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1. Introduction

In this paper we study some problems related to a nonlocal model in phase
transitions. More precisely we consider the free energy

F (u) :=
1

4

∫∫

J(x′ − x)
(
u(x′) − u(x)

)2
dx′dx +

∫

W (u(x)) dx , (1.1)

where u is a scalar density function on a domain of R
N and takes values in

[−1, 1], W is a positive double-well potential which vanishes at ±1, and J is
a positive, possibly anisotropic, interaction potential which vanishes at infinity
(see paragraph 1.2 for precise definitions).

The scalar function u represents the macroscopic density profile of a system
which has two equilibrium pure phases described by the profiles u ≡ +1 and
u ≡ −1. The integral

∫
W (u) at the right side of (1.1) forces a minimizer of F

to take values close to +1 and −1 (phase separation), while the double integral
represents an interaction energy which penalizes the spatial inhomogeneity of
the system (surface tension).

In equilibrium Statistical Mechanics functionals of the form (1.1) arise as free
energies of continuum limits of Ising spin systems on lattices; in this setting u
plays the rôle of a macroscopic magnetization density and J is a ferromagnetic
Kac potential (see for instance [2] and references therein).

We underline the analogy with the more familiar gradient theory for phase
transition proposed in [9], where the free energy of the system is of the form

E(u) :=
1

2

∫

|∇u|2 +

∫

W (u) . (1.2)
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Indeed the free energy in (1.1) is obtained by replacing the (local) gradient energy
1
2

∫
|∇u|2 in (1.2) with the (nonlocal) interaction energy 1

4

∫∫
J(x′−x)

(
u(x′)−

u(x)
)2

dx′dx.

In this paper we study the optimal profiles for the interface; in the one-
dimensional case the optimal profile is a minimizer of F among all functions
u : R → [−1, 1] which satisfy the boundary conditions

lim
x→+∞

u(x) = 1 and lim
x→−∞

u(x) = −1 . (1.3)

In the N -dimensional case the optimal profile depends on the choice of a direc-
tion, and is a function on R

N which minimizes F subject to more complicated
boundary conditions.

The main goal of this paper is twofold: first we prove the existence of the
optimal profile both in the one and in the N -dimensional case (Theorems 2.4
and 3.3); secondly we show that in the N -dimensional case the optimal profile
for a “plane” transition in the direction e is a function which varies only in
the direction e, i.e., it is invariant with respect to translations orthogonal to e
(Theorem 3.3). Precise statements and definitions are given in paragraphs 1.3
and 1.4. In a special isotropic case this result was already proved in [2], using
completely different techniques.

A different approach to the optimal profile problem may be obtained by
considering the Euler-Lagrange equation associated with the functional F : when
∫

J(x) dx = 1 it reads as

J ∗ u − u = Ẇ (u) . (1.4)

Equation (1.4) has been widely studied in the one-dimensional case, in particular
in connection with the parabolic equation

ut = J ∗ u − u − f(u) , (1.5)

where f is the derivative of a potential with two wells at possibly different depth
at ±1. In a sequence of papers [10-13] De Masi et al. established existence,
uniqueness and stability of the stationary solutions and travelling waves for a
particular class of equations of type (1.5). These results have been proved under
general assumptions in [6], and then have been extended to the N -dimensional
case in [8] (we refer to [13], [6] and [8] for detailed references).

In a forthcoming paper [1] we study the asymptotic behavior as ε tends to 0
of the rescaled energies

Fε(u) :=
1

4ε

∫∫

Jε(x
′ − x)

(
u(x′) − u(x)

)2
dx′dx +

1

ε

∫

W (u(x)) dx , (1.6)

where Jε(y) := ε−NJ(y/ε). We show that the functionals Fε converge in a
variational sense to a limit energy F0(u) which is finite only when u = ±1
everywhere, and is given by

F0(u) :=

∫

S

σ(ν) , (1.7)
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where S is the interface between the phases u = +1 and u = −1, ν is the unit
normal to S, and for every unit vector e, σ(e) may be computed via the optimal
profile associated with the direction e. Moreover the one-homogeneous extension
x 7→ |x|σ

(
x
/
|x|

)
is a convex function on R

N (see [1]). This result shows that
the interface energy in the classical treatment of phase separation is recovered
as the limit of the rescaled free energy Fε, and then σ(e) represents the surface
tension with respect to the direction e.

Finally we underline that the fact that for every direction e there exists a one-
dimensional optimal profile (that is, invariant under translation orthogonal to e)
shows that no wrinkling instability occurs in ferromagnetic Ising systems, i.e.,
when the interaction potential J is non-negative, independently of the anisotropy
of J ; the situation is known to be quite different in the non-ferromagnetic case.

Similar conclusions have been proved in a different way by Katsoulakis and
Souganidis: they showed in the recent paper [15] that in the limit ε → 0 the
gradient flows associated with the energies Fε converge after a suitable rescaling
to an anisotropic (local) surface flow of parabolic type. It would be interesting
to understand whether a direct mathematical relation exists between Theorem
3.3 and the convergence result described in [15].

Before stating the main results we briefly introduce the notation adopted in
this paper.

1.1. Notation

We use the terms increasing and decreasing in the weak sense, that is, to mean
non-decreasing and non-increasing respectively. We denote by (a, b) and [a, b]
the open and the closed intervals respectively (an interval is not necessarily
bounded). Given a, b ∈ R, a∨ b and a∧ b denote respectively the maximum and
the minimum of {a, b}.

The first and second (distributional) derivatives of a function u defined on
the real line are denoted by u̇ and ü respectively.

Unless otherwise specified, all functions and sets are assumed Borel measur-
able, and we often omit explicit mention to measurability properties. Also, if
it is not explicitly mentioned we do not identify functions which agree almost
everywhere.

We usually consider integrals on (subsets of) R
k or some k-dimensional affine

subspaces of R
N : unless otherwise specified we integrate with respect to the k-

dimensional Hausdorff measure (that is, the usual Lebesgue measure on R
k) and

we often omit any explicit mention to the measure, that is, we write
∫

f(x) dx for
the integral of a function f and |B| for the measure of a set B. When we make
use of a different measure, it is always a bounded or locally bounded measure on
Borel sets, and we never omit to write it explicitly.

Let us define now some specific notation for our problem.

1.2. Hypotheses on J and W

Throughout this paper N is the dimension of the space. Unless differently stated
(cf. Remark 2.2) the functions J and W satisfy the following assumptions:
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(i) W is a double-well potential, that is, a non-negative continuous real function
on R which is 0 only at ±1 and tends to +∞ at infinity;

(ii) J is a positive interaction potential, that is, a non-negative function on R
N

which is even (J(h) = J(−h)), belongs to L1(RN ), and satisfies

∫

RN

J(h) |h| dh < ∞ . (1.8)

1.3. The optimal profile in dimension one

In Sect. 2 we study the optimal profile in the case N = 1. More precisely, for
every function u : R → R we set

F (u) :=
1

4

∫

R×R

J(x′ − x)
(
u(x′) − u(x)

)2
dx′dx +

∫

R

W
(
u(x)

)
dx , (1.9)

and then we consider the minimum problem

min
{
F (u) : u ∈ X

}
, (1.10)

where
X :=

{
u : R → [−1, 1] : (1.3) holds

}
. (1.11)

Notice that F is not identically equal to +∞ on X (take for instance u(x) := 1
for x ≥ 0, u(x) := −1 for x < 0).

In Theorem 2.4 we show that the minimum problem (1.10) admits an in-
creasing solution. Every increasing solution of (1.10) is called optimal profile
associated with F and is denoted by γ. The value σ := F (γ) of the minimum in
(1.10) is called the surface tension associated with F . The proof of Theorem 2.4
essentially relies on a rearrangement result given in Sect. 5 (cf. paragraph 1.6).

Notice that the if u solves (1.10) so does every translation of u. Therefore
the notion of optimal profile is translation invariant. A uniqueness result for the
optimal profile (up to translation) is given in Theorem 4.1.

In Theorem 2.11 we show that

F (u) = F ◦(u−1) for every increasing u ∈ X, (1.12)

where u−1 : (−1, 1) → R is the inverse of u (cf. Definition 2.6) and F ◦ is the
integral functional given in Definition 2.8. The main feature of F ◦ is convexity
(Proposition 2.10); therefore an increasing function v minimizes F ◦ if and only
if the first variation of F ◦ at v is zero, and this condition may be explicitly
computed (Theorem 2.14). As a corollary we also obtain a characterization of
the increasing solutions of the minimum problem (1.10) (see Corollary 2.16): in
the particular case that u is strictly increasing, then it solves (1.10) if and only
if

W (s) := −

∫

s<t′<1
−1<t<s

K̇
(
v(t′) − v(t)

)
dt′dt for every s ∈ (−1, 1) . (1.13)
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where v := u−1 and K is given in (2.8). We remark that this characterization
allows us to find the potential W once the interaction potential J and the optimal
profile γ are assigned (see paragraph 2.19). This fact is used in the proof of
Theorem 3.3.

1.4. The optimal profile in arbitrary dimension

In Sect. 3 we study the optimal profile in arbitrary dimension N > 1.
For every Ω ⊂ R

N and every u : R
N → R we define the functional F (u, Ω)

by setting

F (u, Ω) :=
1

4

∫

x∈Ω, h∈RN

J(h)
(
u(x + h) − u(x)

)2
dx dh +

∫

x∈Ω

W
(
u(x)

)
dx . (1.14)

In order to define the optimal profile, we must fix some notation.
We first choose a direction, that is, a unit vector e ∈ R

N , and we denote by
M the orthogonal complement of e. We say that a function u on R

N varies only
in the direction e if there exists a function ū on R such that u(x) = ū(xe) for
every x ∈ R

N ; here and in the following xe := 〈e, x〉 is the component of x in the
direction e.

Then we choose a basis
{
e1, . . . , eN−1

}
of M , and we take the (N − 1)-

dimensional rectangle A :=
{ ∑

αiei : 0 ≤ αi ≤ 1, i = 1, . . . , N − 1
}
. We say

that a function u on R
N is A-periodic if u(x + ei) = u(x) for every x ∈ R

N and
every i = 1, . . . , N − 1.

