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Abstract: We give an integral representation result
for functionals defined on Sobolev spaces; more pre-
cisely, for a functional F , we find necessary and suffi-
cient conditions that imply the integral representation
formula

F (u, B) =

∫

B

f(x, Du) dx.

1. – Introduction

The problem of representing in an integral form a given functional
defined on a function space and satisfying suitable ”abstract” conditions,
has been considered by several authors in different frameworks (see Ref-
erences). One of the reasons is that it is the key point in many problems
of relaxation and Γ-convergence (see for instance [3], [6], [8], [10], [11],
[16], [20], [25]); in fact, the relaxed functionals (or the Γ-limits of a se-
quence of functionals) are merely lower semicontinuous mappings defined
on a function space, and the first step in order to get their complete
characterization, is just to represent them in a suitable integral form.

The most classical integral representation result is the well-known
Riesz theorem which states that every linear continuous map F :
Lp(Ω; Rm) → R can be written in the form

(1.1) F (u) =

∫

Ω

f(x) · u(x) dx

for a suitable f ∈ Lq(Ω; Rm) (with 1/p + 1/q = 1).
A nonlinear version of the Riesz representation theorem has been

also proved (see for instance [14], [25], [28]); it states that every lower
semicontinuous map F : Lp(Ω; Rm) →] − ∞, +∞] which is disjointly
additive in the sense that

F (u + v) = F (u) + F (v) whenever u · v = 0 a.e. on Ω
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can be represented in the form

(1.2) F (u) =

∫

Ω

f
(

x, u(x)
)

dx

for a suitable Borel function f(x, s) lower semicontinuous in s and such
that

f(x, s) ≥ − [a(x) + b|s|p] for all (x, s) ∈ Ω × R
m

with a ∈ L1(Ω) and b ≥ 0.
Other integral representation results for functionals defined on the

space of measures, have also been proved (see [3], [6], [7], [8], [9], [10],
[11], [20], [40]).

In this paper, we deal with functionals F (u, B) defined for every
u belonging to a Sobolev space W 1,p(Ω; Rm) and every B belonging to
the class

�
(Ω) of all Borel subsets of Ω, and we look for an integral

representation of F in the form

(1.3) F (u, B) =

∫

B

f
(

x, Du(x)
)

dx

for a suitable integrand f(x, z). When F satisfies growth conditions as

(1.4) |F (u, B)| ≤

∫

B

[a(x) + b|Du|p] dx

with a ∈ L1(Ω) and b ≥ 0, the integral representation formula (1.3) has
been obtained by Buttazzo & Dal Maso in [15], [16] under the following
additional hypotheses:
(i) F is local, that is

u = v a.e. on B ∈
�

(Ω) ⇒ F (u, B) = F (v, B) ;

(ii) for every u ∈ W 1,p(Ω; Rm) the set function F (u, ·) is a measure on
�

(Ω);
(iii) for every u ∈ W 1,p(Ω; Rm), c ∈ R

m, and B ∈
�

(Ω) we have

F (u + c, B) = F (u, B) ;

(iv) for every B ∈
�

(Ω) the function F (·, B) is sequentially weakly lower
semicontinuous on W 1,p(Ω; Rm).

In this case the integrand f(x, z) in (1.3) turns out to be quasi-convex
with respect to z in the sense of Morrey [36].

Here we follow a different approach based on a recent result by Al-
berti (see [1]) concerning a Lusin type property for Lp-functions (Theorem
2.7). This will enable us to obtain the integral representation (1.3) even
if the growth condition (1.4) is dropped and condition (iv) is substituted
by the weaker one:

(iv’) for every B ∈
�

(Ω) the function F (·, B) is lower semicontinuous on
W 1,p(Ω; Rm) with respect to the strong topology.

2. – Notation and Statement of the Result

In this section we fix the notation we shall use in the following and
we state our main result. We also recall some other results which will be
used in the proofs.

