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On the singularities of convex functions*

G. Alberti, L. Ambrosio, P. Cannarsa

Abstract. Given a (semi)-convex function u : Ω ⊂ R
n → R and an

integer k ∈ [0, n], we show that the set Σk defined by

Σk :=
{

x ∈ Ω : dim
(

∂u(x)
)

≥ k
}

is countably Hn−k-rectifiable, i.e., it is contained (up to a Hn−k-
negligible set) in a countable union of C1 hypersurfaces of dimension
(n − k). Moreover, if u is convex in Ω, we show that

∫

Ω′∩Σk

� k(∂u(x)) d
� n−k(x) < +∞

for any open set Ω′ ⊂⊂ Ω.
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Mathematics Subject Classification: 26B25, 35L67, 28A78, 49J52

1. Introduction

This paper originated from our interest in the following question
about the singularities of a convex functions:
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Problem: given a convex function u : R
n → R, and an integer

k ∈ [0, n], how to estimate the size of the k-th singular set of u, i.e.,
of the set

Σk(u) :=
{

x ∈ R
n : dim

(

∂u(x)
)

≥ k
}

?

Of course, the problem has a trivial answer if k = 0 or k = n, as
Σ0(u) = R

n, whereas Σn(u) is at most countable.
Moreover, if k = 1, a solution to our problem could be given

noting that ∇u has locally bounded first variation in R
n (see e.g.

[13] and [18]). Indeed, the jump set of such a function is known
to be countably

�
n−1-rectifiable (see [9] and [20]), where

�
m de-

notes the m-dimensional Hausdorff measure in R
n. Equivalently,

�
n−1-almost all of Σ1(u) can be covered with a sequence of C1

hypersurfaces.
In this paper we show that, for any k ∈ {0, 1, . . . , n}, Σk(u)

is countably
� n−k-rectifiable (Theorem 4.1). Consequently, Σk(u)

is σ-finite with respect to
�

n−k and, in particular, its Hausdorff
dimension does not exceed (n− k). Very simple examples show that
Σk(u) may well be a (n − k)-dimensional set, for instance, a plane.

Another result contained in Theorem 4.1 of this paper is the
estimate

∫

Σk(u)∩Ω

� k(∂u(x)) d
� n−k(x) ≤ C(n)

(

[

u
]

Lip(Ω)
+ diam(Ω)

)n

,

that holds true for any integer k ∈ [0, n]. Such bound provides a
quantitative information on the “measure” of the set Σk(u).

At this point, a brief description of our techniques is in order.
The main idea of our approach is to connect the

� m-rectifiability
of a set S with an upper bound on the dimension of the contingent
cone T(S, x) to S at any point x ∈ S (Theorem 3.1). Then, the
rectifiability of Σk(u) follows by splitting Σk(u) as a countable union
of sets Σk

α(u) for which we are able to prove an upper bound on the
dimension of the contingent cone. Such a bound is obtained showing
T

(

Σk
α(u), x

)

is orthogonal to ∂u(x) (Proposition 2.2), and recalling

that dim
(

∂u(x)
)

≥ k.
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Although we have stated the problem for a convex function, the
method we propose in this work also applies to semi-convex functions
(see §2 for notation). Therefore our results are stated in this more
general setup.

Semi-convexity – or, better, semi-concavity – properties are well
known for solutions of nonlinear partial differential equations such
as Hamilton-Jacobi-Bellmann equations of first or second order, see
e.g. [16], [15].

Hence, the results of this paper provide upper bounds on the sin-
gular sets of solutions to these equations, and somehow complement
the singularity propagation results of [6].

Finally, an interesting problem in this research is to provide
lower bounds on the singular set of a solution in the neighborhood
of a fixed singular point. Bounds of this kind are false for a general
semi concave (or even concave) function, see Remark 2.4. However,
they will be obtained in a forthcoming paper [3], using additional
information derived from the equation.

2. Properties of semi-convex functions

We fix a bounded, convex, open set Ω ⊂ R
n, and we denote by

Bρ(x) the open ball in R
n centered at x with radius ρ.

For any S ⊂ R
n we denote by S⊥ the plane

{

p ∈ R
n : q 7→ 〈q, p〉 is constant on S

}

.

