)
ε by m∗ which we recall is the

instanton m̄ of Theorem 2.6 on each line parallel to the rd-axis of Kε, with the
0’s belonging to the original middle section Bε of Rε. The natural way would

be to prove that m
(7)
ε is really close to m∗ except possibly at points close to

the boundaries and with height rd not too large. Recall in fact that both m
(7)
ε

and m∗ have the same asymptotic values that they approach exponentially
fast. However, although we believe this statement to be correct, we miss a
proof. We will proceed by changing the functional and the corresponding
dynamics with the introduction of “Neumann conditions” at the boundaries.
After that, the above comparison will become easier. To construct the kernel
J (2) we need to smooth the “corners” of Bε from inside; hence let B̃ε ⊂ Bε

be a convex C∞ set (in Appendix D it is shown that B can be taken as a
cube) with

∣

∣Bε \ B̃ε

∣

∣ ≤ cε2−d

Let K̃ε := B̃ε × (−∞,+∞) ⊂ Kε. Then, denoting again by m
(7)
ε the restric-

tion of this function to K̃ε, we have

� (1)
(

m(7)
ε ;Kε

)

≥ � (1)
(

m(7)
ε ; K̃ε

)

− cε2−d (4.25)

because of the exponential convergence of m
(7)
ε to ±mβ as rd → ±∞.

We denote by d(r, ∂K̃ε) the distance of r ∈ K̃ε from the boundary ∂K̃ε

of K̃ε. In Appendix C we prove that there is a smooth function J (2)(r, r′) :

K̃ε × K̃ε → [0, 1] with the following properties:

1. J (2) is supported on {(r, r′) : r ∈ K̃ε, r′ ∈ B1(r) ∩ K̃ε},
2. J (2)(r, r′) = J (2)(r′, r) on K̃ε × K̃ε,

3.
∫

K̃ε
dr′J (2)(r, r′) = 1 for all r ∈ K̃ε,

4. J (2)(r, r′) = J(|r − r′|) for all r, r′ ∈ K̃ε such that d(r, ∂K̃ε) ≥ 1,

5. set r = (ξ, rd), ξ ∈ B̃ε, rd ∈ R; then for all ξ ∈ B̃ε, and all rd, r
′
d ∈ R

∫

B̃ε

dξ′J (2)
(

(ξ, rd), (ξ
′, r′d)

)

=

∫

B̃ε

dξ′J
(∣

∣(ξ, rd) − (ξ′, r′d)
∣

∣

)

(4.26)

We then define for any m ∈ L∞(K̃ε; [−1, 1])

� (2)(m; K̃ε) :=

∫

K̃ε

dr [f(m(r)) − f(mβ)]

+
1

4

∫∫

K̃ε×K̃ε

dr dr′J (2)(r, r′)[m(r) − m(r′)]2 (4.27)

The same argument used to prove (4.25) shows that

� (1)(m(7)
ε ; K̃ε) ≥ � (2)(m(7)

ε ; K̃ε) − cε2−d (4.28)

By direct inspection one can prove that � (2)(mt; K̃ε) is non-increasing along

any orbit mt solution of (4.19) with Kε replaced by K̃ε and J (1)(r, r′) by
J (2)(r, r′).

Let ψt ∈ L∞(R; [−1, 1]), t ≥ 0, satisfy the equation

dψt(s)

dt
= −ψt(s) + tanh{βJ̄ ∗ ψt(s)}, s ∈ R (4.29)

with J̄ as in (2.18). Then by statement 5 the function mt ∈L∞(K̃ε; [−1, 1]),

t ≥ 0, defined by mt(r) := ψt(rd) solves (4.19) with K̃ε and J (2). As a

consequence, m∗(r) = m̄(rd), r ∈ K̃ε, m̄ as in Theorem 2.6, is a stationary
solution of this new version of (4.19).

Let mt ∈ L∞(K̃ε; [−1, 1]) solve this new version of (4.19) with initial

condition m0 = m
(7)
ε . Then, by arguments completely similar to the previous

ones which led to m
(7)
ε , we conclude that mt → m∗ as t → +∞. Thus

� (2)(m(7)
ε ; K̃ε) ≥ � (2)(m∗; K̃ε) (4.30)

Finally, there is a constant c > 0 so that, denoting by |B| the area of the
original basis B of R,

� (2)(m∗; K̃ε) = ε1−dsβ |B| − cε2−d (4.31)

By (4.24), (4.28), (4.30) and (4.31) we have

� (mε;Rε) ≥ � (2)(m∗; K̃ε) − cε2−d − cζ|Bε| − c
∑

�
∈� ∗(m

(1)
ε )

|S(
�

)|

≥ ε1−d(sβ − cζ)|B| − cε2−d − c
∑

�
∈� ∗(m

(1)
ε )

|S(
�

)| (4.32)
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where � ∗ is referred to the whole Rε. We first consider the sum relative to

R+
ε . By the definition of minimal section, if

� ∈ � ∗(m
(1)
ε )

|S(
�

)|n∗ ≤ |� | (4.33)

with n∗ as in (4.7). Moreover, η
m

(1)
ε ,k,ζ

< 1 on any D ⊂ � ∈ � ∗(m
(1)
ε ), so

that in any such D there is a cube Q ∈ � (k) of side 2−k where

1

|Q|

∫

Q

dr m(1)
ε (r) ≤ mβ − ζ (4.34)

Thus,

∫

D

dr|χ
R
(εr) − m(1)

ε (r)| ≥
∫

Q

dr|χ
R
(εr) − m(1)

ε (r)|

=

∫

Q

dr[mβ − m(1)
ε (r)]

≥ |Q|ζ = 2−(k+1)d|D|ζ (4.35)

because Q ⊂ R+
ε where χ

R
= mβ . By (2.23), � ε = ε1−dFε, hence, using

(4.33) and recalling (4.7) where n∗ is defined, and (4.9), we have

εd−1
∑

�
∈� ∗(m

(1)
ε )

|S(
�

)|

≤ εd
∑

�
∈� ∗(m

(1)
ε )

2|� |
h

≤ εd
∑

�
∈� ∗(m

(1)
ε )

∑

D⊂
�

2(k+2)d

hζ

∫

D

dr|χ
R
(εr) − m(1)

ε (r)|

≤ c

hζ

∫

R

dr|χ
R
(r) − u(1)

ε (r)|

≤ c

hζ

∫

R

dr|χ
R
(r) − uε(r)| (4.36)

where u
(1)
ε (r) := m

(1)
ε (ε−1r), r ∈ �

. The same bound is obtained when we
sum over the clusters in R−

ε . By (4.32) and (4.36) we then deduce that

Fε(uε;R) = εd−1� (mε;Rε) ≥ (sβ − cζ)|B| − cε − c

hζ

∫

R

dr|χ
R
(r) − uε(r)|

Then recalling that uε → u in L1(
�

) as ε → 0+, we obtain (4.4). The
Proposition is thus proved.

