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Local Mappings on Spaces

of Differentiable Functions

Giovanni Alberti and Giuseppe Buttazzo

Abstract. We study conditions under which a functional F (u, B) defined for
every u ∈ Ck(Ω; Rm) and every Borel subset B of Ω admits the integral repre-
sentation

F (u, B) =

∫

B

f
(

x, Dku(x)
)

dµ(x)

for a suitable measure µ.

1. Introduction and Statement of the Main Result

The problem of representing in a suitable integral form local mappings defined
on various spaces of functions has been widely studied in the literature (see
references); however, an important difference has to be remarked between the
case of spaces “without derivatives” as Lp(Ω; Rm) or

�
(Ω; Rm), and the case

of spaces “with derivatives” as W 1,p(Ω; Rm) or BV (Ω; Rm). Actually, in the
first case the results are very general, and only locality and lower semicontinuity
are required to get an integral representation (see for instance Buttazzo & Dal
Maso [7] and Bouchitté & Buttazzo [4]), whereas in the second case additional
hypotheses as growth conditions are usually imposed (see for instance Buttazzo
& Dal Maso [8], Bouchitté & Dal Maso [5], Alberti & Buttazzo [2], Alberti [1]).

In this paper we consider mappings defined on spaces of differentiable func-
tions as Ck(Ω; Rm) and we prove (see Theorem 1.2) that under very mild as-
sumptions they are representable in the form

∫

Ω

f
(

x, Dku(x)
)

dµ(x)
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for a suitable measure µ.
Throughout the whole paper Ω denotes a bounded open subset of R

n, k a
nonnegative integer, � (Ω) the collection of all open subsets of the open set Ω,�

(Ω) the σ-field of all Borel subsets of Ω, � n the Lebesgue measure in R
n and

|B| = � n(B) the Lebesgue measure of the Borel set B.
We refer to customary functional analysis notation (see Brezis [6], Chapter

IX, and Rudin [10], Chapter 6); to avoid any ambiguity, however, we use greek
letters for multi-indexes α = (a1, . . . , an) with norm |α| = a1 + . . . + an, and we
denote by Dα the partial derivative (∂/∂x1)

a1 . . . (∂/∂xn)an .
Let I(k) be the set of all multi-indexes α with |α| = k; if u is a function

from Ω into R
m we denote by Dku the k-th derivative of u, i.e., the function of

Ω into (Rm)I(k) defined by
(

Dku(x)
)

α
= Dαu(x) for all α ∈ I(k) and x ∈ Ω.

In the paper the following function spaces are used.

Ck(Ω, Rm) the space of all functions of Ω into R
m such that Dαu is a continuous

function for every α with |α| ≤ k; Ck(Ω, Rm) is usually endowed
with the structure of Fréchet space induced by the seminorms φα,K

given by

φα,K(u) = sup
x∈K

∣

∣Dαu(x)
∣

∣ for all u,

where α is a multi-index with norm |α| ≤ k and K is a compact
subset of Ω.

Ck
c (Ω, Rm) the space of all functions u ∈ Ck(Ω, Rm) with compact support in

Ω.
Ck

0 (Ω, Rm) the space of all functions u such that Dαu is a continuous function
which vanish at infinity, i.e., such that for every ε > 0 there exists
a compact set K which satisfies |Dαu(x)| < ε for all x ∈ Ω \ K for
every multi-index α with |α| ≤ k.

Ck(Ω, Rm) the space of all u such that Dαu admits a continuous extension to
the set Ω for all α with |α| ≤ k. Both Ck

0 (Ω, Rm) and Ck(Ω, Rm)
are closed subspace of the Sobolev space W k,∞(Ω, Rm) and are
usually endowed with the norm

‖u‖W k,∞ =
∑

α∈I(k)

‖Dαu‖∞.

Let us recall now some definitions which will be used in the following.
By measure on Ω we mean any σ-additive set function defined on the σ-field�

(Ω) with values in ] − ∞,+∞]. If λ is a measure on Ω, |λ| denotes its total
variation and λ+, λ− denote its positive and negative variations respectively. We
say that a measure µ is absolutely continuous with respect to λ (and we write
µ ¿ λ) if |µ|(E) = 0 whenever |λ|(E) = 0. We say that λ ≤ µ if λ(B) ≤ µ(B)
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for all Borel sets B. If λ is a measure on Ω and B ∈
�

(Ω), we denote by λ B
the measure given by

[

λ B
]

(E) = λ(B ∩ E) ∀E ∈
�

(Ω).

The supremum of a collection � = {λi}i∈I of measures on Ω is defined by

(1.1)
[

∨

λ∈�
λ
]

(E) = sup
{

∑

j∈J

λj(Ej)
}

∀E ∈
�

(Ω)

where the supremum is taken over all finite subsets J of I and all Borel partitions
{Ej}j∈J of E. It may be easily proved that it is always a measure; moreover, if
every λ is a positive measure and A is an open set,

(1.2)
[

∨

λ∈�
λ
]

(A) = sup
{

h
∑

i=1

λi(Ai)
}

where the supremum is taken over all families {A1, . . . , Ah} of pairwise disjoint
open subsets of A and {λ1, . . . , λh} of measures in � .

We say that a subspace X of C(Ω, Rm) is a local space if it is closed under
multiplication by functions in C∞

c (Ω). Any mapping F : X×
�

(Ω) →]−∞,+∞]
will be called a functional on X.

