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Abstract. In this paper we study the asymptotic behavior of the functional

Fε(u) :=

∫

Ω

[

ε|∇u|2 + ε−3β
(u

ε

)]

dx

where β is a non-negative lower semicontinuous function with compact support. When
ε tends to 0, the limit functional corresponds to a least area problem with an obstacle.

Introduction

In the last years, many papers have been devoted to the asymptotic behavior of
the functionals

∫

Ω

[

ε|∇u|2 +
W (u)

ε

]

dx

as ε ↓ 0. The first result, proved by Modica & Mortola in [16] (see also Modica [14]),
deals with real valued functions u. If the function W is nonnegative and vanishes only
at a, b ∈ R with a < b, they proved that the limit functional, in a suitable variational
sense, is

2

(

∫ b

a

W 1/2(s) ds

)

P
(

{u = a},Ω
)

(1)

if u(x) ∈ {a, b} almost everywhere, and +∞ otherwise. In (1), P
(

{u = a},Ω
)

denotes
the perimeter in Ω of the interface between the regions {u = a} and {u = b}. The result
has been later extended in many directions:
(a) by introducing additional constraints [13, 15];
(b) by considering vector valued functions and different kinds of zero sets of W [1, 3,

9, 17, 20];
(c) by considering fully non-linear integrands of the form ε−1f(x, u, ε∇u) [4, 18, 19].
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In this paper we deal with functionals of the form

Fε(u) =

∫

Ω

[

ε|∇u|2 + ε−3β
(u

ε

)]

dx ,

where β is a nonnegative lower semicontinuous function with compact support. We
show in Theorem 1.3 that the limit functional is

F (u) = 2

(
∫ +∞

−∞
β1/2(s) ds

)

min
{

P (B,Ω) : {u > 0} ⊂ B ⊂ {u ≥ 0}
}

. (2)

The meaning of the constraint condition on B in (2) is the following: if the set {u = 0}
is negligible, then the only admissible choice for B is B = {u > 0}, which gives

F (u) = 2

(
∫ +∞

−∞
β1/2(s) ds

)

P
(

{u > 0},Ω
)

.

On the contrary, if the set {u = 0} is not negligible, then we have to choose a subset H
of its in order to get, for B = {u > 0}∪H, the least perimeter P (B,Ω) (a comprehensive
treatment of the theory of functions of bounded variation and sets of finite perimeter
can be found in [8] and [10]).

We also study (see Theorem 1.1 and Proposition 1.6) the asymptotic behavior of
the minimizers of the problems

∫

Ω

[

ε|∇u|2 + ε−3β
(u

ε

)]

dx +

∫

Ω

g(x, u) dx

for suitable functions g : Ω × R → R.

1. – Statement of the Results

Let Ω be a bounded open subset of R
n with a Lipschitz boundary. As usual we

denote by H1(Ω) the Sobolev space of all functions u ∈ L2(Ω) with distributional
derivatives in L2(Ω). Let β : R → R be a nonnegative lower semicontinuous function
with compact support and let g : Ω × R → R be a Borel function such that
(i) for a.e. x ∈ Ω the function g(x, ·) is continuous on R;
(ii) there exist p1, p2 ∈ L1(Ω) and C1, C2 > 0 such that for a.e. x ∈ Ω and every s ∈ R

p1(x) + C1|s|2 ≤ g(x, s) ≤ p2(x) + C2|s|2.

Then, for every ε > 0, the well-known direct method of the Calculus of Variations (see
for instance [6]) ensures the existence of a solution uε of the problem

min

{
∫

Ω

[

ε|∇u|2 + ε−3β
(u

ε

)]

dx +

∫

Ω

g(x, u) dx : u ∈ H1(Ω)

}

. (
�

ε)
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The present paper is devoted to the characterization of the asymptotic behavior of the
solutions uε and of the minimum values min(

�
ε) as ε → 0. In order to describe the

limit problem, we introduce the functions

g−(x) = min
{

g(x, t) : t ≤ 0
}

, g+(x) = min
{

g(x, t) : t ≥ 0
}

,

we set

c = 2

∫ +∞

−∞
β1/2(s) ds .