4.2. Proof of condition 2 of Gamma-Convergence

We only sketch the proof. Let u ∈ BV (
�

; {±mβ}). We first suppose
that the boundary ∂E of the set {u(r) = mβ} is a hypersurface of class � 1.
Let m(r) := u(εr), r ∈ �

ε, so that m ∈ L∞(
�

ε; {±mβ}). Given 0 < δ < 1
and ε > 0, we define uε ∈ L∞(

�
ε; [−mβ , mβ ]) as follows. Let d(r) be the

signed distance function from ε−1∂E positive inside ε−1E. We then set

m∗
ε(r) :=











m̄
(

d(r)
)

if |d(r)| ≤ ε−δ

mβ if d(r) > ε−δ

−mβ if d(r) < −ε−δ

where m̄(s) is the instanton of Theorem 2.6 which converges to ±mβ as
s → ±∞ exponentially fast. We then have, using the coarea formula (see
3.4.4 in [17])

� ε(m
∗
ε) ≤c′e−cε−δ

+

∫ ε−δ

−ε−δ

dt[f(m̄(t)) − f(mβ)]λ({d(x) = t}) +

+
1

4

∫ ε−δ

−ε−δ

dt

∫ ε−δ

−ε−δ

ds[m̄(t) − m̄(s)]2
∫

{d(x)=t}

dλ(x) ×

×
∫

{d(y)=s}

dλ(y) J(|(x, t) − (y, s)|)

where dλ denotes the (d−1)-dimensional surface measure. Now for any (x, t)
as above

lim
ε→0+

∫

{d(y)=s}

dλ(y)J
(∣

∣(x, t) − (y, s)
∣

∣

)

= J̄(|t − s|)

see (2.18), and

lim
ε→0+

εd−1

∫

{d(x)=t}

dλ(x) = |∂E|

Hence

lim sup
ε→0+

εd−1� ε(m
∗
ε) ≤ �̄ (m̄)|∂E| = sβ |∂E|
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Setting u∗
ε(r) := m∗

ε(ε
−1r), r ∈ �

, we then have that Fε(u
∗
ε) → F (u) as

ε → 0+. This proves condition 2 in the � 1 case. To prove the general case we
use a density argument. In Theorem 1.24 of [20] it is proved that every set
with bounded perimeter can be approximated in L1 and in perimeter by a se-
quence of sets with � ∞ boundaries. Thus, given any u ∈ BV (

�
; {±mβ}), by

a diagonalization procedure we then construct a sequence {uε} that satisfies
condition 2. The Γ-convergence of {Fε} to F is thus proved.

APPENDIX A

In what follows we denote by Cγ(r) the atom of �γ that contains r (�γ

is defined at the beginning of Section 3).

Lemma A.1. There is a positive constant c1 such that for any spin
configuration σγ , r ∈ R

d and R > 0 we have

∣

∣

∣

∫

BR(r)

dr′σγ(r′) −
∫

BR(r)

dr′πγσγ(r′)
∣

∣

∣
≤ c1R

−1γδ

Proof. By definition, see (3.4),

∫

BR(r)

dr′J (2)
γ =

∫

BR(r)

dr′
1

|Cγ(r′)|

∫

Cγ(r′)

dr′′σγ(r′′)

Then
∫

BR(r)

dr′πγσγ(r′) −
∫

BR(r)

dr′σγ(r′)

=

∫

BR(r)

dr′
1

|Cγ(r′)|

∫

Cγ(r′)\(Cγ(r′)∩BR(r))

dr′′σγ(r′′)

−
∫

BR(r)

dr′
1

|Cγ(r′) ∩ BR(r)|

×
∫

Cγ(r′)∩BR(r)

dr′′σγ(r′′)
[

1 − |Cγ(r′) ∩ BR(r)|
|Cγ(r′)|

]

=: I + II

Since Cγ(r′)∩BR(r) = Cγ(r′) for |r′ − r| < R− 2γδ, [recall (3.3)] there
is a positive constant c1 such that max (I, II) ≤ c1R

−1γδ.

Lemma A.2. There is a positive constant c2 such that for any spin
configuration σγ

∣

∣Hε(σγ) − Hε

(

πγσγ

)∣

∣ ≤ c2γ
δε−d (A.1)

Proof. Recalling definition (2.3), Hε(·) = H(·; �ε) and (3.4), we have

Hε(πγσγ) − Hε(σγ)

=
1

2

∫

�
ε

dr1

∫

�
ε

dr2J(|r1 − r2|)σγ(r1)σγ(r2)

− γ−2δd

2

∫

�
ε

dr

∫

�
ε

dr′J(|r − r′|)
∫

Cγ(r)

dr1

∫

Cγ(r′)

dr2σγ(r1)σγ(r2)

= −1

2

∫

�
ε

dr1

∫

�
ε

dr2σγ(r1)σγ(r2)
[

γ−2δd

∫

Cγ(r1)

dr

×
∫

Cγ(r2)

dr′J(|r − r′|) − J(|r1 − r2|)
]

By the regularity of J , there is a positive constant c′ so that

sup
r∈Cγ(r1)

r′∈Cγ(r2)

∣

∣J(|r − r′|) − J(|r1 − r2|)
∣

∣ ≤ c′1{|r1−r2|≤2}‖∇J‖∞γδ

where ‖∇J‖∞ is the sup norm of ∇J and 1A the characteristic function of
A. We then get

∣

∣Hε(σγ) − Hε

(

πγσγ

)∣

∣ ≤ c2γ
δε−d

Lemma A.3. There is a positive constant c3 such that for any coarse
grained configuration sγ

∣

∣ log W (sγ) − γ−d�
ε(sγ)

∣

∣ ≤ c3(γε)−dγ2(1−δ)d log(γ−1)