Definition 1.1. Let X be a local subset of Ck(Ω, Rm) endowed with a topology
τ and let F be a functional on X. Then we say that:

(i) F is a (finite, positive) measure if F (u, ·) is a (finite, positive) measure
on Ω for all u ∈ X; F is absolutely continuous with respect to a positive measure
λ if F (u, ·) is absolutely continuous with respect to λ for all u ∈ X;

(ii) F is Dk-local if F (u, B) = F (v, B) whenever Dku and Dkv agrees on
an open set which include B; notice that when F is finite, F is Dk-local means
that F (u, A) = F (v, A) whenever A is an open set and u and v are functions
whose k-th derivatives agree on A;

(iii) F is (sequentially) τ -l.s.c. on � (resp., on
�

) if F (·, B) is a (se-
quentially) τ -l.s.c. function of X for every open (resp., Borel) sets B ⊂ Ω;

(iv) F is (k,∞)-bounded if, for every real number r > 0, there exist a
finite set E and a positive finite measure φ (both depending on r) such that
|F (u, ·)| Ω \ E ≤ φ for all u ∈ X with ‖Dku‖∞ ≤ r and this means that

|F (u, B)| ≤ φ(B) whenever B ⊂ Ω \ E and ‖Dku‖∞ ≤ r.
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We can now state the main result of this paper.

Theorem 1.2. Let X be one of the spaces Ck(Ω, Rm), Ck
0 (Ω, Rm), Ck(Ω, Rm),

and let F be a functional on X which satisfies the following conditions:

(i) F is a finite measure,

(ii) F is (strongly) l.s.c. on open sets,

(iii) F is Dk-local.

Then there exists a finite positive measure λ on Ω and a Borel function
f : Ω × (Rm)I(k) → R which is l.s.c. with respect to second variable and satisfies

(1.3) F (u, B) =

∫

B

f
(

x, Dku(x)
)

dλ(x) for all u ∈ X and B ∈
�

(Ω).

Moreover f is unique in the following sense: if f ′ is a Borel function which
satisfies representation formula (1.3), then there exists a λ negligible set N ⊂ Ω
such that f ′(x, s) = f(x, s) for all x ∈ Ω \ N and all s ∈ (Rm)I(k). It follows
immediately from this fact that if F is continuous, f(x, ·) is continuous for λ-
a.e. x ∈ Ω.

Further details and generalizations of this statement are are illustrated in
Section 4 (cf. Theorem 3.3 and Remark 3.4). In the proofs we shall need the
following results.

Theorem 1.3. (Besicovitch Covering Lemma, see Morgan [9], Theorem 2.7)
Suppose λ is a finite positive measure on R

n, E is a Borel subset of Ω and � is
a collection of non trivial closed balls such that inf

{

r : B(x, r) ∈ �
}

= 0 for
all x ∈ E. Then for every ε > 0 there exists a finite disjoint collection � ′ ⊂ �
such that

λ

(

E \
⋃

B∈� ′

B

)

> ε.

Theorem 1.4. (see Alberti [1], Theorem 5.8) Let λ be a positive finite measure
on R

n. Then there exists a Borel set E such that λ(Rn \ E) = 0 and

lim sup
r→0

λ(B(x, ar))

λ(B(x, r))
≥ an ∀x ∈ E, ∀a ∈]0, 1[.

Lemma 1.5. (Glueing Lemma, see Alberti [1], Lemma 5.10) Let X be a local
subspace of Ck(Ω, Rm), let B(x1, r1), . . . , B(xh, rh) be pairwise disjoint open balls,
and let u1, . . . uh ∈ X. Then, for every ε > 0 there exists u ∈ X such that
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(i) u = 0 on Ω \
(

∪ B(xi, ri)
)

;

(ii) Dku = Dkui on B(xi, (1 − ε)ri) for all i;

(iii) ‖Dku‖L∞(Bi) ≤ Cε−k‖Dkui‖L∞(Bi) for all i, where C is a constant
which depends on n and k only.

Lemma 1.6. (see Alberti [1], Lemma 3.8) Let (T, d) be a separable metric space
and let f : T → [−∞,+∞] be a l.s.c. function. Then there exists a countable set
S ⊂ T such that f is the relaxation on X of its restriction to S, i.e.,

f(x) = lim inf
y→x
y∈S

f(y) ∀x ∈ T.

2. Finite Functionals

Unless differently stated, throughout this section X is the space Ck
(

Ω, Rm
)

and
F is a functional on X which is Dk-local and measure.

Definition 2.1. For every u ∈ X and for every positive continuous function g
on Ω we set

P (u, g) =
{

x : |Dku(x)| < g(x)
}

λu,g = F (u, ·) P (u, g)

λg =
∨

u∈X

|λu,g|

Sg =
{

x : λg({x}) = +∞
}

.

Notice that F is (k,∞)-bounded if Sr and λr are finite for every positive constant
r.

Theorem 2.2. Assume F is a positive functional and g is a bounded continuous
function. If F is finite, then Sg is finite and λg(Ω \ Sg) < +∞. In particular F
is (k,∞)-bounded.

Proof. We assume by contradiction that Sg is not a finite set or λg(Ω\Sg) = +∞
and then we prove that there exists a function u such that F (u, Ω) = +∞. This
proof is divided in four steps. In the following, we say that a sequence of open
sets {Bh} is strictly increasing if Bh ⊂ Bh+1 for every h.