For any integer m = 0, . . . , n we denote by
� m the Hausdorff

m-dimensional measure in R
n, defined by

(2.1)

� m(B) :=
ωm

2m
sup
δ>0

inf

{

∑

i

diamm(Bi) : B ⊂
⋃

i

Bi,

diam(Bi) < δ

}

,

where ωm is the Lebesgue measure of the unit ball in R
m if m ≥ 1

and ωm = 1 if m = 0. In particular,
�

0 is the so-called counting
measure.
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If u is a Lipschitz function in Ω, we set

[

u
]

Lip(Ω)
:= sup

{

|u(x) − u(y)|

|y − x|
: x, y ∈ Ω, x 6= y

}

.

Definition. We say that u is semi-convex in Ω, and we write
u ∈ SC

(

Ω
)

, if we can find a non decreasing upper semicontinuous
function ω : [0,+∞[→ [0,+∞[ such that ω(0) = 0 and
(2.2)

t u(x1)+(1 − t) u(x0) − u(xt) ≥ −t(1 − t) |x1 − x0|ω(|x1 − x0|)

for all x0, x1 ∈ Ω, t ∈ [0, 1] and xt := tx1 + (1 − t)x0.

If u ∈ SC
(

Ω
)

, we denote by ωu,Ω the least function ω satisfying
(2.2).

For any x ∈ Ω and any u : Ω → R, the subdifferential ∂u(x) of
u at x is defined by

∂u(x) :=
{

p ∈ R
n : lim inf

y→x

u(y) − u(x) − 〈p, y − x〉

|y − x|
≥ 0

}

.

The subdifferential is a closed convex set, possibly empty.
If u is a convex function, the above set coincides with the well-

known subdifferential of convex analysis, which captures all the rel-
evant differential properties of convex functions. In particular, the
subdifferential of a convex function is non-empty at every point (see
for instance [8]). In the following proposition we list analogous prop-
erties of subdifferentials of semi-convex functions (see also [4] and
[6]). We give a fairly detailed proof for the reader’s convenience.

Proposition 2.1. Let u ∈ SC
(

Ω
)

. Then, u is locally Lipschitz

continuous in Ω, the sets ∂u(x) are non-empty, compact, and p ∈
∂u(x), if and only if

(2.3) u(y) − u(x) − 〈p, y − x〉 ≥ −|y − x|ωu,Ω(|y − x|) ∀y ∈ Ω.

Finally, the map x → ∂u(x) is upper semi-continuous, i.e.,

(2.4) xh → x, ph → p, ph ∈ ∂u(xh) =⇒ p ∈ ∂u(x).

4



  

G. ALBERTI et. al.

Proof. Let x0, x1, x2, x3 be an ordered set of points lying on the
same line contained in Ω. By using (2.2), it is not difficult to see
that

(2.5)
u(x3) − u(x1)

|x3 − x1|
−

u(x2) − u(x1)

|x2 − x1|
≥ −ωu,Ω(|x3 − x1|).

Similarly,

(2.6)
u(x2) − u(x1)

|x2 − x1|
−

u(x1) − u(x0)

|x1 − x0|
≥ −ωu,Ω(|x2 − x0|).

Hence

−ωu,Ω(|x2 − x0|) +
u(x1) − u(x0)

|x1 − x0|
≤

u(x2) − u(x1)

|x2 − x1|
≤

≤
u(x3) − u(x1)

|x3 − x1|
+ ωu,Ω(|x3 − x1|).

This shows that u is locally Lipschitz continuous on lines. More-
over, if x1 and x2 belong to Ω′ ⊂⊂ Ω, the above provides a uniform
estimate of the Lipschitz constant, and therefore shows that u is a
Lipschitz function in Ω′.

Since u is locally Lipschitz continuous, ∂u(x) is compact.
Any vector p ∈ R

n satisfying (2.3) trivially belongs to ∂u(x).
Conversely, let p ∈ ∂u(x), and let x1 = x, x3 = y, x2 = x1 + t(y−x)
in (2.5) with 0 < t ≤ 1:

u(y) − u(x)

|y − x|
≥

u(x + t(y − x)) − u(x)

t|y − x|
− ωu,Ω(|y − x|).

By letting t → 0+ we obtain that p fulfils (2.3).
By using (2.2), (2.5) and (2.6) it can be seen that the function

v(y) = lim
t→0+

u(x + ty) − u(x)

t
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is well defined, and convex. Therefore ∂u(x) is not empty because it
coincides, by (2.3), with ∂v(0).