Proof. Let Cγ be an atom of �γ and r ∈ Cγ . Then, by definition,

sγ(r) =
1

|Cγ(r)|

∫

Cγ(r)

dr′σγ(r′)

We call λ1...λN the values attained by σγ(r′) when r′ varies in Cγ(r). Thus

λi ∈ {±1} and N goes like γ(δ−1)d. The number of sequences {λi} that give
rise to the same value m ∈ [−1, 1] of sγ(r) is

(

N

K(m)

)

, where K(m) :=
1 − m

2
N ∈ N
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We use the Stirling’s formula to estimate this quantity, see for instance [3]
and references therein, and we get, recalling the definition (2.21) of i(m),

∣

∣

∣

∣

log

(

N

K(m)

)

− i(m)

∣

∣

∣

∣

≤ log N

2N
− 1

N
log

(1 − m)(1 + m)

4

+
4

N2(1 − m)(1 + m)

≤ c′3
log N

N
(A.2)

for m = 0, ±2/N , ... , ±(N − 2)/N and for a suitable positive constant c′2.
The left hand side in (A.2) is 0 if m = ±1.

The weight W (sγ) of the configuration sγ is the product of the weights
over all the cubes Cγ in

�
ε. We call Ci the generic one and mi the value of

sγ(r) when r ∈ Ci. We then have

∣

∣

∣

∣

∣

∑

Ci

log

(

N

K(mi)

)

− γ−d

∫

�
ε

dr i(m(r))

∣

∣

∣

∣

∣

≤ c3(γε)−dγ2d(1−δ) log(γ−1)

because the number of terms in the sum is of order ε−dγ−δd.

Lemma A.4. Let Nγ be the total number of distinct coarse grained
configurations sγ ; then there is a positive constant c4 so that

log Nγ ≤ c4(γε)−dγ(1−δ)d log(γ−1)

Proof. A configuration sγ is defined by giving the value of the magne-
tization in each cube Cγ paving

�
ε. Since the number of possible values of

the magnetization is bounded by 2γ(δ−1)d and the number of cubes Cγ in
�

ε

is bounded by ε−dγ−δd, we immediately conclude the proof of the Lemma.

APPENDIX B

In this Appendix we prove some statements used in the proof of Propo-
sition 4.2. It is convenient to formulate the problem in the following way. We
consider three non-empty, disjoint, bounded regions of R

d, ∆, Γ and Λ. Each
one is union of cubes of the partition � (−1). We suppose that � := ∆∪Γ∪Λ
is connected and that d(∆,Λ), the Euclidean distance between the two sets,
is not smaller than 2.

Γ

Γ

Γ

Γ Γ

Γ Γ Γ

Γ

Γ

∆ ∆

∆
Λ

∆llll

Fig.4. An example of the regions ∆, Γ and Λ of Appendix B. ∆ is the union
of the three central cubes, Γ of the ten cubes surrounding ∆ and Λ is the
complement. The shadowed region represents ∆`.

The example to have in mind is with ∆ a connected set, Γ the collection
of all the cubes in � outside ∆ that have distance 0 from ∆; Λ is then
separated by ∆ at least by a cube of � (−1), whose side has length 2 (see
Figure 4).

We consider the functional � (m;� ) on L∞(� ; [−mβ , mβ ]) defined in
the usual way by

� (m;� ) :=

∫

� dr[f(m(r)) − f(mβ)]

+
1

4

∫∫

�
×
� dr dr′J(|r − r′|)[m(r) − m(r′)]2

(B.1)

Given ` ∈ (0, 1), we set

∆` :=
{

r ∈ ∆ : d(r, Γ) ≤ `
}

; Γ` :=
{

r ∈ Γ : d(r, ∆) ≤ 1 − `
}

(B.2)

and finally, for any r ∈ � , any measurable set C ⊂ � and m ∈
L∞(� ; [−mβ , mβ ]), we define

h(r;m;C) :=

∫

C
dr′J(|r − r′|)m(r′)
∫

C
dr′J(|r − r′|) (B.3)

setting h(r;m;C) := 1 if the denominator in (B.3) is 0.
We will consider two cases: C = Γ∪Λ and r ∈ ∆`∪Γ` and C = (Γ\Γ`)∪Λ

and r ∈ Γ`. In both cases h(r;m;C) does not depend on the values of m in
Λ and, moreover, the denominator in (B.3) is uniformly positive because, by
Definition 2.1c, sup{s > 0 : J(s) > 0} = 1. This remark is used to prove the
following lemma:
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Lemma B.1. For any ` ∈ (0, 1) there exists a sequence {ck}k∈N of pos-
itive numbers which converges to 0 as k → +∞ with the following property.
If ζ > 0 and for some k ∈ N

π(k)m(r) ≥ mβ − ζ for all r ∈ Γ (B.4)

then
h
(

r;m; Γ ∪ Λ
)

≥ mβ − (ζ + ck) for all r ∈ ∆` ∪ Γ` (B.5)

h
(

r;m; (Γ \ Γ`) ∪ Λ
)

≥ mβ − (ζ + ck) for all r ∈ Γ` (B.6)

Proof. Let C = Γ ∪ Λ and

ck := sup
r∈∆`∪Γ`

sup
m∈L∞(

�
;[−mβ ,mβ ])

∣

∣h(r;m;C) − h(r;π(k)m;C)
∣

∣ (B.7)

Then ck → 0 as k → +∞ and if π(k)m(r) ≥ mβ − ζ for r ∈ Γ then

h
(

r;m;C
)

≥ mβ − ζ − ck for all r ∈ ∆` ∪ Γ`

that proves (B.5). The proof of (B.6) is similar.

Remark. We will actually take for ck the maximum over all possible
choices of ∆ and Γ (which is finite because the right hand side of (B.7) takes
only finitely many values).

For any m ∈ L∞(� ; [−mβ , mβ ]), ` ∈ (0, 1) and θ ∈ (0, mβ) we define

m`,θ(r) :=











m(r) if r ∈ (Γ \ Γ`) ∪ Λ

|m(r)| if r ∈ ∆ ∪ Γ` and |m(r)| ≥ mβ − θ

mβ − θ if r ∈ ∆ ∪ Γ` and |m(r)| < mβ − θ

(B.8)

We then have

Theorem B.2. Let ` ∈ (0, 1), ζ > 0 and k ∈ N be such that ζ + ck =:
θ < mβ , with ck defined in (B.7). Then for all m that satisfy (B.4) we have

� (m;� ) ≥ �
(

m`,θ;�
)

(B.9)

Proof. Since m`,θ = m in (Γ\Γ`)∪Λ and the support of J is contained
in the unit ball, there is no interaction between Λ and ∆ ∪ Γ`, where m and

m`,θ are different. For this reason the values of m in Λ will not play any role
in the following proof.