Step 1: there exists a countable collection {Ai : i ∈ I} of pairwise disjoint
open sets such that λg(Ai) > 1 for all i.
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If Sg is infinite, the proof is trivial. Suppose that λg(Ω \ Sg) = +∞ and set
λ = λg B \Sg. By Lemma 2.3 below there exists a strictly increasing sequence
of open sets {Bh} such that λ(Ω \ ∪Bh) < +∞ and λ(Ω \ Bh) = +∞ for all h.
We may suppose that B0 = ø. By induction on h, we choose integers mh so that
m0 = 0 and λ

(

Bmh
\ Bmh−1

)

> 1 for all h ≥ 1. Let h ≥ 1 be a fixed integer and
let mh−1 be chosen. By the choice of Bh we have

lim
m→∞

λ
(

Bm \ Bmh−1+1

)

= λ
(

Ω \ Bmh−1+1

)

= +∞

and then there exists an integer mh such that λ
(

Bmh
\ Bmh−1+1

)

> 1. Set

Ah = Bmh
\ Bmh−1

for all h ∈ N. Recalling that Bm−1 is relatively compact
in Bm for all m and that λg ≥ λ, it may easily be proved that the collection
{Ah : h ∈ N} satisfies our thesis.

Step 2: there exist a countable collections {Ai : i ∈ I} of pairwise disjoint
open sets and a countable collection {vi : i ∈ I} of functions in X such that for
all i ∈ I

∑

i

F (vi, Ai) = +∞(2.1)

‖Dkvi‖L∞(Ai) ≤ ‖g‖L∞(Ai).(2.2)

By Step 1 we may find countably many pairwise disjoint open sets Ei ⊂ Ω
such that λg(Ei) > 1 for every i ∈ I. Let i be fixed. Since λg(Ei) > 1, by
definition of λg (cf. formulas (1.1) and (1.2) ) we may find functions vi,1, . . . , vi,h

and pairwise disjoint open sets Bi,1 . . . Bi,h ⊂ Em such that

h
∑

j=1

F
(

vi,j , Bi,j ∩ P (vi,j , g)
)

> 1

and then it is enough to consider the collection of all functions vi,j and the
collection of all open sets Ai,j = Bi,j ∩ P (vi,j , r).

Step 3: there exist a point s ∈ (Rm)I(k) and, for all h ∈ N, pairwise disjoint
open sets Ah ⊂ Ω and functions vh ∈ X so that

∑

h

F (vh, Ah) = +∞(2.3)

lim
h→+∞

‖Dkvh − s‖L∞(Ah) = 0.(2.4)
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By Step 2, there exist, for all h ∈ N, pairwise disjoint open sets Eh ⊂ Ω
and functions vh ∈ X such that

∑

h F (vh, Eh) = +∞ and ‖Dkvh‖L∞(Eh) ≤
‖g‖L∞(Eh) for all h. We want to find open sets Ah ⊂ Eh so that (2.3) and
(2.4) hold. For every h, set µh = F (vh, ·) Eh; each µh is a positive finite
measure. We build, by induction on m, a decreasing sequence of bounded closed
sets Cm ⊂ (Rm)I(k) and an increasing sequence of integers hm such that, for all
m

diamCm ≤ 1/m(2.5)
∞
∑

h=0

µh

(

{

x : Dkvh(x) ∈ Cm

}

)

= +∞(2.6)

hm−1
∑

h=hm−1

µh

(

{

x : Dkvh(x) ∈ Cm

}

)

> 1.(2.7)

Set C0 =
{

s ∈ (Rm)I(k) : |s| ≤ ‖g‖∞
}

. It is obvious that (2.5) and (2.6) hold
and by (2.6) there exists h0 such that (2.7) holds (if we take h−1 = 0). Let
m > 0 be a fixed integer and suppose that Cm−1 and hm−1 have already been
chosen. Since Cm−1 is bounded, it may be covered by finitely many closed balls
Bp ⊂ (Rm)I(k) with radius less than 1/m and then, by (2.6),

∑

p

[

∑

h

µh

(

{

x : Dkvh(x) ∈ Cm−1 ∩ Bp

}

)

]

≥
∑

h

µh

(

{

x : Dkvh(x) ∈ Cm−1

}

)

= +∞

and then there exists p̄ such that

∑

h

µh

(

{

x : Dkvh(x) ∈ Cm−1 ∩ Bp̄

}

)

= +∞.

Hence (2.5) and (2.6) holds if we set Cm = Cm−1 ∩ Bp̄. Moreover,

∞
∑

h=hm−1

µh

(

{

x : Dkvh(x) ∈ Cm−1 ∩ Bp̄

}

)

= +∞

and then there exists an integer hm such that (2.7) holds. Now, let Ah be the
open set given by

Ah =
{

x ∈ Eh : dist
(

Dkvh(x), Cm

)

< 1/m
}
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for all m and for all h with hm−1 ≤ h < hm. By (2.7) and by the definition of
µh we get

∑

h

F (vh, Ah) ≥
∞
∑

m=0





mh−1
∑

h=mh−1

µh

(

{

x : Dkvh(x) ∈ Cm

}

)



 = +∞

and (2.3) is proved. By (2.5) the intersection of all Cm contains just one element
which we denote by s and then (2.5) yields (2.4).