Let (
�

) be the following problem

min

{

cP (B,Ω) +

∫

B

g+ dx +

∫

Ω\B

g− dx : B Borel set

}

. (
�

)

Well known compactness and lower semicontinuity properties of sets of finite perimeter
(see for instance Giusti [10]) ensure that the infimum of (

�
) is attained. The following

theorem is the main result of this paper.

Theorem 1.1. We have

lim
ε→0+

[

min(
�

ε)
]

= min(
�

). (1.2)

Moreover, given any sequence (εh) converging to 0 and any sequence (uh) of solutions of
(
�

εh
), there exist a subsequence (uhk

) and a minimizer B of (
�

) such that, for almost
every x ∈ Ω, either uhk

(x) converges to 0, or signuhk
(x) converges to χB(x)−χΩ\B(x).

Finally, if
g−(x) < g(x, 0) and g+(x) < g(x, 0) a.e. in Ω, (1.3)

then
sign(uhk

) → χB − χΩ\B a.e. in Ω.

Remark 1.2. By using (ii) and the projection theorem (see for instance Castaing
& Valadier [7], Theorem III.22), it can be shown that g− and g+ belong to L1(Ω).
Moreover, Aumann’s measurable selection theorem (see [7], Theorem III.23) allows us
to find two functions a, b ∈ L2(Ω) such that a ≤ 0, b ≥ 0 and

g−(x) = g(x, a(x)) and g+(x) = g(x, b(x)) for a.e. x ∈ Ω.

Notice that, if for every h ∈ N we set ah = (a ∧ h) ∨ −h and (bh ∧ h) ∨ −h, we have

g−(x) = lim
h→+∞

g(x, ah(x)) and g+(x) = lim
h→+∞

g(x, bh(x))

in the strong convergence of L1(Ω).

If we denote by � (Ω) the space of all real valued Borel functions defined in Ω
and endow � (Ω) with a distance inducing convergence in measure, then Theorem 1.1
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can be partially rephrased in terms of Γ-convergence (see for instance [2] for the basic
definitions) as follows.

Theorem 1.3. The functionals

Fε(u) =







∫

Ω

[

ε|∇u|2 + ε−3β
(uε

ε

)]

dx if u ∈ H1(Ω)

+∞ if u ∈ � (Ω) \ H1(Ω)

Γ-converge in � (Ω), as ε → 0, to the functional

F (u) = min
{

cP (B,Ω) : {u > 0} ⊂ B ⊂ {u ≥ 0}
}

. (1.4)

It is well-known that Γ-convergence and equicoercivity ensure convergence of min-
imizers to minimizers and of minimum values to minimum values. However, it can be
easily seen that the functionals Fε are not equicoercive in � (Ω). For instance, if Ω is
the interval ]0, 1[ and uε(x) = 2 + sin(x/

√
ε), for every ε > 0 we have Fε(u) ≤ C for a

suitable constant C, but it is impossible to extract subsequences (uεh
) which converge

almost everywhere. In particular, Theorem 1.1 cannot be deduced from Theorem 1.3. In
order to prove (1.2) we need to consider a weaker form of convergence (see Proposition
2.1).

Remark 1.4. Since the perimeter P (B,Ω) is not affected by modifications of B
in negligible sets, an equivalent definition of F can be given by requiring the inclusions
to hold only almost everywhere. We also remark that F (u) = cP

(

{u > 0},Ω
)

if u 6= 0
almost everywhere, and F (u) = 0 if either u ≥ 0 or u ≤ 0 in Ω.

Remark 1.5. When we consider Fε as functions also of the the domain of inte-
gration Ω

(

and then we write Fε(u, Ω) instead of Fε(u)
)

, it is interesting to notice that
even if all the functionals Fε are σ-additive measures as functions of Ω, the Γ-limit F
does not share this property. In the one dimensional case, it suffices to take a function
u equal to 1 in ]0, 1/3[, equal to 0 in [1/3, 2/3], and equal to −1 in ]2/3, 1[. Then,
F (u, ]0, 2/3[) = 0, F (u, ]1/3, 1[) = 0 but F (u, ]0, 1[) = 1, so that A 7→ F (u, A) is not an
additive set function.