We observe that under the replacement m → m`,θ the first term in the
expression of � (·;� ) does not increase, so it is sufficient to prove that the
second term has the same property. Given two bounded measurable sets A
and B in R

d we write

E(A, B) =
1

4

∫

r∈A

∫

r′∈B

dr dr′J(|r − r′|)

×
{

[m`,θ(r) − m`,θ(r
′)]2 − [m(r) − m(r′)]2

}

(B.10)

and split the second term in (B.1) into a sum of terms E(Ai, Bi). We will
show that each of them is non-positive and this will prove the Theorem. In
the proof we will use the two following statements whose simple proof is
omitted:

For any s ∈ [−mβ , mβ ] and C ⊂ � define

G(s, C) :=

∫

C

dr′J(|r − r′|)[s − m(r′)]2

Then

1. G(s, C) ≥ G(t, C) for any s ≤ t ≤ h(r;m;C).

2. If h(r;m;C) > 0 then G(s, C) ≥ G(|s|, C) for any s ∈ [−mβ , mβ ].

We next examine separately the various terms E(Ai, Bi):

(T1). A = B = (Γ \ Γ`) ∪ Λ. Then E(A, B) = 0 because m = m`,θ.

(T2). A = Γ` ∩ {|m(r)| < mβ − θ} and B = (Γ \ Γ`) ∪ Λ. We apply
statement 1 for any r ∈ A with s := m(r) and t := m`,θ(r) = mβ − θ. In
fact s ≤ t ≤ h(r;m;B), the last inequality follows from (B.6) recalling that
θ = ζ + ck, see (B.6). We then have G(m(r), B) ≥ G(m`,θ(r), B), which,
integrated over r ∈ A, yields E(A, B) ≤ 0.

(T3). A = Γ` ∩ {|m(r)| ≥ mβ − θ} and B = (Γ \ Γ`) ∪ Λ. For any
r ∈ A we have h(r;m; B) ≥ mβ − θ > 0. Since m`,θ = |m| on A, we get
by statement 2 that G(m(r), B) ≥ G(m`,θ(r), B). Integrating this inequality
over r ∈ A we then find that E(A, B) ≤ 0.

(T4). A = ∆` ∩ {|m(r)| < mβ − θ} and B = Γ ∪ Λ. We write

E(A, B) =
1

4

∫

A

dr

∫

B

dr′J(|r − r′|)

×
{

([m`,θ(r) − m(r′)]2 − [m(r) − m(r′)]2)

+ ([m`,θ(r) − m`,θ(r
′)]2 − [m`,θ(r) − m(r′)]2)

}

= : I(A, B) + II(A, B) (B.11)
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For any r ∈ A we have h(r;m;B) ≥ mβ−θ by (B.5) and mβ−θ = m`,θ(r) =:
t ≥ s := m(r). Hence reasoning as in (T2) we get I(A, B) ≤ 0.

To prove that II(A, B) ≤ 0 we introduce the sets:

B1 := {r′ ∈ Γ` : |m(r′)| < mβ − θ}
B2 := {r′ ∈ Γ` : |m(r′)| ≥ mβ − θ}
B3 := Γ \ Γ`

and we split II(A, B) = II(A, B1) + II(A, B2) + II(A, B3). Then m`,θ(r
′) =

m(r′) for any r′ ∈ B3 so that II(A, B3) = 0. Moreover m`,θ(r
′) = mβ − θ

for r′ ∈ B1 and m`,θ(r) ≥ mβ − θ for r ∈ ∆`, so that |m`,θ(r) − m`,θ(r
′)| ≤

|m`,θ(r)−m(r′)| for r ∈ A and r′ ∈ B1. Therefore II(A, B1) ≤ 0. Finally we
have m`,θ(r

′) = |m(r′)| for r′ ∈ B2. Hence

II(A, B2) =
1

4

∫

r′∈B2

dr′
∫

r∈A

drJ(|r − r′|)

×
{

[|m(r′)| − m`,θ(r)]
2 − [m(r′) − m`,θ(r)]

2
}

≤ 0

by statement 2 because h(r′;m`,θ;A) ≥ mβ − θ > 0 for any r′ ∈ B2 as
m`,θ ≥ mβ − θ.

(T5). A = ∆` ∩ {|m(r)| ≥ mβ − θ} and B = Γ ∪ Λ. We use (B.11)
with the new A. The first term on the right hand side is non-negative by
statement 2: in fact h(r;m;B) > 0 for r ∈ A by (B.5) and m`,θ = |m| on A
by (B.8). For the second term we use the same argument as in the last part
of the proof of (T4). Thus E(A, B) ≤ 0.

(T6). A = B = Γ`, A = B = ∆ and A = ∆ \ ∆`, B = Γ`. In all these
cases |m`,θ(r) − m`,θ(r

′)| ≤ |m(r) − m(r′)| for any r ∈ A, r′ ∈ B. Hence
E(A, B) ≤ 0.

The Theorem is proved.

APPENDIX C

In this Appendix we prove the properties of the instanton used in the
proof of Proposition 4.2. Recall that Kε is a cylinder in R

d with basis Bε =
ε−1B and that we have supposed for simplicity that Kε is � (0)-measurable.
The case when Kε is a torus has been considered in [24]. We will first prove

the existence of m
(7)
ε , see the proof of Proposition 4.2, hereafter denoted for

simplicity by m̃, namely of an instanton solution of (4.19). We will follow

[14] where the d = 1 case is considered. We use the basic and elementary
properties of the evolution (4.19) listed below, where mt, t ≥ 0, denotes a
solution of (4.19) with m0 ∈ L∞(Kε; [−1, 1]).

1. Let ψt := mt−e−tm0. Then |∇ψt| is uniformly bounded with respect
to r, t and m0. As a consequence there exists a sequence tn → +∞
such that mtn

converges uniformly on the compact subsets of Kε, as
n → +∞.