Finally, the upper semicontinuity of x → ∂u(x) is a straightfor-
ward consequence of (2.3).

In this paper we are interested in the properties of the singular
sets of semi-convex functions.

Definition. For any integer k ∈ [0, n] we define

Σk(u) :=
{

x ∈ Ω : dim
(

∂u(x)
)

≥ k
}

,

and for any α > 0 we denote by Σk
α(u) the set of points x ∈ Σk(u)

such that ∂u(x) contains some k-dimensional ball Bk
α of diameter

2α, i.e.,

(2.7) Σk
α(u) :=

{

x ∈ Σk(u) : ∃Bk
α ⊂ ∂u(x) with diam

(

Bk
α

)

= 2α
}

.

We define now the contingent cone T(S, x) to a set S ⊂ R
n at

a point x (see [4], [8], and [11], 3.1.21).

Definition. Let x ∈ S. We define

T(S, x) :=
{

rθ : r ≥ 0,θ = lim
h→+∞

xh − x

|xh − x|

with xh ∈ S \ {x}, xh → x
}

.

We denote by Tan(S, x) the vector space generated by T(S, x).

In the following lemma we investigate the properties of Σk
α(u).

Proposition 2.2. For any u ∈ SC
(

Ω
)

, the set Σk
α(u) is closed in

Ω and

(2.8) Tan
(

Σk
α(u), x

)

⊂
[

∂u(x)
]⊥

for any x ∈ Σk
α(u) \ Σk+1(u). In particular, the dimension of

Tan(Σk
α(u), x) is not greater than (n − k) for any x ∈ Σk

α(u) \
Σk+1(u).
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Proof. Let us prove that Σk
α(u) is closed. Let {xi} ⊂ Σk

α(u) be con-
verging to x ∈ Ω, and let Bk

α(pi) ⊂ ∂u(xi) be k-dimensional balls
centered at pi with radius α. Possibly passing to subsequences, we
can assume with no loss of generality that there is a k-dimensional
ball Bk

α with radius α such that each point p ∈ Bk
α can be approx-

imated by points in Bk
α(pi). By the upper semicontinuity of the

differential (see (2.4)) we get Bk
α ⊂ ∂u(x), hence x ∈ Σk

α(u).
In order to show (2.8), we only need to prove that the map

p → 〈η, p〉 is constant on ∂u(x) for any η ∈ T(Σk
α(u), x) with |η| = 1.

Let {xh} ⊂ Σk
α(u) \ {x} be a sequence converging to x such that

lim
h→+∞

xh − x

|xh − x|
= η.

Possibly extracting a subsequence, we can assume with no loss of
generality that there is a k-dimensional ball Bk

α with radius α such
that each p ∈ Bk

α can be approximated by vectors in ∂u(xh). By
(2.4), Bk

α ⊂ ∂u(x). Since ∂u(x) is a k-dimensional set, we only need
to know that p 7→ 〈η, p〉 is constant on Bk

α. Let p, p′ ∈ Bk
α, and let

ph ∈ ∂u(xh) be converging to p′; by adding the inequalities

u(xh) − u(x) − 〈p, xh − x〉

|xh − x|
≥ −ωu,Ω(|xh − x|)

u(x) − u(xh) − 〈ph, x − xh〉

|xh − x|
≥ −ωu,Ω(|xh − x|),

and passing to the limit as h → +∞, we get

〈η, p′〉 ≤ 〈η, p〉.

Since p and p′ are arbitrary, (2.8) follows.

Remark 2.3. Proposition 2.2 yields Tan
(

Σn
α(u), x

)

= {0} for any
x ∈ Σn

α(u). Hence, Σn
α(u) is a discrete set in Ω and Σn(u) is at most

countable.