Remark 1.6. In general, there is no hope for uniqueness of the minimizing set
B of the problem (

�
). Indeed take Ω =]0, 1[, the same function u of Remark 1.5,

and any function g such that g+ = −u and g− = +u. Then, min(
�

) = 1/3 and
any set B =]0, t[ with 1/3 ≤ t ≤ 2/3 is a minimizer. This phenomenon forced us to
consider only the convergence of the signs of suitable subsequences of minimizers. The
pointwise convergence of the minimizers is ensured under stronger assumptions on g, as
the following proposition shows.

Proposition 1.7. Let us assume that for almost every x ∈ Ω the function g(x, ·)
has a unique minimizer u+(x) > 0 when restricted to the half line [0,+∞[ and a
unique minimizer u−(x) < 0 when restricted to the half line ]−∞, 0]. Then, given any
sequence (εh) converging to 0 and any sequence (uh) of minimizers of (

�
εh

), there is
a subsequence (uhk

) converging in measure to a function u ∈ � (Ω) such that u(x) ∈
{

u−(x), u+(x)
}

for any x and the set {u > 0} minimizes (
�

).
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2. – Proof of the Results

The proof of Theorems 1.1 and 1.3 essentially relies on the following two proposi-
tions. We define

m = inf
{

s : β(s) 6= 0
}

, M = sup
{

s : β(s) 6= 0
}

.

Proposition 2.1. Let (εh) ⊂]0,+∞[ be converging to 0, and let (uh) ⊂ H1(Ω),
u ∈ � (Ω) such that

lim sup
h→+∞

uh

εh
≥ M

almost everywhere in the set
{

x ∈ Ω : u(x) > 0
}

and

lim inf
h→+∞

uh

εh
≤ m

almost everywhere in the set
{

x ∈ Ω : u(x) < 0
}

. Then,

lim inf
h→+∞

∫

Ω

[

εh|∇uh|2 + ε−3
h β

(

uh

εh

)]

dx ≥ F (u),

with F (u) defined in (1.4).

Proof. We may assume, possibly passing to subsequences, that the liminf in the
statement is a finite limit, say L. Let I be the primitive of β1/2 which vanishes for
t ≤ m, and let vh = 2I(uh/εh). By the chain rule and the inequality 2ab ≤ a2 + b2 we
infer

∫

Ω

|∇vh| dx =
2

εh

∫

Ω

β1/2

(

uh

εh

)

|∇uh| dx ≤
∫

Ω

[

εh|∇uh|2 + ε−3
h β

(

uh

εh

)]

dx.

Since 0 ≤ vh ≤ c, it follows that the sequence vh is bounded in BV (Ω), and we can
assume, by Rellich’s theorem, that it converges almost everywhere to a function v ∈
BV (Ω). Moreover passing to the limit as h → +∞ in the foregoing inequality, and
recalling the lower semicontinuity of the total variation (see for instance [10], Theorem
1.9), we get |Dv|(Ω) ≤ L. We need only to show that F (u) ≤ |Dv|(Ω). Since 0 ≤ v ≤ c,
by using the Fleming-Rishel formula (see [10], Theorem 1.23)

|Dv|(Ω) =

∫ c

0

P
(

{x ∈ Ω : v(x) > t},Ω
)

dt

we can find t ∈]0, c[ such that B = {x ∈ Ω : v > t} is a set of finite perimeter in Ω and
cP (B,Ω) ≤ |Dv|(Ω). By our assumption on (uh), for almost every x in the set

{

x ∈ Ω :

u(x) > 0
}

the sequence vh(x) converges to c. In particular,
{

x ∈ Ω : u(x) > 0
}

⊂ B

up to a negligible set. A similar argument shows that B ⊂
{

x ∈ Ω : u(x) ≥ 0
}

up to
a negligible set. Hence,

F (u, Ω) ≤ cP (B,Ω) ≤ |Dv|(Ω) ≤ L,
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and the proposition is proved.

In the proposition below it will be very useful the so-called coarea formula (see for
instance [8], 3.2.12)

∫

B

|∇ϕ| dx =

∫ +∞

−∞

� n−1
(

{x ∈ B : ϕ(x) = t}
)

dt (2.1)

which holds for every Borel set B ⊂ R
n and every Lipschitz function ϕ.

Proposition 2.2. For any function u ∈ � (Ω) it is possible to find functions
(uε) ⊂ H1(Ω) converging to u almost everywhere, such that

lim
ε→0+

∫

Ω

[

ε|∇uε|2 + ε−3β
(uε

ε

)]

dx = F (u). (2.2)

Moreover, the sequence uε is bounded in L∞(Ω) if u ∈ L∞(Ω).