Step 4: there exists a function u ∈ X such that F (u, Ω) = +∞.
Take s ∈ (Rm)I(k), pairwise disjoint open sets Ah ⊂ Ω and functions vh ∈ X

such that (2.3) and (2.4) hold. Let p : R
n → R

m be the homogeneous polynomial
function which satisfy Dkp = s everywhere and apply Lemma 2.4 below to find
functions uh with compact supports in Ah such that, for all h

F (p + uh, Ah) ≥ 2−(3n+1)F (vh, Ah),(a)

‖Dkuh‖∞ ≤ C2k‖Dkvh − s‖L∞(Ah).(b)

Taking into account Poincaré inequality, (b) and the fact that the support of
each uh is included in Ah, we obtain that the series

∑

uh converges in norm to
a function in X and we write u = p +

∑

uh. Hence (a) and the fact that F is
Dk-local yields

F (u, Ω) ≥
∑

h

F (u, Ah) =
∑

h

F (p + uh, Ah) =
∑

h

F (vh, Ah) = +∞.

Lemma 2.3. Let λ be a positive measure on Ω such that every point has finite
measure. If λ is not finite there exists a strictly increasing sequence of open sets
{Bh} such that λ(Ω \ ∪Bh) < +∞ and λ(Ω \ Bh) = +∞ for all integers h.

Proof. Let {Ωh} be a strictly increasing sequence of open sets which cover Ω and
set

A =
{

x : λ
(

B(x, r)
)

= +∞ ∀r > 0
}

.

If A = ø, every compact set K ⊂ Ω can be covered by a finite collection of open
balls with finite measure and then it has finite measure. Hence it is enough to
take Bh = Ωh for all h. If A 6= ø, there exists x ∈ Ω such that λ

(

B(x, r)
)

= +∞

for all r > 0. Hence it is enough to take Bh = Ωh \B(x, 1/h) for all integers h.

Lemma 2.4. Let p, v be functions in X and let A ⊂ Ω be an open set. Then
there exists a function u ∈ X with compact support in A such that

F (u + p, A) ≥ 2−(3n+1)F (v, A)(i)

‖Dku‖∞ ≤ C2k‖Dk(v − p)‖L∞(A)(ii)
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where C is the same constant of Lemma 1.5.

Proof. Let λ be the positive finite measure F (v, ·). By Theorem 1.4 there exists
a Borel set E ⊂ A such that λ(A \ E) = 0 and, for all x ∈ E,

(2.8) lim sup
r→0

λ
(

B(x, ar)
)

λ
(

B(x, r)
) ≥ an ∀a ∈]0, 1[.

Let � be the collection of all closed balls B(x, r) ⊂ A which satisfy

(2.9)
λ
(

B(x, r/2)
)

λ
(

B(x, 2r)
) ≥ 2−(2n+1).

By (2.8) for all x ∈ E there exist closed balls B(x, r) in � with r arbitrary small.
Hence we may apply Theorem 1.3 to find closed balls Bi = B(xi, ri) ∈ � with
i = 1, . . . , n such that

(2.10) λ
(

∪ Bi

)

≥
1

2
λ(E) =

1

2
λ(A)

and by Glueing Lemma 1.5 there exists u ∈ X such that

(a) u = 0 out of the union of all Bi,

(b) Dku = Dk(v − p) within B(xi, ri/2) for all i,

(c) ‖Dku‖L∞(Bi) ≤ C2k‖Dk(v−p)‖L∞(Bi) for all i, where C is a constant
which depends on n and k only.

By (a) we obtain that u has compact support in A. By (b), (2.9), (2.10) and
by the fact that F is Dk-local we obtain

F (p + u, A) ≥
∑

i

F
(

p + u, B(xi, ri/2)
)

=
∑

i

F
(

v, B(xi, ri/2)
)

=
∑

i

λ
(

B(xi, ri/2)
)

≥
∑

i

2−(2n+1)λ
(

B(xi, 2ri)
)

≥
∑

i

2−(2n+1)λ
(

B(xi, ri)
)

≥ 2−(2n+2)λ(A)

and (i) is proved. Finally (a), (c) and the fact that the balls Bi were chosen
pairwise disjoint and included in A yield

‖Dku‖∞ = sup
i

‖Dku‖L∞(Bi) ≤ sup
i

C2k‖Dk(v − p)‖L∞(Bi) ≤ C2k‖Dk(v − p)‖∞

and (ii) is proved.
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Corollary 2.5. Let F be a functional on X which is Dk-local. Then the following
three statements are equivalent:

(i) F is finite;

(ii) Sg is finite and λg(Ω\Sg) < +∞ for every bounded positive continuous
function g;

(iii) F is (k,∞)-bounded.

Proof. Implications (ii) ⇒ (iii) and (iii) ⇒ (i) are trivial. Let us prove (i) ⇒ (ii).
For every u ∈ X, let F+(u, ·) and F−(u, ·) be the positive and negative variations
of F (u, ·) respectively. It is obvious that both F+ and F− are functionals on X
which are Dk-local positive finite measures. Then it is enough to apply Theorem
2.2 to F+ and F−.

Remark 2.6. Of course, statements very similar to Theorem 2.2 (and Corollary
2.5) hold when we consider functionals which are defined on other spaces of
continuously differentiable functions. In particular, when X is Ck(Ω, Rm), we
have that F is finite if and only if Sg is finite and λg(Ω \ Sg) < +∞ for every
positive continuous function g (and then a finite functional is (k,∞)-bounded).
When X is Ck

0 (Ω, Rm), F is finite if and only if Sg is finite and λg(Ω\Sg) < +∞
for every positive g ∈ C0(Ω) (in this case a finite functional may be not (k,∞)-
bounded).