Now we consider the minimum problem

min
{F (u, A × R)

|A|
: u ∈ Xe

A

}

, (1.15)

where A × R is the stripe with direction e and section A, that is, A × R :=
{
y + te : y ∈ A, t ∈ R

}
, and

Xe
A :=

{

u : R
N → [−1, 1] : u is A-periodic and lim

xe→±∞
u(x) = ±1

}

. (1.16)

In other words we choose an unbounded stripe A×R parallel to the direction e,
and we minimize F (u, A × R) among all functions u which take values +1 and
−1 at the two “ends” of the stripe and are extended periodically outside.

In Theorem 3.3 we show that the minimum problem (1.15) admits a solution
which varies only in the direction e; moreover this solution is given by the opti-
mal profile γe associated with a suitably defined one-dimensional functional F e,
then the value of the minimum (1.15) is equal to F e(γe) and in particular it is
independent of the choice of A.

The function γe is called the optimal profile associated with F with respect to
the direction e, while the value σ(e) := F e(γe) of the minimum (1.15) is called
the surface tension associated with F with respect to the direction e (notice that
σ(e) = σ(−e)). The last definition is motivated by the asymptotic behavior of
the rescaled functionals Fε given in (1.6): the function σ is in fact the same as
in formula (1.7).
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The fact that there exists a solution to (1.15) which varies only in the direction
e is the main result of this paper.

1.5. Further remarks, generalizations and open problems

In Sect. 4 we add some remarks and we briefly discuss possible generalizations
of the results of the previous sections and some open problems.

In Subsect. 4a we use the Euler-Lagrange equation associated with F and
a uniqueness result proved in [6] to deduce that under certain additional as-
sumptions on J and W the one-dimensional optimal profile is unique (up to
translations).

In Subsect. 4b we consider the multi-phase extension of our model, that is,
when F is defined as in (1.1) but the density function u : R

N → R
k is vector-

valued, and the potential W is a non-negative continuous function on R
k which

vanishes at d + 1 affinely independent wells.
In Subsect. 4c we discuss the optimal assumptions on the interaction po-

tential J . The hypothesis J ≥ 0 (which in the Statistical Mechanics setting is
referred to as the ferromagnetic condition) cannot be removed in the present set-
ting, while the summability hypotheses on J , namely J ∈ L1(RN ) and (1.8), can
be weakened in order to allow singular potentials which do not belong L1(RN )
(cf. Theorem 4.6). Indeed the main results of Sects. 2 and 3 hold whenever J is
a non-negative even function on R

N such that
∫

RN J(h)
(
|h| ∧ |h|2

)
dh < ∞.

Eventually in Subsect. 4d we discuss the lower semicontinuity of functionals
of type (1.1) and we obtain some existence results for minimization problems
on bounded domains. Minimization problems related to functionals of the form
(1.1) have been studied in the setting of Young measures in [16] and [19]; other
examples of non-local energy functionals have been considered for instance in
[17], [18], [20] and [21].

1.6. A rearrangement result

In Appendix 5 we state and prove a rearrangement result which is the corner-
stone of the proof of Theorem 2.4.

Given u ∈ X we define the increasing rearrangement u∗ as follows: for every
t ∈ (−1, 1) the level set Et := {x : u(x) ≥ t} can be written as the disjoint union
of a bounded set At and a half-line (at,+∞) (cf. (1.11)); u∗ is then obtained by
replacing each level set Et with the half-line (at − |At|,+∞).

In Theorem 5.6 we show that replacing a function in X with its increasing
rearrangement preserves every integral of the form

∫

R
W (u) dx. In Theorem 5.8

we show that this substitution decreases every integral of the form

∫

R×R

J(x′ − x)L
(
u(x′) − u(x)

)
dx′dx

where J is non-negative and L is convex and non-negative. Therefore also the
functional F given in (1.9) decreases when u is replaced by u∗ (Proposition 2.3).

2. The optimal profile problem: the one-dimensional case
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In this section we study the minimum problem (1.10), which defines the optimal
profile for the interface in the one-dimensional case. We adopt a notation which
is slightly different from that one introduced in Sect. 1, so we begin by recalling
some basic definitions.

Definition 2.1. In the rest of this section W : R → R is a non-negative con-
tinuous function which vanishes at ±1 (cf. paragraph 1.2) and J : R → R is a
non-negative even function which satisfies

∫ ∞

0

J(h) (1 + h) dh < ∞ . (2.1)

The functional F is now defined as in (1.9) and X is given in (1.11).

Remark 2.2. While the assumptions on J are the same as in paragraph 1.2,
here the potential W may be not strictly positive out of −1 and 1. In fact in the
proof of Theorem 3.3 we apply some results of this section (namely Theorem 2.14
and Corollary 2.16) to functionals of the form (1.9) where W is only non-negative
and vanishes at ±1.

The key lemma of our approach is the following:

Proposition 2.3. If u belongs to X and u∗ is the increasing rearrangement of
u (see Definition 5.5), then

F (u∗) ≤ F (u) . (2.2)

Proof. Apply Theorems 5.6 and 5.8.

We shall also need the following immediate identity: for every function u :
R → R there holds

∫

R×R

J(x′ − x)
(
u(x′) − u(x)

)2
dx′dx =

∫

R

J(h)
∥
∥τhu − u

∥
∥

2

2
dh , (2.3)

here τhu denotes the translated function u(x − h).

2a. Existence of the optimal profile

The aim of this subsection is to prove that F attains a minimum on X. The
idea is to use the rearrangement results given in Proposition 2.3 to show that
it is enough to minimize F on the subclass of all u ∈ X which are increasing.
Provided some minor additional conditions are fulfilled, it may be easily proved
that in this case minimizing sequences are compact (with respect to a suitable
topology).

Theorem 2.4. Let F and X be given as before and assume that W is strictly
positive in (−1, 1). Then the minimum problem

min
{
F (u) : u ∈ X

}
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has a solution. More precisely we can find a minimizer u ∈ X which is increasing
and satisfies u(x) ≥ 0 for x > 0, u(x) ≤ 0 for x < 0.

Remark 2.5. As we remarked in paragraph 1.3, if u minimizes F on X, so does
every translation of u. Moreover one easily verifies that replacing u : R → R

with the truncated function (u ∨ 1) ∧ −1 decreases the value of F , and then
minimizing F on X is equivalent to minimizing F on the larger class of all
functions u : R → R which converge to ±1 at ±∞.

Proof of Theorem 2.4. We denote by X ′ the class of all u ∈ X which satisfy the
following additional conditions:

(i) u is increasing,
(ii) u(x) ≤ 0 for all x < 0 and u(x) ≥ 0 for all x > 0.

We shall prove the claim by showing that
(a) the infimum of F on X is equal to the infimum of F on X ′,
(b) F attains a minimum on X ′.

We point out that the hypothesis W > 0 on (−1, 1) will be used only in the proof
of statement (b).

The proof of statement (a) is divided into three steps.

Step 1. For every u ∈ X we may consider the increasing rearrangement u∗ of u
given in Definition 5.5. Then u∗ satisfies (i) and by Proposition 2.3 there holds
F (u∗) ≤ F (u).

Step 2. For every u ∈ X which satisfies (i), there exists at least one point
y ∈ R such that u(x) ≤ 0 for x < y and u(x) ≥ 0 for x > y (we take y = 0 if u
already satisfies (ii)). We set τu(x) := u(x + y) for all x ∈ R. Then τu satisfies
(i), (ii), and since F is translation invariant,

F (τu) = F (u) . (2.4)

Step 3. For every u ∈ X we set Pu := τ(u∗). By steps 1 and 2 this definition
is well-posed, Pu belongs to X ′, and by (2.2) and (2.4) we have F (Pu) ≤ F (u).
Moreover Pu = u for every u ∈ X ′, and then P is a projection of X onto X ′

which decreases the functional F . Hence statement (a) is proved.

Let us prove (b). We remark that by Fatou’s lemma F is lower semicontinuous
with respect to convergence almost everywhere. Hence it is enough to prove that
from every minimizing sequence (un) ⊂ X ′ we can extract a subsequence which
converges almost everywhere to some u ∈ X ′.

Taking (i) into account, we have that the distributional derivative u̇n of un

is a positive measure on R with ‖u̇n‖ = 2 for every n. Therefore the sequence
(un) is bounded in BVloc(R) and then it is relatively compact in L1

loc(R) by the
compact embedding theorem, and we may extract a subsequence (uk) = (unk

)
which converges almost everywhere to some u in BVloc(R).

Clearly, u is (a.e. equal to) a function which satisfies (i) and (ii) and then
it remains to show that u(x) converges to ±1 as x tends to ±∞. Since u is
increasing, there exist

α := lim
x→−∞

u(x) and β := lim
x→+∞

u(x) ,
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and taking (ii) into account, we have −1 ≤ α ≤ 0 ≤ β ≤ 1. If we assume
by contradiction that either α 6= −1 or β 6= 1, and recall that W is continuous
and strictly positive in (−1, 1), we obtain that

∫

R
W

(
u(x)

)
dx = +∞. Hence

F (u) = +∞, and this is impossible because F (u) ≤ lim infk F (uk) < +∞.

2b. The conjugate functional

The functional F given in (1.9) is clearly not convex, and indeed proving the
existence of a minimizer on X was not immediate. Finding conditions on a given
function in X which ensure that it minimizes F is even more difficult: we can
easily write the equivalent of the Euler-Lagrange equation for F and a solution
of this equation is a critical point for F , but may be not a minimizer because F
is not convex.

In this subsection we show that F (u) may be written as F ◦(u−1) for every
increasing function u ∈ X, where u−1 is the inverse of u and F ◦ is called the
conjugate functional of F : F ◦ is explicitly computed, and turns out to be a
convex integral functional (see Definition 2.8, Proposition 2.10 and Theorem
2.11).

Definition 2.6. Let u ∈ X be an increasing function. We define the inverse of
u as the function u−1 : (−1, 1) → R given by

u−1(t) := inf
{
x : t ≤ u(x)

}
for all t ∈ (−1, 1). (2.5)

The function u−1 is well-defined and increasing. Moreover it agrees with the
usual left inverse of u when u is strictly increasing. For a general increasing
u ∈ X there holds u−1

(
u(x)

)
= inf

{
x′ : u(x′) = u(x)

}
for every x ∈ R.