Proof. The proof is achieved in three steps. We define the functional

F+(u) = inf

{

lim sup
ε→0+

∫

Ω

[

ε|∇uε|2 + ε−3β
(uε

ε

)]

dx : uε → u a.e. in Ω

}

.

A diagonal argument shows that the infimum in the definition of F+ is achieved, and
F+ is lower semicontinuous with respect to the almost everywhere convergence. Then,
the statement of the proposition is equivalent to the inequality F+(u) ≤ F (u) (the
”liminf” inequality in (2.2) follows by Proposition 2.1).
Step 1. We assume that u is bounded, u 6= 0 almost everywhere, and there is a bounded
open set C ⊂ R

n with a smooth boundary such that

C ∩ Ω =
{

x ∈ Ω : u(x) > 0
}

. (2.3)

We denote by τ the distance function from ∂C, by Cη the set
{

x ∈ C : τ(x) < η
}

, and
by K a positive number such that [m, M ] ⊂ [−K, K]. We want to define uε = aεσε,
where aε and σε are functions which fulfil suitable conditions. Let ψε ∈ C∞(Rn) such
that 0 ≤ ψε ≤ 1 and

ψε ≡ 0 in C√
ε ψε ≡ 1 in R

n \ C2
√

ε |∇ψε| ≤
2√
ε

.

We define

aε(x) = ψε(x)

∫

Ω

|u|(y)

Kρn
ε

h

(

y − x

ρε

)

dy + ε,

where h is any fixed convolution kernel. The functions aε are in C∞(

R
n
)

, are greater
than ε, converge to |u|/K almost everywhere, and are equal to ε on C√

ε. In addition,
the upper bound on |∇ψε| yields

lim
ε→0+

ε

∫

Ω

|∇aε|2 dx = 0 (2.4)
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provided ρε converges to 0 slowly enough. Now we turn to the construction of σε. Let
ηε > 0, γε be solutions of the problem

γ′ =
β1/2

(

γ(t)
)

+ ε3/2

ε3
, γ(0) = −K, γ(ηε) = K.

By a change of variables we infer

ηε =

∫ K

−K

ε3

β1/2(t) + ε3/2
dt ≤ 2Kε3/2. (2.5)

The functions σε are defined as follows:

σε(x) =

{

K if x ∈ C and τ(x) ≥ ηε

γε

(

τ(x)
)

if x ∈ C and τ(x) < ηε

−K if x /∈ C.

By (2.5), for ε small enough the functions aε are equal to ε in Cηε
and, setting uε = aεσε,

we have β(uε/ε) = 0 outside Cηε
. By (2.4) we infer

lim sup
ε→0+

∫

Ω

[

ε|∇uε|2 + ε−3β
(uε

ε

)]

dx = lim sup
ε→0+

∫

Bε

[

ε3|∇σε|2 + ε−3β(σε)
]

dx,

where we have set for simplicity Bε = Cηε
. Since |∇τ | = 1 almost everywhere (see for

instance [8], 3.2.34), by using the coarea formula (2.1) and our special choice of γε we
get

lim sup
ε→0+

∫

Bε

[

ε3|∇σε|2 + ε−3β(σε))
]

dx =

= lim sup
ε→0+

∫ ηε

0

[

ε3|γ′
ε|2 + ε−3β(γε)

]� n−1
(

{x ∈ C ∩ Ω : τ(x) = t}
)

dt =

= lim sup
ε→0+

∫ ηε

0

[

2γ′
εβ

1/2(γε) + 1
]� n−1

(

{x ∈ C ∩ Ω : τ(x) = t}
)

dt.

Since ∂C is smooth, for t small enough we have {x ∈ C : τ(x) = t} = {y + tν(y) :
y ∈ ∂C}, where ν is the inner normal to ∂C. In particular,

� n−1
(

{x ∈ C ∩ Ω : τ(x) = t}
)

≤ � n−1
(

{y + tν(y) : y ∈ ∂C, dist(y, Ω) < t}
)

≤ (1 + Lt)n−1� n−1
(

{x ∈ ∂C : dist(x,Ω) < t}
)

.