Let Ω be a bounded open subset of R
n, let m ≥ 1 be an integer, and

let p ∈ [1,+∞]; we denote by W 1,p(Ω; Rm) the usual Sobolev space with
norm

‖u‖W 1,p(Ω;Rm) = ‖u‖Lp(Ω;Rm) + ‖Du‖Lp(Ω;Rmn).

For every u ∈ W 1,p(Ω; Rm) and for a.e. x ∈ Ω the gradient Du(x) will
be the m × n matrix defined by

(

Du(x)
)

i,j
= Djui(x) for i = 1, . . . , m

and j = 1, . . . , n.
We shall consider functionals F : W 1,p(Ω; Rm) ×

�
(Ω) → [0,+∞]

where
�

(Ω) denotes the class of all Borel subsets of Ω. For this kind of
functionals we introduce the following definitions.

Definition 2.1. We say that a functional F : W 1,p(Ω; Rm) ×
�

(Ω) → [0,+∞] is
(i) local, if F (u, B) = F (v, B) whenever B ∈

�
(Ω) and u, v ∈

W 1,p(Ω; Rm) with u = v a.e. on B;
(ii) D-local, if F (u, B) = F (v, B) whenever B ∈

�
(Ω) and u, v ∈

W 1,p(Ω; Rm) with Du = Dv a.e. on B;
(iii) a measure, if for every u ∈ W 1,p(Ω; Rm) the set function F (u, ·) is
countably additive on

�
(Ω).

We are now in a position to state our integral representation result.

Theorem 2.2. Let p ∈ [1,+∞[, and let F : W 1,p(Ω; Rm)×
�

(Ω) →
[0,+∞] be a functional such that:
(i) F is D-local;
(ii) F is a measure;
(iii) for every B ∈

�
(Ω) the function F (·, B) is lower semicontinuous on

W 1,p(Ω; Rm) with respect to the strong topology;
(iv) there exists ū ∈ W 1,p(Ω; Rm) such that F (ū, ·) is a bounded measure

which is absolutely continuous with respect to the Lebesgue measure.
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Then there exists a Borel function f : Ω × R
mn → [0,+∞] such that

(a) for every x ∈ Ω the function f(x, ·) is lower semicontinuous on R
mn;

(b) for every (u, B) ∈ W 1,p(Ω; Rm) ×
�

(Ω) it is

F (u, B) =

∫

B

f
(

x, Du(x)
)

dx .

Moreover, the integrand f is uniquely determined in the following sense: if
g is a Borel function so that (b) holds with g instead of f , then there exists
a negligible set N ∈

�
(Ω) such that f(x, s) = g(x, s) for all x ∈ Ω \ N

and s ∈ R
mn.

Remark 2.3. Note that hypotheses (i) and (iv) of Theorem 2.2
yield F (u, B) = F (ū, B) = 0 for all u ∈ W 1,p(Ω; Rm) and all B ∈

�
(Ω)

with |B| = 0.

Remark 2.4. For simplicity we consider only the case p < +∞; in
the case p = +∞ the same result (with the same proof) holds, provided
condition (iii) is substituted by the following one:

(iii’) for every B ∈
�

(Ω) the function F (·, B) is lower semicontinuous
on W 1,∞(Ω; Rm) with respect to the τ∞-convergence, where we say
that uh is τ∞-convergent to u if uh is bounded in W 1,∞(Ω; Rm),
uh converges to u uniformly on compact subsets of Ω, and Duh

converges to Du a.e. in Ω.

Remark 2.5. The hypothesis that F is positive can be easily weak-
ened by requiring that for suitable a ∈ L1(Ω) and b ≥ 0

F (u, B) ≥ −

∫

B

[a(x) + b|Du|p] dx

for all (u, B) ∈ W 1,p(Ω; Rm) ×
�

(Ω).