This definition of inverse function enjoys the following essential property:

Proposition 2.7. Let (un) be a sequence of increasing functions in X which
converges almost everywhere to u. Then the sequence (u−1

n ) converges almost
everywhere to u−1 on (−1, 1) (in fact everywhere except for a countable set).

Proof. We say that u is right strictly increasing at the point x ∈ R if u is never
constant in the interval (x, x1] for every x1 > x. We prove that u−1

n (t) → u−1(t)
for every t ∈ (−1, 1) such that u is right strictly increasing at u−1(t), and then we
show that the set of all points t which do not verify this condition is countable.

Set x := u−1(t) and take ε > 0. Since (un) converges to u almost everywhere,
we may find x0, x1 so that x−ε ≤ x0 < x < x1 ≤ x+ε and (un) converges to u at
x0 and x1. Since x0 < x = u−1(t), (2.5) yields u(x0) < t. Since x1 > x = u−1(t),
(2.5) yields u(x1) ≥ t, and u(x1) = t implies that u is constant in the interval
(x, x1]. Therefore if u is right strictly increasing at x we have that

u(x0) < t < u(x1) . (2.6)

By (2.6) there exists n̄ so that un(x0) < t < un(x1) for every n ≥ n̄, and then
(2.6) yields x0 ≤ u−1

n (t) ≤ x1. Hence x − ε ≤ u−1
n (t) ≤ x + ε, and since ε is

arbitrary, we have proved that u−1
n (t) converges to x = u−1(t).
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Finally we denote by {Ii} the collection of all maximal open intervals where
u is constant. This collection is countable, and if u is not right strictly increasing
at x then x belongs to the closure of one of these intervals. Therefore if u is not
right strictly increasing at u−1(t) then t belongs to the union of all u(Ii), that
is, a countable set.

Now we can give the definition of conjugate functional F ◦.

Definition 2.8. For every increasing function v : (−1, 1) → R we set

F ◦(v) :=

∫

−1<t<t′<1

K
(
v(t′) − v(t)

)
dt′dt +

∫

−1<t<1

W (t) dv̇(t) , (2.7)

where v̇ stands for the distributional derivative of v (since v is an increasing
function, v̇ is a positive measure on (−1, 1)) and K : R → R is given by

f(x) := max{−x, 0} , K(x) := J ∗ f (x) . (2.8)

Remark 2.9. Since f and J are non-negative, the convolution product which
defines K is well-defined and finite by (2.1).

Since f is Lipschitz, convex, decreasing and non-negative and J is non-
negative, then K is of class C1, convex, decreasing and non-negative. Since
the second order (distributional) derivative of f is the Dirac mass centered at 0,
then K̈ = J (in the sense of distributions). For every x ≥ 0 there holds

0 ≤ K(x) ≤ K(0) =

∫ ∞

0

J(h) h dh , 0 ≥ K̇(x) ≥ K̇(0) = −

∫ ∞

0

J(h) dh . (2.9)

Moreover
lim

x→+∞
K(x) = lim

x→+∞
K̇(x) = 0 . (2.10)

The proof of the following proposition is a consequence of the convexity of K
and we omit it.

Proposition 2.10. The functional F ◦ is convex on the set of all increasing
functions v : (−1, 1) → R.

Now we can state and prove the main result of this subsection.

Theorem 2.11. Under the previous assumptions, for every increasing function
u ∈ X there holds

F (u) = F ◦(u−1) . (2.11)

Proof. Let be given an increasing function u ∈ X and set v := u−1. We will
prove the following two equalities:

∫

R

W
(
u(x)

)
dx =

∫

−1<t<1

W (t) dv̇(t) , (2.12)

1

4

∫

R×R

J(x′ − x)
(
u(x′) − u(x)

)2
dx′dx =

∫

−1<t<t′<1

K
(
v(t′) − v(t)

)
dt′dt . (2.13)
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The proof of equality (2.12) is divided into two steps.

Step 1. Assume that W is 0 in [−1,−1 + ε] and [1 − ε, 1] for some ε > 0.
Take a sequence of strictly increasing functions un with smooth inverse which

converges to u almost everywhere in R and set vn := u−1
n . By Proposition 2.7

the sequence (vn) converges to v := u−1 almost everywhere in (−1, 1) and then
in BVloc(−1, 1). Hence v̇n ⇀ v̇ in the sense of measures. Passing to the limit as
n → ∞, we obtain

∫

R

W
(
u(x)

)
dx =(1) lim

n→+∞

∫

R

W
(
un(x)

)
dx

=(2) lim
n→+∞

∫ 1

−1

W (t) v̇n(t) dt =(3)

∫ 1

−1

W (t) dv̇(t) .

Step 2. We prove (2.12) in the general case by approximating W with an
increasing sequence of non-negative continuous functions Wn which are 0 in a
neighborhood of −1 and 1 and then applying monotone convergence theorem.

Also the proof of equality (2.13) is divided into two steps.

Step 1. Assume first that u : R → (−1, 1) is a strictly increasing continuous
function with smooth inverse v : (−1, 1) → R. Then

1

4

∫

R×R

J(x′ − x)
(
u(x′) − u(x)

)2
dx′dx =

=(4) 1

2

∫

−1<t<t′<1

K̈
(
v(t′) − v(t)

)
(t′ − t)2 v̇(t′) v̇(t) dt′dt .

Now we remark that K̈
(
v(t′) − v(t)

)
v̇(t′) v̇(t) is the second partial derivative

of the function −K
(
v(t′) − v(t)

)
with respect to t′ and t, and then (2.13) is

obtained by integrating by parts twice, first with respect to t′ and then with
respect to t (we use (2.10) to show that no boundary contributions arise in both
integrations by parts).

Step 2. We extend (2.13) to a general increasing u by approximation. We take
uε := u ∗ ρε where ρε(x) := ε−Nρ(x/ε) and ρ is a smooth function on R such
that ρ > 0 everywhere and ‖ρ‖1 = 1, and we set vε := u−1

ε .
Each uε is smooth and u̇ε = u̇ ∗ ρε > 0 everywhere; hence also vε is smooth.

The functions uε converge a.e. to u when ε → 0, and then vε converge a.e. to
v := u−1 by Proposition 2.7. Moreover ‖τhuε−uε‖2 = ‖(τhu−u)∗ρε‖2 increases
to ‖τhu − u‖2 for every h, and using identity (2.3) we get
∫

R×R

J(x′ − x)
(
u(x′) − u(x)

)2
dx′dx = lim

ε→0

∫

R×R

J(x′ − x)
(
uε(x

′) − uε(x)
)2

dx′dx .

(2.14)

(1) Apply dominated convergence theorem, recalling that W has compact sup-
port in (−1, 1).
(2) Apply the change of variable x = vn(t).
(3) Recall that v̇n ⇀ v̇ weakly* in Mloc(−1, 1) and W ∈ Cc(−1, 1).
(4) We make the change of variable x = v(t) and x′ = v(t′), using that J is even
and J = K̈ (see Definition 2.8).
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We remark that identity (2.13) holds for every uε by step 1, and passing to the
limit as ε → 0 we recover (2.13) for u (the left side converges by (2.14), while
the right side converges by the dominated convergence theorem).

2c. Characterization of the minimizers of F ◦

In this subsection we characterize the functions which minimize the conjugate
functional F ◦ in the class of all increasing functions v : (−1, 1) → R, and there-
fore we are able to characterize also the increasing minimizers of F in X (see
Theorem 2.14 and Corollary 2.16). Roughly speaking, since F ◦ is convex then a
function v minimizes F ◦ if and only if the first variation of F ◦ at v is 0, and the
first variation of F ◦ can be easily computed in many cases (see Lemma 2.22).

Definition 2.12. We denote by Y the class of all increasing functions v :
(−1, 1) → R. With every v ∈ Y we associate the function Hv : [−1, 1] → R

given by

Hv(s) :=

∫

s<t′<1
−1<t<s

−K̇
(
v(t′) − v(t)

)
dt′dt for every s ∈ [−1, 1] (2.15)

(when s = ±1 the integration domain in (2.15) is empty, and then Hv(±1) = 0).

Since all the functionals we are concerned with take the same value on func-
tions which agree almost everywhere, for the rest of this section we shall make
no difference between functions and equivalence classes. In particular we shall
denote by Y also the class of all functions which agree almost everywhere with
an increasing function, that is, all v whose distributional derivative is a locally
finite positive measure on (−1, 1).

Proposition 2.13. For every v ∈ Y the function Hv given in (2.15) is contin-
uous and satisfies

0 ≤ Hv(s) ≤
[ ∫ ∞

0

J(h) dh
]

(1 − s2) for every s ∈ [−1, 1] . (2.16)

Moreover Hv is strictly positive in (−1, 1) if either J has unbounded support or
v is continuous.

Proof. Since −K̇(x) is non-negative and bounded by −K̇(0) =
∫ ∞

0
J(h) dh when

x ≥ 0 (cf. (2.9)), the integrand in (2.15) is summable and non-negative. There-
fore Hv is finite, continuous and satisfies (2.16).

Since −K̇(0) > 0 and −K̇ is continuous, there exists ε > 0 so that −K̇(x) > 0
for all x ≤ ε. If v is continuous, then for every s ∈ (−1, 1) there exists δ > 0 so
that

∣
∣v(t′) − v(t)

∣
∣ ≤ ε when t, t′ ∈ [s − δ, s + δ]. Hence −K̇

(
v(t′) − v(t)

)
> 0 for

t′ ∈ [s, s + δ], t ∈ [s − δ, s], and then Hv(s) > 0.
If J has unbounded domain, then −K̇ is strictly positive on R (cf. (2.8)),

and Hv is strictly positive on (−1, 1).
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Theorem 2.14. A function v minimizes F ◦ in Y if and only if W ≥ Hv
everywhere in [−1, 1] and W = Hv everywhere in the support of the measure
derivative v̇.