In the above formula, 1 + Lt is greater than the Lipschitz constant of the map y 7→
y + tν(y) defined in ∂C, and L is a suitable constant depending on the curvatures of C.
Finally, assembling the previous inequalities we get

lim sup
ε→0+

∫

Ω

[

ε|∇uε|2 + ε−3β
(uε

ε

)]

dx ≤ 2

(
∫ +∞

−∞
β1/2(s) ds

)

� n−1(C ∩ Ω). (2.6)
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Step 2. We now remove the regularity assumption on the set C =
{

x ∈ Ω : u(x) > 0
}

,
assuming only that P (C,Ω) < +∞. By using Proposition 2.16 and Remark 2.13 of [10],
it is possible to extend the characteristic function of C to a function v ∈ BV (Rn) with
compact support such that 0 ≤ v ≤ 1 and |Dv|

(

∂Ω
)

= 0. Let (ρh) be a sequence of
mollifiers, and let vh = v ∗ρh; by Sard’s theorem, almost every level set of vh is smooth.
Moreover, given any η ∈]0, 1/2[, by the coarea formula (2.1) for every h ∈ N we can find
th ∈]η, 1 − η[ such that the set

Ch =
{

x ∈ R
n : vh(x) > th

}

is smooth and

� n−1
(

Ch ∩ Ω
)

≤ 1

1 − 2η

∫

Ω

|∇vh| dx =
1

1 − 2η
|Dvh|(Ω). (2.7)

Now we set

uh(x) =

{

|u|(x) if x ∈ Ch

−|u|(x) if x ∈ Ω \ Ch.

Since vh converges to χC almost everywhere in Ω, it can be easily seen that uh converges
to u almost everywhere. Since uh fulfil condition (2.3), by (2.6) and (2.7) we infer

F+(uh) ≤ c

1 − 2η
|Dvh|(Ω).

Since |Dv|(∂Ω) = 0, the sequence |Dvh|(Ω) converges to |Dv|(Ω) = P (C,Ω) (see for
instance [10], Proposition 1.15). By letting h → +∞ we get

F+(u) ≤ 1

1 − 2η
F (u),

and the inequality follows by letting η → 0.

Step 3. Let B be a minimizing set in the definition of F (u). Let uh be the functions
defined by

uh(x) =







(

h ∧ u(x)
)

∨ −h if u(x) 6= 0
1/h if u(x) = 0 and x ∈ B
−1/h if u(x) = 0 and x /∈ B.

Since the functions uh are bounded and are nowhere equal to zero, the first two steps
yield

F+(uh) ≤ F (uh) = F (u).

By letting h → +∞ and using the lower semicontinuity of F+ we obtain the desired
inequality.

Proof of Theorem 1.1

Let B be a minimizer of (
�

), and let ah, bh be the functions in Remark 1.2. We
define

uh(x) =

{

bh(x) if x ∈ B
ah(x) if x /∈ B.
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By Proposition 2.2, for every integer h we can find a sequence (uε) converging to uh

almost everywhere, bounded in L∞(Ω), and such that

lim
ε→0+

[
∫

Ω

[

ε|∇uε|2 + ε−3β
(uε

ε

)]

dx +

∫

Ω

g(x, uε) dx

]

=

= F (uh) +

∫

Ω

g(x, uh) ≤ cP (B,Ω) +

∫

Ω

g(x, uh) dx.

In particular,

lim sup
ε→0+

[

min(
�

ε)
]

≤ lim
h→+∞

[

cP (B,Ω) +

∫

Ω

g(x, uh) dx

]

=

= cP (B,Ω) +

∫

B

g+ dx +

∫

Ω\B

g− dx = min(
�

).

In order to show the inequality

lim inf
ε→0+

[

min(
�

ε)
]

≥ min(
�

), (2.8)

we choose a sequence (εh) converging to 0 such that

lim inf
ε→0+

[

min(
�

ε)
]

= lim
h→+∞

[

min(
�

εh
)
]

= L

and we assume L < +∞ (the inequality being trivial if L = +∞). Let uh ∈ H1(Ω) be a
minimizer of (

�
εh

), and let vh = 2I(uh/εh) be as in the proof of Proposition 2.1. The
same argument of Proposition 2.1 shows that the sequence (vh) is bounded in BV (Ω).
Hence, it it not restrictive to assume that vh converges almost everywhere to a function
v ∈ BV (Ω). We define

B1 =

{

x ∈ Ω : lim sup
h→+∞

uh(x)

εh
≥ M

}

B2 =

{

x ∈ Ω : lim inf
h→+∞

uh(x)

εh
≤ m

}

u(x) =

{

1 if x ∈ B1

−1 if x ∈ B2

0 otherwise.