In general, optimal results of this kind hold for a lot of spaces but they do not
follow directly from Theorem 2.2 and Corollary 2.5. However, the following gen-
eralization of Corollary 2.5 is straightforward: when X is a subset of Ck(Ω, Rm)
which contains Ck

c (Ω, Rm) and F is a functional on X which is Dk-local and is a
(locally) finite measure, then F is locally (k,∞)-bounded, and this means that
for every positive real number r and every compact set K ⊂ Ω, there exists a
finite set E and a finite measure φ such that |F (u, ·)| K \ E ≤ φ whenever
‖Dku‖L∞(K) ≤ r.

Examples may be given of linear spaces X which do not contain Ck
c (Ω, Rm)

and of functionals F on X which are Dk-local finite measures but are not locally
(k,∞)-bounded.

Corollary 2.7. Suppose that F is a functional on X which is a Dk-local finite
measure. Then there exists a positive finite measure λ such that F is absolutely
continuous with respect to λ.

Proof. Since F is (k,∞)-bounded, we may find, for every integer h, finite positive
measures φh on Ω and finite sets Eh ⊂ Ω such that |F (u, ·)| Ω \ Eh ≤ φh for
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every u with ‖Dku(x)‖∞ ≤ h and then F (u, ·) ¿ λ for every u ∈ X if we take

λ =
∑

h

1

2h‖φh‖
φh +

∑

h

1

2h�
0(Eh)

�
0 Eh.

Remark 2.8. Of course, Corollary 2.7 holds even if X is a subset of Ck(Ω, Rm)
which contains Ck

c (Ω, Rm) and F is a functional on X which is a finite measure
and Dk-local (cf. Remark 2.6).

When X is a a subset of Ck(Ω, Rm) which does not contain Ck
c (Ω, Rm), we

have the following result: if F is a functional on X which is a positive finite
measure, l.s.c. with respect to a separable topology τ , then there exists a finite
measure λ such that F is absolutely continuous with respect to λ. If we drop
either lower semicontinuity or positivity, examples may be given of functionals
which are Dk-local finite measures but which are not a.c. with respect to any
finite measure λ.

Theorem 2.9. Let F be a functional on X which is a measure, (k,∞)-bounded
and l.s.c. on � . Then F is l.s.c. on

�
.

Proof. Let {uh} be a sequence of functions in the space Ck
(

Ω, Rm
)

which con-
verges to u in norm and let B be a Borel subset of Ω. We want to prove that
lim infh→+∞ F (uh, B) ≥ F (u, B).

Notice that there exists r such that r ≥ ‖Dkuh‖∞ for every h. Since F
is (k,∞)-bounded, there exists a finite set E and a positive finite measure φ
such that |F (u, B)| ≤ φ(B) whenever B ∩ E = ø and ‖Dku‖∞ ≤ r. Then, for
every h and for every open set A which satisfies A ⊃ B and (A \ B) ∩ E = ø,
F (uh, B) ≥ F (uh, A) − φ(A \ B) and F (u, A) ≥ F (u, B) − φ(A \ B) and then,
taking into account that F is l.s.c. on � ,

lim inf
h→+∞

F (uh, B) ≥ lim inf
h→+∞

F (uh, A) − φ(A \ B)

≥ F (u, A) − φ(A \ B) ≥ F (u, B) − 2φ(A \ B).

Since S is finite, we may find open sets A which satisfy the conditions above so
that φ(A \ B) is arbitrary small and then the proof is complete.

Corollary 2.10. Let F be a functional on X which is a finite measure, Dk-local
and l.s.c. on � . Then F is l.s.c. on

�
.

Proof. It is enough to apply Corollary 2.5 and Theorem 2.9.
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Remark 2.11. Let X be a subset of Ck(Ω, Rm) and let τ be a topology on X.
We say that τ satisfies a condition (Ck) when:

(Ck)
every u ∈ X admits an open neighborhoud A ∈ τ so that for every
compact set K ⊂ Ω there exists a positive real number r and |Dkv(x)| ≤
r for all v ∈ A and all x ∈ K.

Condition (Ck) is verified when X is (a subset of) Ck(Ω, Rm) or Ck
(

Ω, Rm
)

or Ck
0 (Ω, Rm) endowed with the usual strong or weak topologies. But it is not

verified, for example, when X is Ck(Ω, Rm) endowed with the strong topology of
Ch(Ω, Rm) with h < k.

Theorem 2.9 may be generalized in the following form. Let X be a subset of
Ck(Ω, Rm) and let τ be a topology on X which satisfies condition (Ck). Let F be
a functional on X which is a measure, locally (k,∞)-bounded and (sequentially)
τ -l.s.c. on � . Then F is (sequentially) τ -l.s.c. on

�
.

If we drop the (Ck) condition, examples may be given of topologies τ and
functionals F which are measures, locally (k,∞)-bounded, τ -l.s.c on � but not
τ -l.s.c. on

�
.

Taking into account Remark 2.7, Corollary 2.10 may be generalized in the
following form. Let X be a subset of Ck(Ω, Rm) which contains Ck

c (Ω, Rm) and
let τ be a topology on X which satisfies condition (Ck). Let F be a functional
on X which is a finite measure, Dk-local and (sequentially) τ -l.s.c. on � . Then
F is (sequentially) τ -l.s.c. on

�
.

3. Representation Theorem

Unless differently stated, throughout this section X is Ck
(

Ω, Rm
)

, λ is a finite
positive measure on Ω and F is a fixed functional on X which is a finite measure
absolutely continuous with respect to λ, Dk-local on � and strongly l.s.c. on

�
.

We recall that by Corollary 2.5 and 2.10, for every functional F which is
a finite measure, Dk-local on � and strongly l.s.c. on � there exists a finite
positive measure λ so that the conditions above are fulfilled.