Remark 2.4. One may wonder whether the inclusion in (2.8) is
indeed an equality. This fact could be regarded as a “singularity
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propagation” phenomenon. Now, Theorem 3.1 below shows that the
set of points S ⊂ Σk

α(u) at which the inclusion is strict is countably
� n−k−1-rectifiable, hence σ-finite with respect to

� n−k−1. Indeed,
since Tan(S, x) ⊂ Tan(Σk

α(u), x), by the definition of S it follows that

dim
(

Tan(S, x)
)

≤ n − k − 1

for any x ∈ S. However, the following example shows that equality
(2.8) may fail at some point. Let n = 2, k = 1, and let u(x, y) :=
√

x2 + y4. It is easy to check that u is continuously differentiable
in R

2 \ {0}, and convex in R
2. Moreover, ∂u(0) = [−1, 1] × {0}, so

that dim
[

∂u(0)
]⊥

= 1. On the other hand, T
(

Σ1(u)
)

= ∅. Based
on the above, it is not hard to construct an example of function
u : R

2 → [0,+∞[ such that the exceptional set S is countable.

3. A rectifiability criterion

Let us first give a definition.

Definition. We say that S ⊂ R
p is countably

�
m-rectifiable if there

is a countable family of C1 hypersurfaces Γh ⊂ R
p of dimension m

such that

(3.1)
� m

(

S \
∞
⋃

h=1

Γh

)

= 0.

If D ⊂ R
m and f : D → R

p is a Lipschitz function, then a
Lusin-type argument shows that f(D) is countably

� m-rectifiable
(see [19], Lemma 11.1).

We can now state a sufficient condition for rectifiability.

Theorem 3.1. Let S ⊂ R
n, and let us assume that Tan(S, x) has

dimension not greater than m for any x ∈ S. Then, S is countably
� m-rectifiable.

Proof. Let us denote by ϕ(x) the function x/|x|, defined for all x ∈
R

n \ {0}. Then, the following two properties are satisfied for any
x ∈ S and any ε > 0:
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(i) there exists r > 0 such that

(3.2) ∀y ∈ S ∩ Br(x) \ {x}, ∃v ∈ T(S, x) s.t. |ϕ(y − x) − v| < ε;

(ii) for any r > 0 there exists ρ < r/2 such that
(3.3)

∀v ∈ T(S, x), ∃y ∈ S ∩ Br/2(x) \ Bρ(x) s.t. |ϕ(y − x) − v| < ε.

Both these properties can be proved arguing by contradiction.

Let us fix ε < 1/7, and for 0 < ρ < r/2 define

Sr,ρ :=
{

x ∈ S : (3.2) and (3.3) hold
}

We claim that Sr,ρ is locally contained in the graph of a Lipschitz
function. More precisely, let x ∈ Sr,ρ, let M be the set Tan(S, x) and
let us denote by π : R

n → M the orthogonal projection on M . We
will show that there is a set D ⊂ M such that π : Sr,ρ ∩Bερ(x) → D
is one to one and f = π−1 is Lipschitz continuous.

Possibly replacing Sr,ρ by Sr,ρ−x, it is not restrictive to assume
that x = 0. Let y, z ∈ Sr,ρ ∩ Bερ(0) with y 6= z. Since |y − z| <
2ερ < r/2, by (3.2) we get

(3.4) ∃v ∈ T(S, y) such that |ϕ(y − z) − v| < ε.

Similarly, (3.3) yields

(3.5) ∃z̄ ∈ S ∩ Br/2(y) \ Bρ(y) such that |ϕ(y − z̄) − v| < ε.

By using the inequality |∇ϕ(x)(y)| ≤ 2|y|/|x|, and

|z̄ − ty| ≥ |z̄ − y| − (1 − t)|y| ≥ ρ − ερ ≥ ρ/2 ∀t ∈ [0, 1],

we have

(3.6) |ϕ(z̄ − y) − ϕ(z̄)| ≤

∫ 1

0

|∇ϕ(z̄ − ty)||y| dt ≤
2|y|

ρ/2
≤ 4ε.
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Moreover, since z̄ ∈ Br/2(y), we get by (3.2) w ∈ T(S, 0) such that

(3.7) |ϕ(z̄) − w| < ε.

Putting together (3.3), (3.4), (3.5) and (3.6) we obtain

(3.8)
|ϕ(z − y) − w| ≤ |ϕ(z − y) − v| + |v − ϕ(z̄ − y)|+

+ |ϕ(z̄ − y) − ϕ(z̄)| + |ϕ(z̄) − w| ≤ 7ε.

By (3.8) we infer

|ϕ(z − y) − π
(

ϕ(z − y)
)

| ≤ |ϕ(z − y) − w| ≤ 7ε < 1.