Remark 2.6. By Definition 2.1 and by the well-known locality of the
gradient (see for instance Gilbarg & Trudinger [27], Lemma 7.7), it follows
immediately that D-locality implies locality. The converse implication
can be also proved (we refer to Alberti [2] for the proof) provided F
satisfies condition (ii) of Theorem 2.2 and the invariance condition (iii)
stated in the Introduction. Finally, when F satisfies conditions (ii) and
(iii) of Theorem 2.2 and the growth condition (1.4), then the locality of
F follows from the locality on open sets (see Buttazzo & Dal Maso [15],
Lemma 2.8), that is

F (u, A) = F (v, A) whenever A is an open subset of Ω, and u, v ∈
W 1,p(Ω; Rm) with u = v a.e. on A.

The main tools in the proof of the integral representation Theorem
2.2 are the following results.

Theorem 2.7.(See Alberti [1], Theorem 1)
For every v ∈ Lp(Ω; Rmn) and every ε > 0 there exist a function

u ∈ C1
0 (Ω; Rm) and a closed set B ⊂ Ω such that

(i) |Ω \ B| ≤ ε|Ω|;
(ii) v = Du a.e. in B;
(iii) ‖Du‖p ≤ Cε1/p−1‖f‖p where C is a constant which depends only on

n.

Theorem 2.8.(See Buttazzo & Dal Maso [14])
Let m ≥ 1 be a given integer and let F : Lp(Ω; Rm) ×

�
(Ω) →

[0,+∞] be a functional such that
(i) for all v ∈ Lp(Ω; Rm), the function F (v, ·) is a measure which is

absolutely continuous with respect to the Lebesgue measure;
(ii) F is local, that is F (v, B) = F (v′, B) whenever v = v′ a.e. in B;
(iii) for all B ∈

�
(Ω) the function F (·, B) is lower semicontinuous with

respect to strong topology of Lp(Ω; Rm);
(iv) there exists v̄ ∈ Lp(Ω; Rm) such that F (v̄,Ω) < +∞.

Then there exists a Borel function f : Ω × R
m → [0, +∞] such that

(a) for every x ∈ Ω the function f(x, ·) is lower semicontinuous on R
m;

(b) for every (v, B) ∈ Lp(Ω; Rm) ×
�

(Ω) it is

F (v, B) =

∫

B

f
(

x, v(x)
)

dx .

3. – Proof of the Result

For the sake of simplicity we always refer to W 1,p(Ω; Rm) as W 1,p,
to C1

0 (Ω; Rm) as C1
0 and to Lp(Ω; Rmn) as Lp.

Let F be a functional on W 1,p satisfying conditions (i), (ii), (iii), (iv)
of Theorem 2.2. We shall apply Theorem 2.7 to find a functional G on
Lp which satisfies hypotheses (i), (ii), (iii), (iv) of Theorem 2.8 and such
that

F (u, B) = G(Du, B) for all (u, B) ∈ W 1,p ×
�

(Ω).

Definition 3.1. Let v ∈ Lp and let (uh, Bh) ∈ W 1,p ×
�

(Ω) for
every h ∈ N. We say that (uh, Bh) is a local partition of v if

(3.1) the sets Bh are pairwise disjoint and cover almost all of Ω;
(3.2) Duh = v a.e. in Bh for every h ∈ N.
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Proposition 3.2. For every v ∈ Lp and every ε > 0 there exists a
local partition (uh, Bh) of v such that

|Ω \ B0| < ε and ‖u0‖W 1,p ≤ Cε1/p−1‖v‖p

where C is a constant which does not depend on v.

Proof. Fix v ∈ Lp and ε > 0. By Theorem 2.7 there exist functions
uh ∈ C1

0 and closed sets Ah ⊂ Ω such that
(i) |Ω \ Ah| < ε2−h for every h ∈ N;
(ii) Duh = v a.e. in Ah;

(iii) ‖Duh‖p ≤ C
(

ε|Ω|−12−h
)1/p−1

‖v‖p,
where C is the constant of Theorem 2.7.