Definition 3.1. Since for all u ∈ X, F (u, ·) is a finite measure on Ω which is
absolutely continuous with respect λ, it may be represented by a Borel function
in L1(λ) that we denote by fu. In other words we have

(3.1) F (u, B) =

∫

B

fu dx for all B ∈
�

(Ω).

Let � be a countable subset of X. For all x ∈ Ω and all s ∈ (Rm)I(k) set

(3.2) f� (x, s) = sup
ε>0

[

inf
{

fv(x) : v ∈ � , |Dkv(x) − s| ≤ ε
}]
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where the infimum is taken +∞ when the set is empty.

In other words we have that

f� (x, s) = inf
[

lim inf
h→+∞

fvh
(x)

]

,

where the infimum is taken over all sequences {vh} in � so that limh Dkvh(x) = s
and is +∞ when s does not belong to the closure of the set

{

Dkv(x) : v ∈ �
}

.
Then f has the following properties.

Proposition 3.2. For every countable set � , f� is a real Borel function of
Ω × (Rm)I(k) which is l.s.c. with respect to second variable for every x ∈ Ω and
f
(

x, Dkv(x)
)

≤ fv(x) for all x and all v ∈ � . Moreover, if E is the set of all

points x ∈ Ω with λ
(

{x}
)

> 0, for every r > 0 there exists a function gr ∈ L1(λ)
such that

(3.3) f� (x, s) ≥ gr(x)

for all x ∈ Ω \ E and all s ∈ (Rm)I(k) with |s| < r.

Proof. For every positive integer h and every v ∈ � , let fh,v be the function on
Ω × R

m which is given by

fh,v(x, s) =







fv(x) if
∣

∣s − Dkv(x)
∣

∣ ≤ 1/h

+∞ otherwise,

and notice that for all x, s,

f� (x, s) = sup
h

inf
v∈� fh,v(x, s).

Since each fh,v is a Borel function, f� is a Borel function. It is obvious that f�
is l.s.c. with respect to second variable and that

f�
(

x, Dkv(x)
)

≤ fv(x) ∀(x, v) ∈ Ω × � .

Moreover, as F is finite, by Corollary 2.5 for every r > 0 the measure λr and the
set Sr given in Definition 2.1 are finite and then, since F is absolutely continuous
with respect to λ, we may find a function gr in L1(λ) such that fv(x, r) ≥ gr(x)
for all v ∈ � and all x ∈ Ω \ E with

∣

∣Dkv(x)
∣

∣ < r and then (3.3) is proved.

The main result of this section is the following theorem.



   

14 G. Alberti & G. Buttazzo

Theorem 3.3. There exists a countable set � ⊂ X such that f� represents F
that is

(3.4) F (u, B) =

∫

B

f�
(

x, Dku(x)
)

dλ(x) for all u, B.

Proof. We want to show that there exists a countable set � ⊂ X such that, for
every u ∈ X, f�

(

x, Dku(x)
)

= fu(x) for λ-a.e. x ∈ Ω. This proof will be divided
in two steps.

Step 1: For every countable set � ⊂ X and every u ∈ X, f�
(

x, Dku(x)
)

≥
fu(x) for λ-a.e. x ∈ Ω.

Assume by contradiction that the statement of Step 1 does not hold for some
u ∈ X. With no loss in generality we may assume that u = 0. Then we may find
a positive c and a Borel set E with λ(E) > 0 such that

(3.5) f0(x) ≥ f� (x, 0) + 2c ∀x ∈ E.

By Lemma 3.7, for every integer h > 0 we may find functions wh and open sets
Ah such that

(a) f� (x, 0) + c ≥ fwh
(x) for λ-a.e. x ∈ Ah,

(b) λ(E \ Ah) ≤ 2−(h+1)λ(E),

(c) ‖wh‖W k,∞ ≤ 2−h.

Set B = E ∩ (∩Ah): (b) yields λ(B) ≥ λ(E)/2 > 0 and then, for every
integer h, taking into account (a) and (3.5),

F (0, B) ≥

∫

B

[

f� (x, 0) + 2c
]

dλ(x) ≥ F (wh, B) + cλ(B)

and this is impossible because (c) yields that wh converge to 0 in the strong
topology of Ck

(

Ω, Rm
)

and F is assumed l.s.c. on
�

.

Step 2: There exists a countable set � ⊂ X such that, for every u ∈ X,
f�

(

x, Dku(x)
)

≤ fu(x) for λ-a.e. x ∈ Ω.
As in Proposition 3.2, let E be the set of all x such that λ({x}) > 0. Consider

the class
�

of all Borel subsets of Ω \ E as a subset of L1(Ω \ E). Since L1 is a
separable metric space, we may find a countable collection of Borel sets � ′ which
is dense in

�
and then let � be the collection which contains every set in � ′

and every set of the form {x} with x ∈ E. Since F (·, B) is l.s.c. for every Borel
set B and X is separable, by Lemma 1.6 we may find a countable set � ⊂ X
such that

(3.6) F (u, B) = lim inf
v∈� , v→u

F (v, B) ∀u ∈ X, B ∈ � .
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Let u ∈ X be fixed: we want to show that for λ a.e. x

(3.7) fu(x) ≥ f�
(

x, Dku(x)
)

.