Remark 2.15. Notice that the support of the measure v̇ is the complement in
[−1, 1] of the maximal open set where v is locally constant. When v is strictly
increasing, the support of v̇ is the interval [−1, 1], and v minimizes F ◦ in Y if and
only if the equality W = Hv holds in [−1, 1]. When v is not strictly increasing, it
is constant on some interval, and then it belongs to the “boundary” of Y , in the
sense that not all infinitesimal variations of v still belongs to Y . This explains
why the minimality condition given in Theorem 2.14 sometimes becomes an
inequality instead of an equality.

Corollary 2.16. Let u be an increasing function in X and let v := u−1. Then
u minimizes F in X if and only if W ≥ Hv everywhere in [−1, 1] and W = Hv
everywhere in the support of the measure v̇.

Remark 2.17. Notice that the support of v̇ is the essential image of u (that
is, the set of all y ∈ [−1, 1] such that u−1(y−ε, y+ε) has positive measure for all
ε > 0); when u is left or right-continuous the essential image is just the closure
of the image.

Remark 2.18. The assumption that W is strictly positive in (−1, 1) is essential
to prove the existence of the optimal profile (Theorem 2.4) but plays no rôle in
the proofs of Theorems 2.11 and 2.14. Indeed in Sect. 3 we shall apply these
results without assuming W strictly positive in (−1, 1).

2.19. The inverse problem

We apply the previous results to answer the following question: given an inter-
action potential J and an increasing function u ∈ X, how can we find a double-
well potential W so that u is the optimal profile associated with the corresponding
functional F?

Corollary 2.16 shows that it is enough to set W := Hu−1, provided that Hu−1

is strictly positive in (−1, 1). By Proposition 2.13 this holds for instance when
u−1 is continuous, (that is, u is strictly increasing), or when J has unbounded
support. These conditions are sufficient, but not necessary. In fact if W (t) ≥
C (1− t2) where C :=

∫ ∞

0
J(h) dh, then the optimal profile associated with F is

γ(x) := sgnx, independently of the choice of J ; to prove this fact it is enough to
remark that γ−1(t) = 0 and (Hγ−1)(t) = C (1−t2) ≤ W (t) for every t ∈ (−1, 1),
and then apply Corollary 2.16.

Yet we remark that this way W is no more regular than continuous, and in-
deed further regularity of W necessarily implies further regularity of the optimal
profile (cf. [6], Sect. 3).

The rest of this section is devoted to prove Theorem 2.14 and Corollary 2.16.

Definition 2.20. Let v ∈ Y . We say that w : (−1, 1) → R is an admissible
variation for v if v+w belongs to Y . We denote by A(v) the class of all admissible
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variations for v.

The following proposition is an immediate corollary of this definition, and we
omit the proof.

Proposition 2.21. Let v ∈ Y . The following statements hold:
(a) if w ∈ A(v), then w ∈ BVloc(−1, 1);
(b) if w ∈ A(v), then hw ∈ A(v) for every h ∈ (0, 1);
(c) if w ∈ BVloc(−1, 1), then w ∈ A(v) if and only if ẇ ≥ −v̇;
(d) if w ∈ BVloc(−1, 1) and ẇ is a positive measure, then w ∈ A(v).

Now we can compute the first variation of F ◦:

Lemma 2.22. Take v ∈ Y such that F ◦(v) is finite, w ∈ A(v)∩BV (−1, 1), and
define Hv as in (2.15). Then

lim
h→0+

F ◦(v + hw) − F ◦(v)

h
=

∫ 1

−1

(
W (s) − Hv(s)

)
dẇ(s) . (2.17)

Remark 2.23. The limit at the left side of equality (2.17) is simply the right
derivative of F ◦ with respect to the direction w at the point v, and it exists,
possibly equal to ±∞, for every v in the domain of F ◦ and every admissible
variation w because the function h 7→ F ◦(v + hw) is convex (cf. Proposition
2.10) and finite when h = 0. On the other hand, the integral at the right side
of (2.17) makes sense when w belongs to BV (−1, 1) because W and Hv belong
to C0(−1, 1) and ẇ is a bounded measure, but it may be not defined when ẇ is
only a locally bounded measure.

Proof of Lemma 2.22. For every h > 0, t, t′ ∈ (−1, 1) we set

Φh(t′, t) :=
K

(
v(t′) − v(t) + hw(t′) − hw(t)

)
− K

(
v(t′) − v(t)

)

h
.

Therefore

F ◦(v + hw) − F ◦(v)

h
=

∫

−1<t<t′<1

Φh(t′, t) dt′dt +

∫ 1

−1

W (t) dẇ(t) . (2.18)

We notice that Φh(t′, t) converges to K̇
(
v(t′) − v(t)

) (
w(t′) − w(t)

)
as h → 0+

whenever −1 < t < t′ < 1, and then we apply the dominated convergence
theorem to pass to the limit in (2.18) as h → 0+ (5):

lim
h→0+

F ◦(v + hw) − F ◦(v)

h
=

(5) In order to apply the dominated convergence theorem, we need a summable
upper bound for the functions Φh. This may be obtained by the mean value
theorem as follows

∣
∣Φh(t′, t)

∣
∣ ≤ sup

y

∣
∣K̇(y)

∣
∣
∣
∣w(t′) − w(t)

∣
∣ ≤

(

2

∫

R

J(y) dy
)

‖ẇ‖ for t < t′.
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=

∫

−1<t<t′<1

K̇
(
v(t′) − v(t)

) (
w(t′) − w(t)

)
dt′dt +

∫

−1<t<1

W (t) dẇ(t)

=

∫

−1<t<t′<1

[

K̇
(
v(t′) − v(t)

)
∫

t<s<t′

dẇ(s)
]

dt′dt +

∫

−1<s<1

W (s) dẇ(s)

=

∫

−1<s<1

[

W (s) +

∫

s<t′<1
−1<t<s

K̇
(
v(t′) − v(t)

)
dt′dt

]

dẇ(s)

=

∫ 1

−1

(
W (s) − Hv(s)

)
dẇ(s) .

Proof of Theorem 2.14. Let v ∈ Y be a minimizer for F ◦ in Y . We want to show
that W ≥ Hv everywhere in [−1, 1] and W ≤ Hv everywhere in the support
of v̇. Take w ∈ A(v) ∩ BV (−1, 1). By Proposition 2.21(b) and Lemma 2.22 we
obtain

∫ 1

−1

(
W (s) − Hv(s)

)
dẇ(s) = lim

h→0+

F ◦(v + hw) − F ◦(v)

h
≥ 0 . (2.19)

Since every positive finite measure µ on (−1, 1) is the derivative of a bounded
increasing function w, and every bounded and increasing function belongs to
A(v) ∩ BV (−1, 1) (cf. statement (d) of Proposition 2.21), then (2.19) yields

∫ 1

−1

(
W (s) − Hv(s)

)
dµ(s) ≥ 0 .

Therefore W − Hv ≥ 0 µ-almost everywhere for every positive measure µ, that
is, W − Hv ≥ 0 everywhere on [−1, 1].

For every Borel set B relatively compact in (−1, 1), the restriction of the
measure −v̇ to B is the derivative of some decreasing bounded function w, and
w belongs to A(v) ∩ BV (−1, 1) by statement (c) of Proposition 2.21. Therefore
(2.19) becomes

∫

B

(
Hv(s) − W (s)

)
dv̇(s) ≥ 0 .

Since this holds for every B relatively compact in (−1, 1), then W ≤ Hv almost
everywhere with respect to the measure v̇, and recalling that W and Hv are
continuous functions we deduce that W ≤ Hv everywhere in the support of v̇.
The first implication of Theorem 2.14 is thus proved.

Conversely, let v be a function in Y so that W ≥ Hv everywhere in [−1, 1]
and W = Hv everywhere in the support of the measure v̇, and take an admissible
variation w ∈ A(v) ∩ BV (−1, 1). Since ẇ ≥ −v̇ (statement (c) of Proposition
2.21), if we denote by (ẇ)− the negative part of the measure ẇ, we obtain that
(ẇ)− ≤ v̇. Therefore the support of (ẇ)− is included in the support of v̇, and
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then W−Hv = 0 almost everywhere with respect to (ẇ)−. Moreover W−Hv ≥ 0
everywhere. Hence (2.17) yields

lim
h→0+

F ◦(v + hw) − F ◦(v)

h
=

∫ 1

−1

(
W (s) − Hv(s)

)
dẇ(s) ≥ 0 . (2.20)

Since the function h 7→ F ◦(v+hw) is convex (cf. Proposition 2.10), (2.20) implies
that F ◦(v + hw) ≥ F ◦(v) for every h > 0, and in particular

F ◦(v + w) ≥ F ◦(v) . (2.21)

So far we have proved that inequality (2.21) holds for every admissible variation
for v which has bounded variation, and then we extend it to every admissible
variation by a density argument. Hence v minimizes F ◦ on Y .

Proof of Corollary 2.16. Let X ′ be the class of all increasing functions in X. By
statement (a) in the proof of Theorem 2.4, the infimum of F on X is equal to
the infimum on X ′. Hence if u is an increasing function in X, by Theorem 2.11
we obtain that u minimizes F on X if and only if the inverse of u minimizes the
conjugate functional F ◦ on Y . Now the thesis follows from Theorem 2.14.

3. The optimal profile problem: the N-dimensional case

In this section we study the optimal profile in dimension N > 1.
The notation is the same of Sect. 1: J , W are given in paragraph 1.2, F is

defined in (1.14), and e, M , A, Xe
A are given in paragraph 1.4.

In the following we identify R
N with the product M × R by writing every

x ∈ R
N as x = y + te with y ∈ M and t ∈ R; t = 〈e, x〉 = xe is then the

component of x in the direction e. In particular A×R is the stripe of all x ∈ R
N

of the form x = y + te with y ∈ A, t ∈ R.
As far as possible we use the letters x, h to denote elements of R

N , y for
elements of M , and s, t for real numbers.

Definition 3.1. We define the one-dimensional non-negative interaction poten-
tial Je and the double-well potential W e as follows:

Je(s) :=

∫

y∈M

J(y + se) dy for every s ∈ R,

W e(v) := W (v) for every v ∈ R.

(3.1)

One readily checks that Je satisfies (2.1). Eventually the one-dimensional func-
tional F e is defined as in (1.9) by replacing J and W with Je and W e respectively.
We denote by γe the optimal profile associated with F e (cf. Theorem 2.4).