Setting for every h ∈ N

Bh = Ah \
h−1
⋃

j=0

Aj

it is easy to verify that |Ω \
⋃∞

0 Bh| = 0. Moreover, by Poincaré inequal-
ity, we get

‖u0‖W 1,p ≤ C ′‖Du0‖p ≤ C ′C|Ω|1−1/pε1/p−1‖v‖p

where C ′ is a constant which does not depend on v. Hence Proposition
3.2 is proved.

Proposition 3.3. Let v ∈ Lp and let (uh, Ah) and (u′
h, A′

h) be two
local partitions of v. Then it is

F (uh, B) = F (u′
k, B)

for all h, k ∈ N and all Borel sets B ⊂ Ah ∩ A′
k. In particular, for all

B ∈
�

(Ω) we have

(3.3)
∑

h∈N

F (uh, B ∩ Ah) =
∑

k∈N

F (u′
k, B ∩ A′

k) .

Proof. Since v = Duh = Du′
k a.e in Ah ∩ A′

k, by hypothesis (i) of
Theorem 2.2 we obtain that F (uh, B) = F (u′

k, B) for all integers h, k and
all Borel sets B ⊂ Ah ∩ A′

k. Taking into account (3.1) and Remark 2.3,
this yields
∑

h∈N

F (uh, B ∩ Ah) =
∑

h,k∈N

F (uh, B ∩ Ah ∩ A′
k)

=
∑

h,k∈N

F (u′
k, B ∩ Ah ∩ A′

k) =
∑

k∈N

F (u′
k, B ∩ A′

k) .

Lemma 3.4. For all (v, B) ∈ Lp ×
�

(Ω) define

(3.4) G(v, B) =
∑

h∈N

F (uh, B ∩ Ah)

where (uh, Ah) is a local partition of v. We have:
(i) G is well-defined, in the sense that G(v, B) does not depend on the

choice of the local partition of v;
(ii) for all (u, B) ∈ W 1,p ×

�
(Ω) it is F (u, B) = G(Du, B).

Proof. The fact that G is well-defined follows from Proposition 3.3.
In order to prove (ii), set (u0, A0) = (u, Ω) and (uh, Ah) = (0, ∅) for h ≥ 1
and note that this is a local partition for Du. By the definition of G we
have

G(Du, B) =
∑

h∈N

F (uh, B ∩ Ah) = F (u, B) for all B ∈
�

(Ω).

Lemma 3.5. For all v ∈ W 1,p the function G(v, ·) is a positive
measure which is absolutely continuous with respect to the Lebesgue
measure.

Proof. Let v be a function in Lp, let B ∈
�

(Ω), and let (Bk)k∈N

be a partition of B into Borel sets. If (uh, Ah) is a local partition of v,
by using the definition of G, hypothesis (i) and (ii) of Theorem 2.2, and
Remark 2.3, we get

∑

k∈N

G(v, Bk) =
∑

k∈N

[

∑

h∈N

F (uh, Bk ∩ Ah)
]

=
∑

h∈N

[

∑

k∈N

F (uh, Bk ∩ Ah)
]

=
∑

h∈N

F (uh, B ∩ Ah) = G(v, B) .

Therefore G(v, ·) is a measure. The fact that G(v, B) = 0 whenever
|B| = 0 is obvious.

Lemma 3.6. G is local, that is G(v, B) = G(v′, B) for all v, v′ ∈ Lp

and all B ∈
�

(Ω) such that v = v′ a.e in B.