2. The functional � (1)(·;Kε) defined in (4.16) is lower semicontinuous
on L∞(Kε; [−1, 1]) in the weak L2

loc(Kε)-topology, and � (1)(m; Kε)<
+∞ if and only if there are σ± ∈ {±1}, such that m−χ

σ
∈ L2(Kε, dr),

where χ
σ
(r) := mβσ+ (respectively χ

σ
(r) := mβσ−) if rd ≥ 0 (respec-

tively rd < 0).

3. If � (1)(m0;Kε) < +∞, then d� (1)(mt;Kε)/dt ≤ 0 for all t ≥ 0.

4. If � (1)(m0; Kε) < +∞, then there are m̂ ∈ � (Kε; [−mβ , mβ ]) and
a sequence tn → +∞ such that mtn

→ m̂ uniformly on the compact
subsets of Kε as n → +∞, and m̂ is a stationary solution of (4.19) in
the whole Kε.

We omit the proof of the above properties which is very similar to that
in [14] for d = 1.

Proposition C.1. There is m̃ ∈ � ∞(Kε; [−mβ , mβ ]) which is a station-
ary solution of (4.19). Moreover m̃ is an antisymmetric and strictly increasing
function of rd.

Proof. Following [14], we set for r ∈ Kε

m0(r) :=











−mβ for rd ≤ −1

mβ for rd ≥ 1

mβ rd otherwise

(C.1)

Let mt solve (4.19) with initial datum (C.1). Then mt is non-decreasing
and antisymmetric for any t ≥ 0. Since � (1)(m0;Kε) < +∞, the limit m̂
considered in property 4 solves (C.2) below, is non-decreasing, antisymmetric
and such that � (1)(m̂; Kε) < +∞. This shows that m̃ := m̂ is not identically
0.

Recalling that J (1), defined in (4.20), is a � ∞ function, we then obtain
by differentiating the equation

m̃(r) = tanh{βJ (1) ∗ m̃(r)}, r ∈ Kε (C.2)
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that m̃ ∈ � ∞(K; [−mβ , mβ ]). If the derivative m̃′ of m̃(r) with respect to rd

were 0 at some point r, then it would be 0 in the whole {r′ : J (1)(r, r′) > 0}
because m̃′ ≥ 0. By iteration we would then reach a contradiction with
the previous statement that m̃ is not identically 0. Hence m̃(r) is a strictly
increasing function of rd and the Proposition is proved.

Proposition C.2. There are constants c and c′ positive and independent
of ε so that the function m̃ verifies the inequality

m̃(r) ≥ mβ − c′e−crd , rd ≥ 0 (C.3)

Proof. By Proposition C.1 there is a > 0 so that m̃ ≥ a on {r ∈ Kε :
rd ≥ 1}. Using this fact we will prove that (C.3) holds with a constant c′

that depends on a. We will then complete the proof of the Proposition by
showing that a (hence c′) is uniformly bounded away from zero as ε → 0+.

To prove the first statement we introduce the following dynamics. We

call K
(i)
ε := {r ∈ Kε : rd ≥ i}, i = 1, 2. Then for any m ∈ L∞(K

(1)
ε ; [−1, 1])

we define mt ∈ L∞(K
(1)
ε ; [−1, 1]) as m0 := m on K

(1)
ε , mt = m0, t ≥ 0, on

K
(1)
ε \ K

(2)
ε . Finally, on K

(2)
ε , for t ≥ 0 mt solves the equation

dmt(r)

dt
= −mt(r) + tanh{βJ (1) ∗ mt(r)}

J (1) ∗ mt(r) =

∫

K
(1)
ε

dr′J (1)(r, r′)mt(r
′)

(C.4)

m̃ restricted to K
(1)
ε is obviously a stationary solution of (C.4).

Given u0 ∈ L∞(K
(1)
ε ; [−1, 1]) we say that the function ut ∈ L∞(K

(1)
ε ;

[−1, 1]) is a subsolution of (C.4) with initial datum u0 if ut = u0, t ≥ 0, on

K
(1)
ε \ K

(2)
ε and

dut

dt
≤ −ut + tanh{βJ (1) ∗ ut} on K(2)

ε for all t ≥ 0 (C.5)

Since J (1) ≥ 0 one can show that if u0 ≤ m0 on K
(1)
ε , then ut ≤ mt on K

(1)
ε

for all t ≥ 0. A similar statement is proved in [14] for d = 1.
We want to construct a subsolution of (C.4). We start by constructing

a countable system of functions vt : N+ → R, t ≥ 0, defined by vt(1) := a,
t ≥ 0, and, for n ∈ N, n ≥ 1,

dvt(n + 1)

dt
= −vt(n + 1) + tanh{βvt(n)}, v0(n + 1) = a (C.6)

i.e.

vt(n + 1) = e−ta +

∫ t

0

dse−(t−s) tanh{βvs(n)} (C.7)

Since β > 1, we have a − tanh(βa) < 0 (recall that a < mβ) so that

vt(2) = tanh(βa) + e−t[a − tanh(βa)] (C.8)

is an increasing function of t. Define

v∗(2) := lim
t→∞

vt(2) = tanh{βa} (C.9)

Similarly, by induction on n, setting

v∗(n + 1) := lim
t→∞

vt(n + 1)

one can prove that
v∗(n + 1) = tanh{βv∗(n)} (C.10)

Calling T (s) := tanh{βs} the map from (0, mβ ] into itself and Tn the n-th
iterate of T , we have from (C.10):

v∗(n + 1) = Tn(a)

Hence there are constants c1 > 0 and c2 so that

v∗(n) ≥ mβ − c2e
−c1n (C.11)

because mβ is a stable point for T attracting any orbit that starts from
(0, mβ ].