For those functions u which vary only on the direction e, the value of F can
be recovered by F e. More precisely we have the following result:
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Proposition 3.2. If u : R
N → R is a function which varies only in the direction

e, that is, u(x) ≡ ū(xe) for some ū on R, then

F (u, B × R) = |B| · F e(ū) for every B ⊂ M . (3.2)

Proof. We write every x ∈ B × R as x = y + te with y ∈ B, t ∈ R, and every
h ∈ R

N as h = z + se with z ∈ M , s ∈ R. Both changes of variable preserve the
measure, and then

∫

x∈B×R

h∈R
N

J(h)
(
u(x + h) − u(x)

)2
dx dh =

=

∫

t,s∈R

[ ∫

y∈B, z∈M

J(z + se) dz dy
] (

ū(t + s) − ū(t)
)2

dt ds

= |B|

∫

t,s∈R

Je(s)
(
ū(t + s) − ū(t)

)2
dt ds . (3.3)

Similarly we obtain

∫

x∈B×R

W (u(x)) dx = |B|

∫

t∈R

W (ū(t)) dt = |B|

∫

t∈R

W e(ū(t)) dt . (3.4)

Identities (3.3) and (3.4) together imply (3.2).

Now we can state and prove the main result of this section:

Theorem 3.3. Under the above stated hypotheses the minimum problem

min
{F (u, A × R)

|A|
: u ∈ Xe

A

}

, (3.5)

has a solution u which varies only in the direction e. More precisely we can
take u(x) := γe(xe), where γe is the optimal profile associated with the one-
dimensional functional F e given in Definition 3.1, and therefore the value of the
minimum in (3.5) is equal to F e(γe) (and is independent of A).

The rest of this section is devoted to the proof of Theorem 3.3. In view of
Proposition 3.2 the statement of Theorem 3.3 reduces to the following inequality:
for every u ∈ Xe

A there holds

F (u, A × R) ≥ |A| · F e(γe) , (3.6)

where F e and γe are given in Definition 3.1.

The proof of this inequality is quite delicate and requires some additional
notation.
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Definition 3.4. We denote by Im (γe) the essential image of the optimal profile
γe, that is, the closure of the image of any left or right-continuous representative
of γe (cf. Remark 2.17).

We set P := e + M = {e + y : y ∈ M}; given a function u on R
N , for every

y ∈ M , z ∈ P , we set

uyz(t) := u(y + tz) for every t ∈ R. (3.7)

Notice that when u belongs to Xe
A then uyz belongs to X for every y, z (cf.

definitions (1.11) and (1.16)).

 e

 z

 M  P

 y

 A

 A × I   R  

Fig.1. in grey is the stripe A×R. If we identify this stripe with the cylinder R
N /G where G is the

subgroup of R
N generated by {e1,...,eN−1}; then the dashed segments represent the straight line

Ryz :={y+tz: t∈R} and for every z the family {Ryz : y∈A} is a fibration of the cylinder A×R.

Definition 3.5. For every z ∈ P we define the one-dimensional non-negative
interaction potential J

z
as follows:

J
z
(s) := J(sz) |s|N−1 for every s ∈ R. (3.8)

In the following we say that a family
{
W

z
: z ∈ P

}
of continuous non-negative

functions defined on R is admissible when

W (v) ≥

∫

z∈P

W
z
(v) dz for every v ∈ [−1, 1] , (3.9a)

W (v) =

∫

z∈P

W
z
(v) dz for every v ∈ Im (γe). (3.9b)

Clearly (3.9a) yields W
z
(±1) = 0 for almost every z; notice that we do not

assume that the functions W
z

are strictly positive out of ±1, so they may be not
double-well potentials.

For every admissible family
{
W

z
: z ∈ P

}
and every z ∈ P we define the

one-dimensional functional F
z

as in (1.9), by replacing J and W with J
z

and
W

z
respectively. Since e, J , and J

z
are fixed, the functionals F

z
depend only on

the choice of the family {W
z

: z ∈ P}.
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Proposition 3.6. For a.e. z ∈ P the one-dimensional interaction potential J
z

satisfies (2.1), and for every admissible choice of
{
W

z
: z ∈ P

}
there holds

F e(γe) =

∫

z∈P

F
z
(γe) dz . (3.10)

Proof. We set

g(z) :=

∫ ∞

0

J
z
(s) (1 + s) ds for every z ∈ P .

Then J
z

satisfies (2.1) if and only if g(z) is finite. Thus we integrate g(z) over
all z ∈ P , and taking into account (3.8) and the fact that |s| ≤ |sz| (because
|z| ≥ 1 for every z ∈ P ), we obtain

∫

z∈P

( ∫

R

J
z
(s) (1 + |s|) ds

)

dz ≤

∫

s∈R,z∈P

J(sz) (1 + |sz|) |s|N−1ds dz

=(6)

∫

RN

J(h) (1 + |h|) dh < ∞ .

Hence
∫

g(z) dz is finite, and then g(z) is finite for a.e. z ∈ P . The first part of
the proposition is proved.

It remains to prove (3.10): the definitions of Je and J
z

(see (3.1) and (3.8))
and a direct computation yield

Je(s) =

∫

z∈P

J
z
(s) dz for every s ∈ R \ {0}, (3.11)

and taking (3.9b) into account, we immediately obtain (3.10) (7).

(6) We apply the change of variable h = sz. More precisely we consider the
function Φ which takes (s, z) ∈ R × P into h = sz ∈ R

N ; Φ is one-to-one from
(R \ {0}) × P to R

N \ M , and has Jacobian determinant JΦ(s, z) = |s|N−1.
Indeed if we write z as z = z̄ + e with z̄ ∈ M , the differential of Φ at the point
(s, z) is the linear mapping dΦ which takes (ds, dz) ∈ R × M into z ds + s dz =
e ds + (z̄ ds + s dz), and then dΦ may be viewed as the linear mapping of R×M
into itself represented by the matrix

(
1 z̄
0 sI

)

where I is the identity on the (N − 1)-dimensional space M . Hence JΦ :=
∣
∣ det(dΦ)

∣
∣ = |s|N−1.

(7) In fact (3.10) holds even if we replace γe with any other function whose
essential image is included in Im (γe); in the general case there holds only an
inequality.
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Proposition 3.7. For every admissible choice of the family {W
z

: z ∈ P} and
every u : R

N → [−1, 1] which is A-periodic there holds

F (u, A × R) ≥

∫

y∈M, z∈P

F
z
(uyz) dz dy . (3.12)

Proof. Let us consider the first integral in the definition of F (see (1.14)): if
we apply the change of variable h = sz with z ∈ P , s ∈ R (cf. the proof of
Proposition 3.7) we obtain

∫

h∈RN

( ∫

x∈A×R

(
u(x + h) − u(x)

)2
dx

)

J(h) dh =

=

∫

s∈R

z∈P

( ∫

x∈A×R

(
u(x + sz) − u(x)

)2
dx

︸ ︷︷ ︸

I(s, z)

)

J(sz) |s|N−1ds dz .(3.13)

We fix s ∈ R and z ∈ P for the moment, and we restrict our attention to the
integral I(s, z). We write z in the form z = z̄ +e with z̄ ∈ M , and then we apply
the change of variable x = y + tz with t ∈ R, y ∈ M (8):

I(s, z) =

∫

t∈R

( ∫

y∈A−tz̄

(
u(y + tz + sz) − u(y + tz)

)2
dy

)

dt

(here A−tz̄ stands for the translation of the set A by −tz̄). Since u is A-periodic,
replacing the integration domain A − tz̄ with A does not affect the value of the
integral between brackets, and then, recalling definition (3.7),

I(s, z) =

∫

t∈R, y∈A

(
uyz(t + s) − uyz(t)

)2
dy dt . (3.14)

Now we replace the value of I(s, z) in (3.13) with (3.14), and taking definition
(3.8) into account we get

∫

x∈A×R

h∈R
N

J(h)
(
u(x + h) − u(x)

)2
dx dh =

=

∫

y∈A
z∈P

( ∫

s,t∈R

J
z
(s)

(
uyz(t + s) − uyz(t)

)2
ds dt

)

dy dz .(3.15)

(8) More precisely we consider the function Ψ which takes (t, y) ∈ R × M into
x = y + tz ∈ R

N : Ψ is one-to-one from R × M to R
N , and has Jacobian

determinant equal to 1.
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Reasoning in a similar way and taking (3.9a) into account, one obtains

∫

x∈A×R

W (u(x)) dx ≥

∫

z∈P

( ∫

x∈A×R

W
z
(u(x)) dx

)

dz =

∫

y∈A
z∈P

( ∫

t∈R

W
z
(uyz(t)) dt

)

dy dz .

(3.16)
Identities (3.15) and (3.16) together imply (3.12).

Proof of inequality (3.6). Take any admissible family {W
z

: z ∈ P} and set

σz := inf
{
F

z
(u) : u ∈ X

}
for every z ∈ P .(9) (3.17)

Let u ∈ Xe
A be fixed. We already remarked that for every y ∈ M , z ∈ P there

holds uyz ∈ X (see (3.7)), and then F
z
(uyz) ≥ σz. Hence Proposition 3.7 yields

F (u, A × R) =

∫

y∈A,z∈P

F
z
(uyz) dy dz ≥

∫

y∈A,z∈P

σz dy dz = |A|

∫

z∈P

σz dz . (3.28)

On the other hand, by Proposition 3.6 there holds

|A|

∫

z∈P

F
z
(γe) dz = |A| · F e(γe) .

Therefore inequality (3.6) is proved if we choose the functions W
z

so that σz ≥
F

z
(γe) for (almost) every z ∈ P , that is

γe minimizes F
z

in X for every z ∈ P . (3.19)

Now the strategy is the following: we first choose W
z

so that (3.19) holds,
and then we show that this choice is admissible (cf. Definition 3.5). As we
remarked in paragraph 2.19, the problem of finding W

z
so that the minimizer of

F
z

on X is a given function (i.e., γe) may be solved using Corollary 2.16: it is
enough to set

W
z
(v) :=

(
H

z
γ−1

e

)
(v) for every v ∈ [−1, 1] , (3.20)

where H
z

is defined as in (2.15) by replacing K with K
z

:= J
z
∗ f (see (2.8))

We complete the definition of W
z

by setting W
z
(v) = 0 when v ∈ R \ [−1, 1].