To begin with, suppose that x belongs to E and set c = λ({x}). In this case
{x} ∈ � and taking into account (3.6) and Proposition 3.2 we obtain that

fu(x) =
1

c
F (u, {x}) = lim inf

v∈� ,v→u

1

c
F (v, B)

≥ lim inf
v∈� ,v→u

f�
(

x, Dkv(x)
)

≥ f�
(

x, Dku(x)
)

and then it is enough to prove that (3.7) holds for λ-a.e. x ∈ Ω \ E.
By Proposition 3.2 we have that for all Borel set B ⊂ Ω \ E and all v ∈ �

(3.8) F (v, B) ≥

∫

B

f�
(

x, Dkv(x)
)

dλ(x).

Take r > ‖Dku‖∞ and take gr as in Proposition 3.2. Then f�
(

x, Dkv(x)
)

≥
gr(x) for all x ∈ Ω \ E and all v such that ‖Dkv‖∞ < r and this is an open
neighborhood of u. Hence we may apply Fatou’s lemma to obtain that

(3.9) lim inf
v∈� , v→u

∫

B

f�
(

x, Dkv(x)
)

dλ(x) ≥

∫

B

lim inf
v∈� , v→u

f�
(

x, Dkv(x)
)

dλ(x).

Since f� is l.s.c. with respect to second variable (Proposition 3.2) we have that
for every x ∈ Ω

(3.10) lim inf
v∈� , v→u

f�
(

x, Dkv(x)
)

≥ f�
(

x, Dku(x)
)

.

From (3.6), (3.9) and (3.10) we obtain that for all B ∈ � ′

F (u, B) ≥

∫

B

f�
(

x, Dku(x)
)

dλ(x).

Since � ′ is dense in
�

, this inequality holds for all Borel sets B ⊂ Ω \ E and
the proof is complete.

Remark 3.4. In general, suppose that X is a subset of Ck(Ω, Rm) endowed with
a topology τ and let F be a functional on X which is a measure. If � is a
countable subset of X, we may take f� as in Definition 3.1 and it turns out to
be a Borel function l.s.c. with respect to the second variable. Then there exists
a countable set � such that f� represents F if the following general hypothesis
on the functional F and the space X are fulfilled:
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(i) X is a local space,

(ii) if uh is a sequence in X such that there exists a compact set K ⊂ Ω
and a function u ∈ X which satisfy supp (uh−u) ⊂ K for all h and ‖uh−u‖W k,∞

tends to 0, then uh converge to u ∈ X in the τ topology,

(iii) F is absolutely continuous with respect to some positive finite measure
λ,

(iv) F is Dk-local,

(v) F is sequentially τ -l.s.c. on
�

.

Notice that (i) and (ii) are fulfilled by (any local subspace of) Ck(Ω, Rm)
or Ck(Ω, Rm) endowed with the usual strong (or weak) topologies. Notice that
finiteness is not an essential hypothesis in Theorem 3.3, but it allows a simpler
proof than the general case. We want to point out that (i) plays an essential role
(with (iv) and (v)) in the proof of Step 1, while (ii) and (iv) are essential in the
proof of Step 2. If we drop (i) or (ii), examples may be given of functionals which
are (k,∞)-bounded, a.c. with respect to some positive finite measure, Dk-local
and τ -l.s.c. but cannot be represented by any Borel function f .

In order to prove the first step of the proof of Theorem 3.3, we need three
lemmas.

Lemma 3.5. Let λ be a finite positive measure on Ω. Let E ⊂ Ω be a Borel set
which is covered by a countable family of Borel sets � . Then, for every ε > 0
there exist E1, . . . , Em ∈ � and pairwise disjoint open sets B1, . . . , Bm such that

λ
(

E \
⋃

h

(Eh ∩ Bh)
)

≤ λ(E)ε

Proof. It is enough to choose E1, . . . , Em so that λ
(

E \ ∪Eh

)

≤ λ(E)ε/2 and
take into account that λ is an outer regular measure.

Lemma 3.6. Suppose that v is a function in Ck(Ω, Rm), λ is a finite positive
measure on Ω. Then, for every ε > 0, there exists a function w ∈ Ck

c (Ω, Rm)
and an open set A ⊂ Ω such that

(i) Dkw = Dkv everywhere in A;

(ii) λ(Ω \ A) ≤ (2n + 2)λ(Ω)ε;

(iii) ‖w‖W k,∞ ≤ Cε−k‖Dkv‖∞ where C is a constant which depends on h
and k only.

Proof. By Theorem 1.4, there exists a Borel set E such that λ(Ω \ E) = 0 and,
for every x ∈ E,

(3.11) lim sup
r→0

λ(B(x, ar))

λ(B(x, r))
≥ an ∀a ∈]0, 1[.
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Let � be the collection of all closed balls B = B(x, r) ⊂ Ω such that x ∈ E and

(3.12)
λ
[

B
(

x, (1 − ε)r
)]

λ
[

B(x, r)
] ≥

λ
[

B
(

x, (1 − ε)r
)]

λ
[

B
(

x, (1 − ε)−1r
)] ≥ (1 − ε)2n+1.

Formula (3.11) shows that for all x ∈ E there exist closed balls B ∈ � with
center x and arbitrary small radius and then we may apply Theorem 1.3 to
obtain disjoint closed balls Bi = B(xi, ri) in � for i = 1, . . . , n such that

λ
[

E \
⋃

i

B(xi, ri)
]

≤ λ(Ω)ε.