To relate the system vt(n), n ∈ N, to a subsolution of (C.4) we need
preliminarily to prove that Dt(n + 1) := vt(n + 1) − vt(n) ≥ 0 for all t ≥ 0.
We have, after Taylor expanding to first order,

Dt(n + 1) =

∫ t

0

ds e−(t−s)
(

tanh{βvs(n)} − tanh{βvs(n − 1)}
)

=

∫ t

0

ds e−(t−s)ψs(n)Ds(n) (C.12)

where ψs(n) is the derivative of the hyperbolic tangent computed at some
value which depends on vs(n − 1) and vs(n). Then ψs(n) > 0 and, conse-
quently, Dt(n + 1) ≥ 0 for all n ≥ 1 and all t ≥ 0, because Dt(2) ≥ 0 as it
follows from (C.8) recalling that vt(1) = a.
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We are going to show that the function ut ∈ L∞(K
(1)
ε ; [a, mβ ]), t ≥ 0,

defined by
ut(r) := vt([rd]) (C.13)

is a subsolution of (C.4). In fact let r ∈ K
(2)
ε be such that [rd] = n + 1; then

dut(r)

dt
+ ut(r) − tanh{βJ (1) ∗ ut(r)}

= − tanh{βJ (1) ∗ ut(r)} + tanh{βut(n)} ≤ 0

(C.14)

because for such values of r one has

J (1) ∗ ut(r) = k1(r)vt(n + 2) + k2(r)vt(n + 1) + k3(r)vt(n) ≥ vt(n) (C.15)

for three suitable non-negative functions k1, k2 and k3. The first equality
follows from the fact that J (1)(r, r′) = 0 if |r − r′| ≥ 1. Moreover, recalling
that the r′-integral of J (1) is equal to 1, we get k1(r)+k2(r)+k3(r) ≡ 1. The
last inequality in (C.15) follows from the fact that vt(m) ≥ vt(n) for m ≥ n,
which has already been proved. We have thus shown that ut satisfies (C.5)

and that it is a subsolution of (C.4). Since m̃ ≥ u0 on K
(1)
ε , it then follows

that
m̃ ≥ lim

t→+∞
ut = u∗, u∗(r) := v∗([rd])

(C.3) then follows from (C.11), but, as already observed, the constant c′

depends on c2 which is in turn determined by a. To prove Proposition C.2
we thus need to show that a can be taken independent of ε.

To this end for any r ∈ Kε with 1 ≤ rd ≤ 2 we consider a region Γ ⊂
Kε ∩ {1 ≤ rd ≤ 2} containing r which is � (0)-measurable and ∗-connected,
see Definition 2.1a and Definition 4.3. We also suppose that for α > 0 as in
(C.21) below,

|δΓ|
|Γ| ≤ α (C.16)

|Γ| is the volume of Γ, hence the number of cubes of � (0) in Γ; δΓ is the
union of all the cubes in Kε \Γ at distance not larger than 1 from Γ and |δΓ|
the total number of such cubes. We can find a finite family of such sets Γ so
that, modulo translations, for any ε > 0 any r in the strip {1 < rd ≤ 2}∩Kε

is contained in an element of the family. We fix in the sequel a region Γ and
call Λ = Γ ∪ δΓ.

Let u ∈ L∞(Λ; {0, mβ}), u(r) := mβ when r ∈ Γ and u0(r) := 0 when
r ∈ δΓ. We call ut ∈ L∞(Λ; [0, mβ ]), t ≥ 0, the function that solves (C.4) in
Γ, with u0 = u and ut = 0, on δΓ for all t ≥ 0.

The Proposition is then a consequence of the following:

Lemma. (i) There are u∗ ∈ L∞(Λ; [0, mβ ]) verifying (C.2) in Γ and a
sequence tn → +∞ as n → +∞ such that utn

→ u∗ uniformly on Λ.
(ii) m̃ ≥ u∗ on Λ.
(iii) There is a > 0 so that u∗ ≥ a on Γ.

Proof of the Lemma. Statement (i) follows from property 4, see the
beginning of this Appendix, that also applies to ut(r).

Let mt(r) be the solution of (4.19) with initial datum (C.1). Then
mt ≥ 0 on δΓ because mt ≥ 0 on {rd ≥ 0}, as mt is antisymmetric and
non-decreasing. It then follows that mt ≥ ut, t ≥ 0 on Λ.

The proof of (iii) is more delicate. We know from (i) that for r ∈ Γ

u∗(r) = tanh

{
∫

Λ

dr′J (1)(r, r′)u∗(r′)

}

(C.17)

Then there is a constant c5 > 0 such that, for any r ∈ Γ,

u∗(r) ≥ c5

∫

Γ

dr′J (1)(r, r′)u∗(r′) (C.18)

Moreover there are a positive integer n and a′ > 0 so that for all r and r′ in
Γ

∫

Γ

dr1J
(1)(r, r1) · · ·

∫

Γ

drn−1J
(1)(rn−2, rn−1)J

(1)(rn−1, r
′) ≥ a′

thus

u∗(r) ≥ (c5)
na′

∫

Γ

dr′u∗(r′), for all r ∈ Γ

It is therefore sufficient to prove that u∗ is not identically 0. To this end
we use a Liapunov function for the evolution satisfied by ut. We set for
u ∈ L∞(Λ; [0, mβ ])

� (3)(u; Λ) :=

∫

Γ

dr[1 − j(r)][f(u(r)) − f(mβ)]

+
1

4

∫

Γ

dr

∫

Γ

dr′J(|r − r′|)[u(r) − u(r′)]2

+
1

2

∫

Γ

dr

∫

δΓ

dr′J(|r − r′|)[u(r) − u(r′)]2

One can check that � (3)(ut; Γ) is a non-increasing function of t and that

� (3)(u∗; Λ) ≤ � (3)(u0; Λ) (C.19)
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We will conclude that u∗ 6= 0, 0 is here the function identically zero, from
the fact that

� (3)(0; Λ) > � (3)(u0; Λ) (C.20)

To prove (C.20) we observe that there are positive constants c3 and c4 so
that

� (3)(0; Λ) =

∫

Γ

dr[1 − j(r)][f(0) − f(mβ)] ≥ c3|Γ|

� (3)(u0; Γ) ≤ 1

2

∫

Γ

dr

∫

Λ\Γ

dr′J(|r − r′|)m2
β ≤ c4|δΓ|

Then (C.20) follows from the inequality c3|Γ| > c4|δΓ|, which holds if we
choose

α ≡ |δΓ|
|Γ| =

c3

2c4
(C.21)

The Lemma and the Proposition are therefore proved.

To prove that the instanton m̃ is unique, modulo vertical translations
and reflections, and to prove its stability, we follow again the approach used
in [14]. We thus start from the linearization of (4.19) around m̃. Recalling
(4.20),

dv

dt
= Lv, Lv(r) := −v(r) +

1 − m̃(r)2

1 − j(r)
βJ ∗ v(r) (C.22)

L is a self-adjoint operator in L2(dν; Kε) where

dν(r) = dr
1 − j(r)

1 − m̃(r)2
(C.23)

Its spectrum contains the origin, as the rd-derivative, m̃′, of m̃ is a 0-
eigenvector,

Lm̃′ = 0 (C.24)

We have proved in Proposition C.2 that m̃′ is in L2 since it decays exponen-
tially fast.