By Proposition 2.13 the function W
z

is continuous, non-negative, and van-
ishes at ±1; it remains to prove that (3.9a) and (3.9b) hold. In order to do this,

(9) Since W
z

may be not strictly positive in (−1, 1), Theorem 2.4 does not apply
and then the infimum in (3.17) may be not achieved.
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we define He as in (2.15) by replacing K with Ke := Je ∗ f and we integrate
identity (3.20) with respect to z ∈ P : taking (3.11) into account we get

∫

P

W
z
(v) dz =

∫

P

(
H

z
γ−1

e

)
(v) dz =(10)

(
Heγ−1

e

)
(v) for every v ∈ [−1, 1] .(3.21)

Since γe minimizes F e on X by definition, Corollary 2.16 and Remark 2.17 yield
(
Heγ−1

e

)
(v) ≤ W e(v) for every v ∈ [−1, 1], (3.22a)

(
Heγ−1

e

)
(v) = W e(v) for every v ∈ Im (γe). (3.22b)

As W e = W by definition (cf. (3.1)), from (3.21) and (3.22a), (3.22b) we get
(3.9a) and (3.9b). This concludes the proof of inequality (3.6).

4. Further remarks, generalizations and open problems

In this section we add some remarks and we briefly discuss possible generaliza-
tions of the results of the previous sections and some open problems. Throughout
this section we identify functions which agree almost everywhere.

4a. Uniqueness of the optimal profile

In the one-dimensional case the uniqueness of the optimal profile (up to trans-
lations) can be proved under some additional hypotheses on J and W via the
Euler-Lagrange equation associated with F .

To this aim we notice that for every u : R → R such that F (u) is finite, and
every v : R → R bounded and compactly supported, the first variation of F at u
in direction v is given by

〈DF (u), v〉 := lim
h→0

F (u + hv) − F (u)

h
=

∫

R

(
− J ∗ u + au + Ẇ (u)

)
v dx , (4.1)

here W is assumed of class C1 and a :=
∫

J(h) dh. It follows immediately that
the Euler-Lagrange equation associated with F is

J ∗ u − a u = Ẇ (u) a.e. in R. (4.2)

In particular every optimal profile solves (4.2) under the boundary condition
(1.3) (11).

(10) Since
∫

J
z
(s) dz = Je(s) for every s ∈ R by (3.11), then (2.8) yields

∫
K̇

z
(s) dz = K̇e(s), and by (2.15) for every increasing φ : (−1, 1) → R there

holds ∫

P

(
H

z
φ(v)

)
dz = Heφ(v) for every v ∈ [−1, 1] .

(11) Replacing u with the truncated function (u ∨ 1) ∧ −1 decreases the value of
F . Hence if a function minimizes F on X, then it minimizes F also on the larger
class of all locally bounded u : R → R which satisfy (1.3). Using this fact and
(4.1) we easily deduce that every optimal profile satisfies (4.2).
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Notice that both equation (4.2) and conditions (1.3) are translation invariant;
therefore if u solves (4.2) with boundary condition (1.3), so does every translation
of u.

As we remarked in the Introduction, every solution of (4.2) subject to (1.3)
is a travelling wave solution for the one-dimensional parabolic equation

ut = J ∗ u − u − f(u) , (4.3)

where f is the derivative of a potential with two wells at possibly different depth
in ±1. We refer to [6] for a detailed analysis of existence stability and regularity
of such travelling waves. We just recall here the following uniqueness result (see
[6], Theorem 4.1):

Theorem 4.1. Assume that J and W satisfy the following additional hypotheses:
(i) W is of class C2 and the interval (−1, 1) splits into three sub-intervals where

W is either convex or concave.
(ii) J is of class C1;

Then the solution of equation (4.2) subject to (1.3) is unique up to translations.

This result shows that if (i) and (ii) hold, the optimal profile associated with
F is unique up to translations, and every solution of (4.2) which satisfies (1.3)
agrees with the optimal profile. Hence solving (4.2) subject to the boundary
condition (1.3) is equivalent to minimizing F on X.

Question 4.2. Is there any direct proof of the uniqueness result for the solutions
of the minimum problem (1.10)? So far the uniqueness of the optimal profile is a
consequence of Theorem 4.1, which states a uniqueness result for equation (4.2),
and therefore W cannot be less regular than C1. On the other hand it would
be interesting to find conditions on J and W which do not imply any additional
regularity than J summable and W continuous. An answer to this question
could be obtained by looking for conditions such that the conjugate functional
F ◦ is strictly convex, and every solution of (1.10) is increasing. In turn this
monotonicity result could be achieved by sharpening the rearrangement result
given in Theorem 5.8.

Question 4.3. Under which hypotheses on J inequality (5.14) is strict whenever
u is not (a.e. equal to) an increasing function (that is, u does not agree a.e. with
its increasing rearrangement u∗)?

Eventually it would be interesting to prove some uniqueness result in the N -
dimensional case, that is, finding conditions so that the minimum problem (1.15)
has a unique solution up to translations. This can be achieved by proving that
under suitable assumptions the optimal profile γe associated with F e is unique
up to translations (cf. Theorem 4.1) and inequality (3.6) is strict when u cannot
be written in the form u(x) := γe(xe) for a.e. x ∈ R

N . A careful analysis of the
proof of (3.6) shows that this refinement holds true if γe is the unique minimizer
of F

z
on X for every z in a set of positive measure in P . Notice that in this

situation Theorem 4.1 is of little use: indeed it is not clear which conditions we
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could impose on J and W so that each potential W
z

satisfies the second part of
assumption (i) in Theorem 4.1.

4b. The multi-phase model

The free energy given in (1.1) may be used to describe systems which admits only
two phases, or in other words, systems whose spatial inhomogeneity is described
by one scalar parameter only. In order to describe a multi-phase system one may
postulate a free energy of the form (1.1) where u is a vector density function on
a domain of R

N taking values in R
k, W : R

k → [0,∞) is a continuous function
which vanishes at d + 1 affinely independent wells {α0, . . . , αd}, and J is the
usual interaction potential.

The optimal profiles can be defined as in the scalar case. If N = 1 we proceed
as in paragraph 1.3: for every u : R → R

k, F (u) is defined as in (1.9), and for
every couple of indexes i 6= j (with i, j = 0, . . . , k) we consider the minimum
problem

σij := min
{
F (u) : u ∈ Xij

}
, (4.4)

where

Xij :=
{
u : R → [−1, 1] : lim

x→−∞
u(x) = αi , lim

x→+∞
u(x) = αj

}
. (4.5)

A solution γij of the minimum problem (4.4) is the optimal profile for the in-
terface between the phases αi and αj , and σij is the surface tension associated
with the interface between the phases αi and αj (clearly σij = σji).

Notice that Theorem 2.4 cannot be easily extended to the multi-phase setting:
in fact its proof is based on a rearrangement result (Proposition 2.3), which can-
not even be stated for vector density functions. Also the statements of Theorem
2.11 and Corollary 2.16 can be hardly adapted to the vector setting.

Question 4.4. Does the minimum problem (4.4) admit a solution? In case of a
positive answer, is there any analog of Corollary 2.16?

Once an existence result for problem (4.4) is proved, one may pass to the N -
dimensional case: given a direction e, a rectangle A, and a couple of indexes i 6= j,
the analog of the minimum problem (1.15) is defined in the obvious way, but as
far as we know in this case Theorem 3.3 may not hold, that is, it may happen
that problem (1.15) has solutions none of which varies only in the direction e,
and the value of the minimum itself may depend on the choice of the rectangle
A.

4c. The optimal assumptions on J

The hypothesis J ≥ 0 cannot be removed without deep modifications in the
proofs of our results. For instance, the existence of an increasing optimal profile
in the one-dimensional case (Theorem 2.4) depends on the rearrangement result
in Proposition 2.3, that is, on Theorem 5.8, which in turn depends on Theorem
5.2. And this theorem may not hold when J is not positive. Moreover if no
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increasing optimal profile exists, then the characterization of minimizers given in
Corollary 2.16 does not apply, and the proof of Theorem 3.3, which is essentially
based on this corollary, does not work. Yet it would be interesting to understand
what happens if J takes negative values in a “small” zone (if the negative part
of J is predominant with respect to the positive part, then the infimum of F on
X is −∞).

Question 4.5. Under which hypothesis on the negative part of J does the one-
dimensional minimum problem (1.10) have a solution?

We restrict now our attention to one-dimensional functionals of the form
(1.9) where the double-well potential W is taken as usual but the interaction
potential J is only assumed even and non-negative. The following theorem gives
the optimal assumption on J (and W ) so that F is not identically equal to +∞
on X.

Theorem 4.6. Under the previous hypotheses, there exists u ∈ X such that
F (u) is finite if and only if

∫ ∞

0

J(h) (h ∧ h2) dh < ∞ . (4.6)

Proof. Assume first that there exists u ∈ X such that F (u) is finite. By inequality
(2.2) we may take u increasing, and if we set v := u−1 then F ◦(v) is finite by
identity (2.11) (one can easily verify that both (2.2) and (2.11) holds true with
no growth assumptions on J). From the definition of F ◦(v) we infer

∫

−1<t<t′<1

K
(
v(t′) − v(t)

)
dt′dt < +∞ , (4.7)

and then K(x) must be finite for every x > 0 (recall that K is decreasing), that
is,

∫ ∞

x

J(h) (h − x) dh < +∞ for every x > 0 . (4.8)

Moreover v is almost everywhere differentiable because it is increasing, then we
may find a set of positive measure B ⊂ (−1, 1) and constants r, c such that r > 0,
0 < c < ∞, and

v(t + s) − v(t) ≤ cs for s ∈ [0, r], t ∈ B.