Proof. Let v, v′ ∈ Lp and let B ∈
�

(Ω) such that v = v′ a.e in B.
If (uh, Ah) and (u′

h, A′
h) are local partitions of v and v′ respectively, by

(3.2) we get Duh = Du′
k a.e. in B ∩Ah ∩A′

k for all integers h, k. Hence,
taking into account hypothesis (i) of Theorem 2.2,

F (uh, B ∩ Ah ∩ A′
k) = F (u′

k, B ∩ Ah ∩ A′
k)
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for all h, k ∈ N. Arguing as in the proof of Proposition 3.3 we obtain

G(v, B) =
∑

h∈N

F (uh, B ∩ Ah)

=
∑

h,k∈N

F (uh, B ∩ Ah ∩ A′
k) =

∑

h,k∈N

F (u′
k, B ∩ Ah ∩ A′

k)

=
∑

k∈N

F (u′
k, B ∩ A′

k) = G(v′, B) .

Lemma 3.7. For all B ∈
�

(Ω) the function G(·, B) is lower semi-
continuous in the strong topology of Lp.

Proof. An easy computation shows that it is enough to prove that

(3.5) G(v, B) ≤ lim inf
h→∞

G(v + vh, B)

whenever vh are functions in Lp such that ‖vh‖p ≤ 4−h for every h ∈ N.
By Proposition 3.2, for every h ∈ N we may choose a local partition
(uh,j , Ah,j) of vh such that
(3.6)
|Ω \ Ah,0| < 2−h and ‖uh,0‖W 1,p ≤ C 2(1−1/p)h‖vh‖p ≤ C 2−h ,

where C is a constant which does not depend on h.
Fix an integer k. Choose a local partition (uh, Ah) of v such that |Ω\A0| ≤
2−k (cf. Proposition 3.2) and set

Ck = A0 ∩
(

⋂

h≥k

Ah,0

)

.

By the definition of G, for all h, k ∈ N we get

G(v, B ∩ Ck) = F (u0, B ∩ Ck)

G(v + vh, B ∩ Ck) = F (u0 + uh,0, B ∩ Ck) wheneverh ≥ k,

and taking into account that u0 + uh,0 converge to u0 by (3.6), and that
F is lower semicontinuous (hypothesis (iii) of Theorem 2.2), we obtain

G(v, B ∩ Ck) = F (u0, B ∩ Ck)(3.7)

≤ lim inf
h→∞

F (u0 + uh,0, B ∩ Ck)

= lim inf
h→∞

G(v0 + vh,0, B ∩ Ck) .

Note that by definition of Ck and by (3.6)

|Ω \ Ck| ≤ |Ω \ A0| +
∑

h≥k

|Ω \ Ah,0| ≤ 2−k +
∑

h≥k

2−h = 3 · 2−k ,

so that |Ω \ Ck| converge to 0 as k → ∞. Hence, for every t < G(v, B)
there exists an integer k such that t ≤ G(v, B ∩ Ck) and inequality (3.7)
and the fact that G is positive yield

t ≤ G(v, B ∩ Ck)

≤ lim inf
h→∞

G (v0 + vh,0, B ∩ Ck)

≤ lim inf
h→∞

G (v0 + vh,0, B) .

Therefore (3.5) is satisfied because t is any real number less than G(v, B).

Proof of Theorem 2.2

By Lemmas 3.5, 3.6 and 3.7 we have that G satisfies hypotheses (i),
(ii), (iii) of Theorem 2.8. Lemma 3.4 and (iv) of Theorem 2.2 imply that
hypothesis (iv) of Theorem 2.8 holds with v̄ = Dū. Then there exists a
Borel function f : Ω × R

mn → [0, +∞] which is lower semicontinuous in
the second variable and such that

G(v, B) =

∫

B

f
(

x, v(x)
)

dx

for every (v, B) ∈ Lp ×
�

(Ω). Lemma 3.4 again implies

F (u, B) = G(Du, B) =

∫

B

f
(

x, Du(x)
)

dx

for every (u, B) ∈ W 1,p ×
�

(Ω), and then we have proved (a) and (b).
The uniqueness of the integrand f follows for instance from Corollary 6
of Alberti [1].
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