The spectrum of L is contained in the negative real axis. To prove it,
we consider the Perron-Frobenius isomorphism U : L2(dν;Kε) → L2(dµ;Kε)

Uv = ψ defined by U−1ψ := m̃′ψ (C.25)

where

dµ(r) := dr m̃′(r)2
1 − j(r)

1 − m̃(r)2
(C.26)

The image of L under this isomorphism is

� = ULU−1 (C.27)

which is the self-adjoint Markov generator

� ψ(r) =

∫

Kε

dr′P (r, r′)[ψ(r) − ψ(r′)]

P (r, r′) := [1 − m̃(r)2]
m̃′(r′)

m̃′(r)
βJ (1)(r, r′)

(C.28)

The spectrum of � lies therefore in the negative real axis, the same being
true for its isomorphic image L. Denoting by 〈·, ·〉µ the scalar product in
L2(dµ;Kε), we have

〈ψ, Lψ〉µ = −1

2

∫

Kε

dµ(r)

∫

Kε

dr′P (r, r′)[ψ(r) − ψ(r′)]2 (C.29)

which shows that 0 is a simple eigenvector, as (C.29) is equal to 0 only if
ψ = c, a constant; then U−1ψ = cm̃′.

We next show that there is a spectral gap, namely that 0 is an isolated
eigenvalue and the rest of the spectrum is at finite distance from 0. We will
use Weyl’s theorem, [28], and to this end we decompose L = L0 + L1 where

L0v := −v + β[1 − m2
β ]J (1) ∗ v (C.30)

L1v := β[m̃2 − m2
β ]J (1) ∗ v (C.31)

We are going to prove that the spectrum of L0 is contained in {Re z ≤
−1 + β[1−m2

β ]}, recall that β[1−m2
β ] < 1, because of the definition of mβ .

It will suffice to prove that the spectral radius of 1 + L0 is not larger than
β[1 − m2

β ]. To see this we write

〈[1 + L0]
nv, [1 + L0]

nv〉µ

≤ ‖m̃′‖2
∞

1 − m2
β

〈[1 + L0]
nv, [1 + L0]

nv〉λ, dλ(r) = dr[1 − j(r)]
(C.32)

and observe that L0 is self-adjoint in L2(dλ;K) and

(1 +L0)v(r) =

∫

K

dr′N(r, r′)v(r′), N(r, r′) = β(1−m2
β)J (1)(r, r′) (C.33)
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We then have, calling c := ‖m̃′‖2
∞/(1 − m2

β),

〈[1 + L0]
nv, [1 + L0]

nv〉λ

≤ c

∫

K

dλ(r)

∫

K

dr′N2n(r, r′)
1

2
[v(r)2 + v(r′)2]

≤ c[β(1 − m2
β)]2n〈v, v〉λ (C.34)

Thus β(1−m2
β) bounds the spectral radius of 1 + L0 and this completes the

proof of the statements concerning L0. On the other hand L1 is a compact
operator because it is an integral operator and because, by Proposition C.2,
m̃(r) converges to mβ exponentially fast as |rd| → +∞. By applying the
Weyl’s theorem we prove the spectral gap property for L, see [13] for more
details.

We have therefore proved that the linearized evolution attracts towards
the eigenvector m̃′. Proceeding as in [13] it is possible to prove the local
stability of the manifold of instantons, namely the following property. Let
m0 ∈ L∞(Kε; [−1, 1]). Call m̃a the rd-upward translation by a of m̃. Let
µa be the measure defined in (C.26) with m̃ replaced by m̃a. Suppose that
there is a so that m0 − m̃a is in L2(µa;Kε) and that its norm is smaller than
some suitably fixed value. Then there exists b so that m(t) converges to m̃b

in L2(µa;Kε).
The remaining part, namely the proof that the instanton m̃ is unique

modulo upward translations and reflections and that it is globally stable is
completely similar to the proof of the analogous properties in [14], so that
we simply outline the main steps. The key ingredient is a lemma of Fife and
McLeod, [19], proved for the Allen-Cahn equation. In the present context it
says that given any m0 ∈ L∞(Kε; [−1, 1]) such that

lim inf
rd→+∞

m0(r) > 0, lim sup
rd→−∞

m0(r) < 0 (C.35)

there are functions qt, at and bt, t ≥ 0, so that for all t ≥ 0

m̃at
− qt ≤ mt ≤ m̃bt

+ qt (C.36)

where mt, t ≥ 0, is the solution of (C.4) with initial datum m0.
Furthermore qt, at and bt converge exponentially fast as t → +∞ with

qt → 0 as t → +∞. The proof of (C.36) is just like in [14] and very close to
the original one of Fife and McLeod. With the local stability (that is already
proven) and (C.36) we can now apply the same argument used in [14] to
show that the only stationary solution of (4.19) in Kε that satisfies (C.35)

are translations of the instantons. Using this and exploiting the monotonicity
of the functional � (1)(·;Kε) one can adapt the Fife-McLeod proof of global
stability of the instantons for Allen-Cahn to the present context, just as done
in [14] for the d = 1 case.

Construction of the kernel J (2)(r, r′)

Let St(r, v̂), t ∈ R, r ∈ K̃ε, v̂ ∈ ∂B1(0), be the time flow for a point

particle in K̃ε with elastic collisions on ∂K̃ε. Here (r, v̂) denotes the initial
position and velocity, t the time and St(r, v̂) =: (rt, v̂t) the position and ve-

locity of the particle at time t. Since ∂K̃ε is convex there are no tangential
collisions and we can conclude that, except at the collisions, St(r, v̂) is smooth
and the Jacobian of the transformation (t, v̂) → St(r, v̂) is non-zero. More-
over, by the Liouville theorem, the flow St preserves the Lebesgue measure
on K̃ε × ∂B1(0).