Hence, taking into account that K is decreasing,

∫

−1<t<t′<1

K
(
v(t′) − v(t)

)
dt′dt ≥

∫

B

( ∫ r

0

K
(
v(t + s) − v(t)

)
ds

)

dt

≥

∫

B

( ∫ r

0

K(cs) ds
)

dt =
|B|

c

∫ cr

0

K(x) dx .
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We deduce that K is summable in the interval [0, cr], and by the definition of K
we obtain

∞ >

∫

0<x<cr
x<h<∞

J(h) (h − x) dx dh ≥

∫

0<h<cr
0<x<h

J(h) (h − x) dx dh =
1

2

∫ cr

0

J(h) h2 dh . (4.9)

Inequalities (4.8) and (4.9) yield (4.6).

Conversely, assume that (4.6) holds and set u(x) := (x ∧ 1) ∨ −1. Then
u−1(t) = t, and a direct computation shows that F ◦(u−1) is finite, and so is
F (u).

In view of Theorem 4.6 the one-dimensional optimal profile problem (1.10)
makes sense even if we replace the assumptions J ∈ L1 and (1.8) with the
more general (4.6); it may be verified that the main result of Sect. 2, namely
Proposition 2.3, Theorems 2.4, 2.11 and 2.14, and Corollary 2.16, still hold true.

The proofs of Proposition 2.3 and Theorem 2.4 require no modifications at
all. Theorem 2.11 (and namely identity (2.11)) can be proved by approximating
J with an increasing sequence of interaction potential Jn which satisfy (2.1) and
passing to the limit in the corresponding identities Fn(u) = F ◦

n(u−1).
In order to make the definition of the operator H in (2.15) well-posed and

state Theorem 2.14, we set K̇(0) equal to −∞ when K(0) = +∞, and equal
to the right derivative of K at 0 otherwise. This way Hv is a non-negative
lower-semicontinuous function, vanishes at ±1, but may be neither continuous
nor bounded. To adapt the proof Theorem 2.14 requires some additional care;
the main difficulty is due to the fact that Lemma 2.22 no longer holds in this
case: if ẇ is a signed measure and Hv is not bounded the right side of (2.17) may
be not defined. However identity (2.17) holds for every v such that F ◦(v) is finite
and every admissible variation w such that w belongs to BV and F ◦(v + hw) is
finite for some h > 0. The rest of the proof of Theorem 2.14, and Corollary 2.16
as well, follow as in Sect. 2.

Eventually we consider the N -dimensional case. In view of Theorem 4.6, the
minimum problem (1.15) makes sense even if we replace the usual assumptions
J ∈ L1(RN ) and (1.8) with

∫

RN

J(h)
(
|h| ∧ |h|2

)
dh < +∞ . (4.10)

Then Theorem 3.3 can be proved as in Sect. 3, with just some minor modifica-
tions. Notice that the optimal profile γe associated with F e exists because Je

satisfies (4.6).

4d. On the lower semicontinuity of F

In this subsection we briefly discuss the semicontinuity of functionals of the form
(1.1).
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Let us consider for simplicity the following setting: Ω is a bounded open set
in R

N ,
�

is the class of all u : Ω → [−1, 1], and for every u ∈
�

we set

F (u) :=
1

4

∫

Ω×Ω

J(x′ − x)
(
u(x′) − u(x)

)2
dx′dx +

∫

Ω

W
(
u(x)

)
dx . (4.11)

Here W is the usual double-well potential while the interaction potential J is
only assumed even and in L1(RN ). Notice that J may take negative values.

If we look for a minimizer of F on
�

(subject to some constraint which
makes the problem nontrivial), a natural approach is the so-called direct method.
In other words one tries to endow

�
with a topology which makes F lower

semicontinuous and coercive (that is, a topology such that the set {u ∈
�

:
F (u) ≤ a} is compact for every a ∈ R). Now

�
admits two natural topologies:

the strong topology is induced by convergence in measure (or equivalently by
the embedding of

�
into Lp(Ω) for any 1 ≤ p < ∞), and the weak topology

is induced by convergence in the sense of distributions (or equivalently by the
weak topology of Lp(Ω) for any 1 ≤ p < ∞). Both topologies are metrizable,
moreover

�
is weakly compact, but not strongly. Therefore we are interested in

the semicontinuity of F with respect to the weak topology.

Theorem 4.7. For every x ∈ Ω we set

g(x) :=
1

2

∫

x′∈Ω

J(x′ − x) dx′ , C := ess sup
x∈Ω

g(x) . (4.12)

Then F is weakly lower semicontinuous on
�

if and only if the function t 7→
Ct2 +W (t) is convex in [−1, 1] (that is, Ẅ ≥ −2C in [−1, 1] when W is of class
C2).

Proof. By replacing
(
u(x′) − u(x)

)2
with (u(x′))2 + (u(x))2 − 2 u(x)u(x′) in

(4.11), and taking definition (4.12) into account, we obtain

F (u) = −
1

2

∫

Ω×Ω

J(x′ − x)u(x′)u(x) dx′dx

︸ ︷︷ ︸

I1(u)

+

∫

Ω

[
g(x) (u(x))2 + W (u(x))

]
dx

︸ ︷︷ ︸

I2(u)

.

We claim that I1(u) is weakly continuous on
�

: indeed if (un) converges weakly to
u, then the functions vn(x′, x) := un(x′)un(x) converge to v(x′, x) := u(x′) u(x)
weakly* in L∞(Ω×Ω), and since J(x′−x) belongs to L1(Ω×Ω), then I1(un) →
I1(u).

On the other hand by well-known semicontinuity theorems I2(u) is weakly
lower semicontinuous on

�
if and only if the function t 7→ g(x) t2+W (t) is convex

on [−1, 1] for almost every x ∈ Ω, that is, if and only if Ct2 + W (t) is convex on
[−1, 1]. The proof is complete.

Remark 4.8. We can use Theorem 4.7 to obtain existence results for some
minimum problems: since

�
is weakly compact, when F is weakly lower semi-

continuous it attains the minimum on
�

subject to any weakly closed constraint
(e.g., subject to the volume constraint

∫

Ω
u = m |Ω| with m ∈ (−1, 1)).
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Remark 4.9. One may try to modify Theorem 4.7 in order to approach the
minimum problem (1.10) when J takes negative values, or when u is a vector-
valued function (cf. Subsects. 4b and 4c). For example F may be taken as in
(1.9) with W as usual and J even and such that

∫ ∞

0

∣
∣J(h)

∣
∣ (1+h) dh is finite,

�
is

the class of all functions u : R → [−1, 1], and we set C :=
∫ ∞

0
J(h) dh (cf. (4.12)).

Then
�

is weak* compact in L∞(R) and F is weak* lower semicontinuous on
�

if and only if the function t 7→ Ct2 + W (t) is convex in [−1, 1]. However the
difficulty is that (1.3) and similar constraints are not weakly* closed in

�
, and

therefore this semicontinuity result is of little use.

5. Appendix: a rearrangement result

In this appendix we state and prove some rearrangement results we used in the
proof of Theorem 2.4. The main result is Theorem 5.8. Throughout this section,
J is a non-negative Borel function (we do not need any summability assumption
on J).

Definition 5.1. Let I = [c, d] be a given bounded interval; for every set A ⊂ I
we define the right rearrangement of A in I as the interval A∗ = [d − |A|, d],
where |A| denotes as usual the measure of A.

For every couple of sets A, B included in I we set

Φ(A, B) :=

∫

A×B

J(x′ − x) dx′dx . (5.1)

The following result holds.

Theorem 5.2. Let I = [c, d] and assume that the support of J is included in
[−r, r] for some positive r ≤ (d− c)

/
2. Then, for every couple of sets A, B such

that [d − r, d] ⊂ A, B ⊂ I we have

Φ(A, B) ≤ Φ(A∗, B∗) . (5.2)

Moreover the equality holds in (5.2) if A = I and [d − r, d] ⊂ B ⊂ [c + r, d] (or
conversely).

Remark 5.3. These rearrangement problems have been widely studied in the
literature; (see for instance [14], [4], [5]). In particular we refer to [14] for the
symmetric rearrangement of sets (and functions), that is, when A∗ is defined as
the interval with the same measure as A and centered at the middle of I.

The reverse of inequality (5.2) was studied in [3] and [7]: if J is positive and
decreasing on R

+, then for every couple of disjoint sets A, B included in I there
holds Φ(A, B) ≥ Φ(A∗, B∗) where A∗ is the right rearrangement of A in I and
B∗ is the left rearrangement of B in I.

Remark 5.4. We point out that the condition [d−r, d] ⊂ A, B is essential, and
indeed inequality (5.2) may be false if this condition is dropped. Take for instance
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I = [0, 3], J the characteristic function of the interval [−1, 1], A = [0, 3], and
B = [1, 2]: then A∗ = [0, 3], B∗ = [2, 3], but Φ(A, B) = 2 > 3/2 = Φ(A∗, B∗).

Proof of Theorem 5.2. For every couple of sets A, B ⊂ I we write A º B (resp.
A Â B) if inf A ≥ supB (resp. inf A > supB).

We first prove (5.2) when A and B are non-empty disjoint unions of finitely
many closed intervals, i.e., A = A1 ∪A2 ∪ . . .∪AnA

, B = B1 ∪B2 ∪ . . .∪BnB
,

and the sets Ai and Bj are closed intervals which satisfy A1 Â A2 Â . . . Â AnA

and B1 Â B2 Â . . . Â BnB
.

In this case, condition [d − r, d] ⊂ A, B ⊂ I yields [d − r, d] ⊂ A1, B1 ⊂ I;
then A1 = [d − a, d] and B1 = [d − b, d] for suitable a, b ≥ r.

The proof will be achieved by induction on the total number of intervals
n := nA + nB . When n = 2 we have A = A∗ = A1, B = B∗ = B1 and then (5.2)
obviously holds. Now, fix n > 2 and assume that (5.2) holds whenever the total
number of intervals is strictly less than n: we have to prove that (5.2) holds for
any couple A, B such that nA + nB = n (we assume nA, nB > 1; the proof of
the remaining cases is in fact simpler).