Set A =
⋃

B
(

xi, (1 − ε)ri

)

. Taking into account (3.12), we obtain

λ(Ω \ A) = λ(E \ A) = λ
[

E \
⋃

i

B(xi, ri)
]

+
∑

i

λ
[

B(xi, ri) \ B
(

xi, (1 − ε)ri

)

]

≤ λ(Ω)ε +
∑

i

[

1 − (1 − ε)2n+1
]

λ(Bi) ≤ λ(Ω)ε +
∑

i

(2n + 1)ελ(Bi)

≤ (2n + 2)λ(Ω)ε

and (ii) is proved. Since B1, . . . , Bh are disjoint, we may apply the Glueing
Lemma 1.5 to obtain a function w ∈ Ck(Ω, Rm) such that

(a) w = 0 out of the union of all Bi.

(b) Dkw = Dkv everywhere in B(xi, (1 − ε)ri) for all i.

(c) ‖Dkw‖L∞(Bi) ≤ C1ε
−k‖Dkv‖L∞(Bi) for all i where C1 is a constant

which depends on h and k only.

Then (b) yields (i) while (a), (c) and Bi ⊂ Ω for all i yield

‖Dkw‖∞ = sup
i

‖Dkw‖L∞(Bi) ≤ sup
i

C1ε
−k‖Dkv‖L∞(Bi) ≤ C1ε

−k‖Dkv‖∞.

Since every ball in � was chosen relatively compact in Ω, (a) implies that w has
compact support in Ω and we may apply Poincaré inequality to obtain

‖w‖W k,∞ ≤ C2‖D
kw‖∞ ≤ C2C1ε

−k‖Dkv‖∞

where C2 is a constant which depends on h and k only, and (iii) is proved.

Lemma 3.7. Let � be a countable subset of X. Let c be a positive real number
and let E be a Borel set such that f� (x, 0) < +∞ for all x ∈ E. Then, for every
ε > 0 there exists a function w ∈ Ck

c (Ω, Rm) and an open set A ⊂ Ω such that



   

18 G. Alberti & G. Buttazzo

(i) f� (x, 0) + c ≥ fw(x) for λ-a.e. x ∈ A;

(ii) λ(E \ A) ≤ (2n + 3)λ(E) ε;

(iii) ‖w‖W k,∞ ≤ Cε where C is the same constant of Lemma 3.6.

Proof. Let ε > 0 be fixed. For every v ∈ � , let Ev be the set of all points x ∈ Ω
such that f� (x, 0) + c ≥ fv(x) and |Dkv(x)| < εk+1.

By the definition of f� we have that E is covered by the sets Ev with v ∈ �
and then we may apply Lemma 3.5 to find v1, . . . , vm and pairwise disjoint open
sets B1, . . . Bm so that setting Eh = Evh

for every h we have

λ
(

E \
⋃

h

(Eh ∩ Bh)
)

≤ λ(E)ε.

Let Ωh be the open set of all points x ∈ Bh such that |Dkvh(x)| < εk+1. By
definition of Eh we have that Eh ∩ Bh = Eh ∩ Ωh and then

(3.13) λ
(

E \
⋃

h

(Eh ∩ Ωh)
)

≤ λ(E)ε.

Hence we may apply Lemma 3.6 to obtain functions wh ∈ Ck
c (Ωh, Rm) and an

open sets Ah ⊂ Ωh such that

(a) Dkwh = Dkvh everywhere in Ah,

(b) λ(Ωh \ Ah) ≤ (2n + 2)λ(Ωh)ε,

(c) ‖wh‖W k,∞ ≤ Cε−k‖Dkvh‖L∞(Ωh).

We set w =
∑

wh and A = ∪Ah: w has compact support because is a finite
sum of functions with compact support. Recalling that the sets Ωh are pairwise
disjoint and F is Dk-local, (a) yields fw(x) = fwh

(x) = fvh
(x) for all h and all

x ∈ � h, then f� (x, 0) + c ≥ fw(x) for all x ∈ ∪(Eh ∩ Ah) and (i) is proved. (ii)
and (iii) immediately follow from (b) and (c) taking into account (3.13) and the
fact that the supports of wh are included in the pairwise disjoint sets Ωh.

Proof of Theorem 1.2. We begin with proving the existence of a function f which
represents F . If X is the space Ck

(

Ω, Rm
)

, by Corollaries 2.5 and 2.10, F satisfies
the hypothesis of Theorem 3.3 and the proof is complete. If X is Ck(Ω, Rm) or
Ck

0 (Ω, Rm) and A is an open subset of Ω which is relatively compact and has
boundary of class C∞, we have that the space {f A : f ∈ X} agrees with
Ck

(

A, Rm
)

and then it is enough to apply Theorem 3.3 to the restriction of F

to the space Ck
(

A, Rm
)

for countably many open sets A which cover Ω.

The uniqueness of f immediately follows from Theorem 3.11 of Alberti [1].
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[5] Bouchitte, G., Dal Maso, G.: Integral Representation and Relaxation of Convex
Local Functionals on BV(Ω). Preprint SISSA, Trieste (April 1991)

[6] Brezis, H.: Analyse Fonctionelle et Applications. Paris, Masson 1973
[7] Buttazzo, G., Dal Maso, G.: On Nemyckii operators and integral representation of

local functionals. Rend. Mat. 3, 491–509 (1983)
[8] Buttazzo, G., Dal Maso, G.: Integral representation and relaxation of local func-

tionals. Nonlinear Anal. 9, 512–532 (1985)
[9] Morgan, F.: Geometric measure theory, a beginners guide. New York, Academic

Press 1988
[10] Rudin, W.: Functional Analysis. New York, Mc Graw-Hill 1973

Giovanni Alberti, Giuseppe Buttazzo
Dipartimento di Matematica,
via Buonarroti 2,
56127 Pisa, Italy