By Proposition 2.1 we get

lim inf
h→+∞

∫

Ω

[

εh|∇uh|2 + ε−3
h β

(

uh

εh

)]

dx ≥ F (u). (2.9)

If x ∈ B1 and vh(x) converges, then necessarily the limit of vh is equal to c, and

lim inf
h→+∞

uh(x)

εh
≥ M,
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because 2I(t) < c for all t < M . In particular,

lim inf
h→+∞

uh(x) ≥ 0

for almost every x ∈ B1, hence

lim inf
h→+∞

∫

B1

g(x, uh) dx ≥
∫

B1

lim inf
h→+∞

g(x, uh) dx ≥
∫

B1

g+ dx.

A similar argument gives

lim inf
h→+∞

∫

B2

g(x, uh) dx ≥
∫

B2

g− dx.

Moreover, for every x ∈ Ω \
(

B1 ∪ B2

)

the sequence (uh) converges to 0, so that

lim inf
h→+∞

∫

Ω\(B1∪B2)

g(x, uh) dx ≥
∫

Ω\(B1∪B2)

g(x, 0) dx.

The last three inequalities yield

lim inf
h→+∞

∫

Ω

g(x, uh) dx ≥
∫

B

g+ dx +

∫

Ω\B

g− dx (2.10)

for any Borel set B containing B1 and contained in Ω\B2. By taking as B the minimizing
set in the definition of F (u), the inequality (2.8) follows by (2.9) and (2.10).

This proves (1.2). The last statements of the theorem can be shown by repeating
the same argument leading to (2.9) with an arbitrary sequence (εh). Finally, if (1.3)
holds and if the sequence (uhk

) were converging to 0 in a set of positive measure, then the
strict inequality in (2.10) would imply a strict inequality in (2.8), that is a contradiction.

Proof of Theorem 1.3

By Proposition 2.1 we infer

lim inf
ε→0+

Fε(uε) ≥ F (u)

whenever uε → u in measure. In fact, sequences converging in measure admit sub-
sequences converging almost everywhere. By Proposition 2.2 we get a sequence (uε)
converging to u in measure such that

lim
ε→0+

Fε(uε) = F (u).

This proves (see for instance [2]) the Γ-convergence of Fε to F .

Proof of Proposition 1.7
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By Theorem 1.1, we may assume, with no loss of generality, that sign(uh) converges
almost everywhere to χB −χΩ\B for a suitable minimizer B of

�
. We shall prove that

uh converges in measure to the function defined by

u(x) =

{

u+(x) if x ∈ B
u−(x) if x ∈ Ω \ B.

Let δ > 0 be given; by the assumptions on g there exists γ(x) > 0 such that

g(x, t) ≥ γ(x) + g+(x) if t ≥ 0 and |t − u+(x)| ≥ δ

g(x, t) ≥ γ(x) + g−(x) if t ≤ 0 and |t − u−(x)| ≥ δ.

Therefore, setting

Ωh =
{

x ∈ Ω : signuh(x) = signu(x), |uh(x) − u(x)| ≥ δ
}

it is easy to obtain

∫

Ω

g(x, uh) dx ≥
∫

Ωh

γ dx +

∫

{uh≥0}∩B

g+ dx +

∫

{uh<0}\B

g− dx. (2.11)

By Theorem 1.1 and Proposition 2.1 we get

lim sup
h→+∞

∫

Ω

g(x, uh) dx ≤
∫

B

g+ dx +

∫

Ω\B

g− dx (2.12)

so that, by (2.11) and (2.12),

lim
h→+∞

∫

Ωh

γ dx = 0.

Since γ > 0 and sign(uh) → sign(u) a.e. in Ω, this implies

lim
h→+∞

meas
(

{x ∈ Ω : |uh(x) − u(x)| ≥ δ}
)

= 0

and, since δ > 0 is arbitrary, we obtain the convergence in measure of uh to u.
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