We set A′ := A2 ∪ . . . ∪ AnA
, B′ := B2 ∪ . . . ∪ BnB

, and

δ :=
(
inf A1 − supA2

)
∧

(
inf B1 − supB2

)
. (5.3)

Then δ > 0 and for every h such that δ ≥ h ≥ 0, we have A1 º A′ + h and
B1 º B′ + h; eventually we set

A(h) := A1 ∪ (A′ + h) , B(h) := B1 ∪ (B′ + h) . (5.4)

We claim that Φ
(
A(h), B(h)

)
is an increasing function of h ∈ [0, δ]. In order to

prove this, we write Φ
(
A(h), B(h)

)
as the sum

Φ
(
A(h), B(h)

)
= Φ(A1, B1)

︸ ︷︷ ︸

P1(h)

+ Φ(A′ + h, B′ + h)
︸ ︷︷ ︸

P2(h)

+

+ Φ(A1, B
′ + h)

︸ ︷︷ ︸

P3(h)

+ Φ(A′ + h, B1)
︸ ︷︷ ︸

P4(h)

.

P1 and P2 are clearly independent of h, and then it is enough to prove that P3 and
P4 are increasing functions of h. Let us consider P3: recalling that A1 = [d−a, d]
we get

P3(h) =

∫

B′+h

( ∫

A1

J(x′ − x) dx′
)

dx =

∫

B′

( ∫ d−x−h

d−a−x−h

J(y) dy
)

dx . (5.5)

Now, since B1 º B′ + h, for every x ∈ B′ we have x + h ≤ d − b ≤ d − r, and
then d − x − h ≥ r. Therefore, taking into account that J(y) = 0 for almost
every y ≥ r, (5.5) becomes

P3(h) =

∫

B′

( ∫ r

(d−a−x)−h

J(y) dy
)

dx ,
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and since J is non-negative, this is clearly an increasing function of h. Since a
similar argument applies to P4, the claim is proved. Hence

Φ(A, B) = Φ
(
A(0), B(0)

)
≤ Φ

(
A(δ), B(δ)

)
. (5.6)

Taking (5.3) into account, it is clear that either inf A1 = sup(A2 + δ) or
inf B1 = sup(B2 + δ), and then either A(δ) is union of nA − 1 disjoint closed
intervals, or B(δ) of nB − 1. Hence A(δ) and B(δ) consist of a total number of
closed intervals which is strictly less than n, and by the inductive hypothesis

Φ
(
A(δ), B(δ)

)
≤ Φ

(
A(δ)∗, B(δ)∗

)
. (5.7)

Now, since |A(δ)| = |A| and |B(δ)| = |B|, we obtain that A(δ)∗ = A∗ and
B(δ)∗ = B∗, and then (5.6) and (5.7) yield (5.2).

We prove inequality (5.2) when A and B are open sets by inner approximation
with finite unions of closed intervals, and when A and B are Borel sets by outer
approximation with open sets.

Eventually we prove that equality holds in (5.2) if A = I and [d−r, d] ⊂ B ⊂
[c+ r, d]. We write B as I1∪B1 where I1 := [d− r, d] and B1 := B∩ [c+ r, d− r].
Hence

Φ(A, B) = Φ(I, I1) + Φ(I, B1) = Φ(I, I1) + |B1|

∫ r

−r

J(y) dy .

Then Φ(A, B) depends only on the measure of B1, and since this measure is
preserved by the right rearrangement of B in I, then Φ(A, B) = Φ(A, B∗) =
Φ(A∗, B∗).

Definition 5.5. For every Borel set A ⊂ R such that

[a,∞) ⊃ A ⊃ [b,∞) (5.8)

for some real numbers a < b, we define the right rearrangement of A as the half-
line A∗ := [c,+∞), with c := b −

∣
∣A ∩ [a, b]

∣
∣. For every u ∈ X (see Definition

2.1) we define the increasing rearrangement of u as the function u∗ : R → [−1, 1]
such that

{
x : t ≤ u∗(x)

}
=

{
x : t ≤ u(x)

}∗
for every t ∈ (−1, 1) . (5.9)

The set A∗ satisfies [a,∞) ⊃ A∗ ⊃ [b,∞) and |A∗ ∩ I| = |A ∩ I| for every
interval I which includes [a, b]; hence the previous definition is consistent with
Definition 5.1: for every interval I which includes [a, b], A∗ ∩ I is the right
rearrangement in I of the set A ∩ I. It may be immediately verified that the
function u∗ is well-defined and increasing.

Theorem 5.6. Let W be a non-negative continuous function on [−1, 1] such
that W (±1) = 0, take u ∈ X and let u∗ be the increasing rearrangement of u.
Then ∫

R

W
(
u(x)

)
dx =

∫

R

W
(
u∗(x)

)
dx . (5.10)
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Proof. Assume first that W is of class C1 and W = 0 in [−1,−1+ε] and [1−ε, 1]
for some ε > 0. There exist real numbers a < b such that

u(x), u∗(x) ≤ −1 + ε for every x ≤ a, and u(x), u∗(x) ≥ 1 − ε for every x ≥ b.
(5.11)

We set I := [a, b], for every t ∈ (−1 + ε, 1 − ε) we denote by Et the set
{
x ∈

R : t ≤ u(x)
}
, and by 1t the characteristic function of Et. Then, recalling that

Ẇ (t) = 0 in [−1,−1 + ε] ∪ [1 − ε, 1],

∫

R

W
(
u(x)

)
=

∫

I

W
(
u(x)

)
dx =

∫

I

( ∫ 1−ε

−1+ε

Ẇ (t) 1t(x) dt
)

dx

=

∫ 1−ε

−1+ε

Ẇ (t) |Et ∩ I| dt . (5.12)

Condition (5.11) implies that the measure of Et ∩ I is preserved by the right
rearrangement of u for every t ∈ (−1 + ε, 1 − ε), and then equality (5.12) yields
(5.10).

We prove equality (5.10) in the general case by approximating W with an
increasing sequence of non-negative functions of class C1 which are 0 in a neigh-
borhood of −1 and 1, and then applying the monotone convergence theorem.

Definition 5.7. Let L : R → R be a non-negative convex function such that
L(0) = 0. For every function u : R → R and every interval I ⊂ R, we set

G(u, I) :=

∫

I×I

J(x′ − x)L
(
u(x′) − u(x)

)
dx′dx. (5.13)

The main result of this appendix reads as follows.

Theorem 5.8. Let u ∈ X, let u∗ be the increasing rearrangement of u, and let
G be given as in (5.13). Then

G(u, R) ≥ G(u∗, R) . (5.14)

In order to prove Theorem 5.8 we need the following lemma:

Lemma 5.9. Assume that L is of class C2, J has support included in [−r, r], I
is the bounded interval [c, d], 2r ≤ d− c, and u satisfies the following conditions:

(i) |u(x)| ≤ 1 for all x,

(ii) u(x) = −1 for every x ≤ c + r, u(x) = 1 for every x ≥ d − r.

Then
G(u, I) ≥ G(u∗, I) . (5.15)
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Proof. First of all, we establish the following identity, which may be proved by a
direct computation: for every s, s′ ∈ [−1, 1]

L(s′ − s) = −

∫ s

−1

( ∫ s′

−1

L̈(t′ − t) dt′
)

dt +

+

∫ s′

−1

L̇(t + 1) dt −

∫ s

−1

L̇(−t − 1) dt .

(5.16)

For every t ∈ [−1, 1] we denote by Et the set
{
x ∈ I : t ≤ u(x)

}
, and by 1t the

characteristic function of Et. If we take x, x′ ∈ I and set s := u(x), s′ := u(x′),
identity (5.16) and condition (i) yield

L
(
u(x′) − u(x)

)
= −

∫

[−1,1]×[−1,1]

L̈(t′ − t) 1t′(x
′) 1t(x) dt′dt +

+

∫

[−1,1]

L̇(t + 1) 1t(x
′) dt −

∫

[−1,1]

L̇(−t − 1) 1t(x) dt .

Then, recalling Definition 5.1, G(u, I) may be written as the sum of two integrals
as follows:

G(u, I) =

∫

[−1,1]×[−1,1]

− L̈(t′ − t) Φ(Et′ , Et) dt′dt + (5.17)

+

∫

[−1,1]

(
L̇(t + 1) − L̇(−t − 1)

)
Φ(I, Et) dt . (5.18)

By assumption (ii) we obtain that [d−r, d] ⊂ Et ⊂ [c+r, d] for every t ∈ (−1, 1),
and to replace u with its increasing rearrangement u∗ means to replace every Et

with its right rearrangement E∗
t in I.

Then Theorem 5.2 applies: Φ(E∗
t′ , E

∗
t ) ≥ Φ(Et′ , Et) for every t, t′, and re-

calling that −L̈ is a non-positive function (because L is convex), we obtain that
the integral in line (5.17) is decreased by the rearrangement of u. Moreover
Φ(I, E∗

t ) = Φ(I, Et) for every t, and then the integral in line (5.18) is preserved
by the rearrangement of u.

Proof of Theorem 5.8. Assume first that L is of class C2 and J has support
included in [−r, r] for some positive real number r.

We prove that (5.14) holds for every u in X by approximating u with functions
which satisfy the hypotheses of Lemma 5.9 on larger and larger intervals. We
set In := [−n, n] and

δn := sup
−n≤x≤−n+r

(1 + u(x)) ∨ sup
n−r≤x≤n

(1 − u(x)) .
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Since u belongs to X, δn decreases to 0 as n tends to infinity; in particular it is
smaller than 1 for n large enough, and we can set

un :=
( u

1 − δn
∧ 1

)

∨ −1 .

Then (1 − δn)
∣
∣un(x′) − un(x)

∣
∣ ≤

∣
∣u(x′) − u(x)

∣
∣ for every x, x′, and therefore

G(u, R) ≥ (1 − δn)2 G(un, R) ≥ (1 − δn)2G(un, In) . (5.19)

By construction un(x) = 1 for x ≥ n − r and un(x) = −1 for x ≤ −n + r; hence
Lemma 5.9 yields

G(un, In) ≥ G(u∗
n, In) . (5.20)

Moreover u∗
n converge to u∗ a.e., and then Fatou’s lemma yields

lim inf
n→∞

G(u∗
n, In) ≥ G(u, R) . (5.21)

Putting together (5.19 − 21) we get (5.14).

Finally we prove (5.14) for every non-negative convex L and every non-
negative J by approximating L with an increasing sequence of non-negative con-
vex functions Ln of class C2 and J with an increasing sequence of non-negative
summable functions Jn with compact support, and then applying the monotone
convergence theorem.
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