We call λ(dv̂) the surface measure on ∂B1(0) and

p(dtdv̂) := J(t)td−1dtλ(dv̂)

We define J (2)(r, r′) by setting, for any f ∈ L∞(K̃ε) (also thought of as a

function on K̃ε × ∂B1(0) that does not depend on v̂) and any r ∈ K̃ε,
∫

K̃ε

dr′J (2)(r, r′)f(r′) =

∫

[0,1]×∂B1(0)

p(dtdv̂)f
(

St(r, v̂)
)

Property 1 of J (2) follows from the fact that t ≤ 1 and that the speed is 1;
the equality

∫

[0,1]×∂B1(0)

p(dtdv̂) =

∫

Rd

dr′J(r, r′) = 1

proves property 3. Property 4 holds because St(r, v̂) = r+tv̂ if d(r, ∂K̃ε) ≥ 1,
in fact in such a case the point does not collide before t = 1. Property 5
follows from the fact that the evolution of the last coordinate rd is like in the
free motion, as the walls ∂K̃ε are parallel to the rd-axis.

To prove property 2 we write for g, f ∈ L∞(K̃ε × ∂B1(0)) which do not
depend on v̂ but only on r:

∫

K̃ε×K̃ε

dr dr′J (2)(r, r′)g(r)f(r′)

=

∫ 1

0

dtJ(t)td−1

∫

K̃ε

dr

∫

∂B1(0)

λ(dv̂)g(r)f
(

St(r, v̂)
)

=

∫ 1

0

dtJ(t)td−1

∫

K̃ε

dr′
∫

∂B1(0)

λ(dv̂′)f(r′)g
(

S−t(r
′, v̂′)

)
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having used Liouville theorem. We now observe that the position coordinate
is the same in S−t(r

′, v̂′) and St(r
′,−v̂′) and since g does not depend on

the velocity we may write as well g
(

St(r
′,−v̂′)

)

in the last integral. By the
symmetry of the measure dλ under the change v̂ → −v̂ we then complete the
proof of property 2. All the properties of J (2)(r, r′) listed in Section 4 have
been proved.

APPENDIX D

In this Appendix we recall some basic notions of geometric measure
theory; we refer to the book of Evans and Gariepy, [17], for more details.

We recall that a set E ⊂ �
has finite perimeter when its characteristic

function 1E belongs to the space BV (
�

) of the functions on
�

of bounded
variation. When E has finite perimeter, there exists a set ∂∗E (reduced
boundary of E) and a function ν : ∂∗E → R

d, |ν| = 1 (generalized outer
normal to ∂∗E) such that for every vector field φ ∈ � 1(

�
) the following

generalized form of Gauss-Green formula holds:

∫

E

dr divφ = −
∫

∂∗E

dλ φ · ν (D.1)

where dλ denotes (a suitable extension of) the (d − 1)-dimensional surface
measure. The set ∂∗E is rectifiable in a measure theoretic sense, the precise
statement may be found in Section 5.7 of [17].

The perimeter P (E) of E is given by the surface measure λ(∂∗E) of its
reduced boundary. When u ∈ BV (

�
; {±mβ}), we define the perimeter P (u)

of u as the perimeter of the set

E := {r ∈ �
: u(r) = −mβ} (D.2)

The following approximation result can be found in [8].

Theorem D.1. Let E, ∂∗E and ν be as above. Then for any ζ > 0
there exists a set F of class � 1 such that

∣

∣E M F
∣

∣ < ζ, λ
(

∂∗E M ∂F
)

< ζ (D.3)

where M denotes the symmetric difference of sets.

The following result has been used in Section 4:

Theorem D.2. Covering theorem. Let u ∈ BV (
�

; {±mβ}). Then
for any 0 < ζ < 1 there is h > 0 and there are disjoint parallelepipeds

R1, . . . , Rn in R
d with bases R

d−1-parallelepipeds B1, . . . , Bn respectively,
and equal height 2h, so that

1

h

n
∑

i=1

∫

Ri

dr|χ
Ri

− u| < ζ;
∣

∣

∣

n
∑

i=1

|Bi| − P (u)
∣

∣

∣
< ζ (D.4)

where χ
Ri

:= mβ(1R+
i
−1R−

i
).

It is possible to take all the Ri congruent to the same d-dimensional
cube R of size 2h.

Proof. (Sketch.) Using Theorem D.1 we may restrict to the case ∂E
of class � 1, see (D.2). In what follows we denote by ci positive constants,
possibly depending on d and mβ but not on ζ and h.

We can find pairwise disjoint open subsets Σ1, . . . ,Σm of ∂E which cover
∂E up to a set of (surface) measure less than c1ζ, and so that each Σi is
(congruent to) the graph of a real function fi : Ui → R of class � 1, where
Ui ⊂ Rd−1 is a bounded open set and fi satisfies the bound

|∇fi| ≤ c2ζ on Ui (D.5)

See Figures 5 and 6.

E
B

2h

parallelepiped R of 
base B and height 2h, 
congruent to a cube 
of size 2h

Fig.5. The shaded region is a set E with finite perimeter. Shown is a covering
of parts of ∂E by parallelepipeds as in Theorem D.2. Locally ∂E is the graph
of a function; the segments outsides E represent symbolically the domains of
definition of these functions.
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U

 f

IRd−1

IR

Fig.6. Blow up of a single piece of the covering of Fig. 5.

We choose now h > 0 small enough, in such a way that the following
two conditions hold:

(i) the number 2
√

d h (which is the length of the diagonal of a d-
dimensional cube of side 2h) is less than the distance between Σi and Σj

for any i 6= j;

(ii) for every i we cover Ui with pairwise disjoint (d − 1)-dimensional
cubes B ⊂ Ui of side 2h up to a set of measure less than c3ζ/m.

For any i = 1, .., m and any (d− 1)-dimensional cube B ⊂ Ui appearing
in (ii) centered at x we construct the d-dimensional cube R ⊂ Rd with basis
B centered at the point (x, fi(x)) and with height 2h, see Figure 6. Denote
by R1, .., Rn (with basis B1, .., Bn respectively) the collection of all these
cubes. We also assume that R−

i is in the direction of E.
Using (D.5) we then have

∣

∣

∣

n
∑

i=1

|Bi| − P (u)
∣

∣

∣
≤

m
∑

i=1

(

c3
ζ

m
+ c4ζP (Σi)

)

≤ c5ζ

Moreover, by construction

1

h

∫

Ri

dr
∣

∣χ
Ri

− u
∣

∣ =
2mβ

h

(

|R−
i ∩ E| + |R+

i ∩ Ec|
)

≤ 2mβ

h
2c2ζh|Bi| ≤ c6ζ|Bi|

with Ec the complement of E. Finally thanks to (D.5) and (i) one can show
that the Ri are pairwise disjoint, for a suitable choice of the constants ci.
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