This shows that π(z − y) 6= 0 if z 6= y, hence π is one to one in
Sr,ρ ∩ Bερ(0). Moreover,

∣

∣π
(

ϕ(z − y)
)∣

∣ ≥
√

1 − (7ε)2,

and

(3.9) |π(z) − π(y)| ≥
√

1 − (7ε)2|y − z|.

Let D = π
(

Sr,ρ∩Bερ(0)
)

, and let f : D → R
n be the inverse function

of π. By (3.9), f is a Lipschitz function, and f(D) = Sr,ρ ∩ Bερ(0).
This shows that Sr,ρ is countably

� m-rectifiable. Since any
point x ∈ S belongs to S1/n,1/p for sufficiently large natural numbers
n, p with p > 2n, also S is countably

� m-rectifiable.

4. Estimates on singularities and rectifiability

Let u be a semi-convex function, and let us denote by Γ(u) the graph
of the subdifferential, i.e.

Γ(u) =
{

(x, p) ∈ R
n × R

n : p ∈ ∂u(x)
}

.

In the following we apply the rectifiability criterion of §3 to the prob-
lem described in the introduction.
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Theorem 4.1. Let u : Ω → R be semi-convex and Lipschitz con-

tinuous. Then, for any integer k ∈ [0, n], the set

Σk(u) :=
{

x ∈ Ω : dim
(

∂u(x)
)

≥ k
}

is countably
�

n−k-rectifiable. Moreover, if ωu,Ω(t) ≤ Ct for some

C ≥ 0, then Γ(u) is countably
� n-rectifiable in R

n × R
n and

(4.1)
� n

(

Γ(u)
)

≤ C(n)

(

1 + (C + 1)2
)n/2

[

u
]n

Lip(Ω)
.

Moreover,

(4.2)

∫

Σk(u)

� k(∂u(x)) d
� n−k(x) ≤

� n
(

Γ(u)
)

.

Proof. By Theorem 3.1 and Proposition 2.2, the sets Σk
α(u) are count-

ably
� n−k-rectifiable. Since

Σk(u) =
⋃

p∈N

Σk
1/p(u),

also Σk(u) is countably
�

n−k-rectifiable.
Let us assume now that ωu,Ω(t) ≤ Ct for some C ≥ 0. Given

any x0 ∈ Ω we define

v(x) = u(x) +
C

2
|x − x0|

2.

It is not hard to see that v is convex and

(4.3) 〈p − q, x − y〉 ≥ |x − y|2 ∀x, y ∈ Ω, p ∈ ∂u(x), q ∈ ∂u(y).

In addition, we have
Γ(u) = ΦC

(

Γ(v)
)

11
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where ΦC : R
2n → R

2n is defined by

ΦC(x, p) :=
(

x, p − (C + 1)(x − x0)
)

.

Since the Lipschitz constant of ΦC equals
√

1 + (C + 1)2, by well-
known properties of Hausdorff measures (see for instance [11], para-
graph 2.10.11) we infer the inequality

(4.4)
� n

(

Γ(u)
)

≤

(

1 + (C + 1)2
)n/2

� n
(

Γ(v)
)

Let D ⊂ R
n be the projection of Γ(v) on the second factor, (a similar

idea is also used in [13]) and let ϕ : D → R
n be the function which

assigns to each p ∈ D the unique (by (4.3)) x ∈ Ω such that p ∈
∂v(x). By (4.3) we get

|ϕ(p) − ϕ(q)|2 leq〈p − q, ϕ(p) − ϕ(q)〉 ≤ |p − q| |ϕ(p) − ϕ(q)|,

so that ϕ is a contraction. Since Γ(v) coincides with the graph of ϕ,
by the area formula for Lipschitz functions (see [11], 3.2.1) we obtain

� n
(

Γ(v)
)

=

∫

D

ψ
(

∇ϕ(p)
)

dp,

where

ψ
(

A
)

=

√

1 +
∑

B⊂A

det2
(

B
)

for any n × n matrix A. In particular,

(4.5)
� n

(

Γ(v)
)

≤ C(n)
� n

(

D
)

≤ ωnC(n)
[

v
]n

Lip(Ω)
.

Hence, (4.1) follows by (4.4) and (4.5). Finally, (4.2) follows by
general properties of products of Hausdorff measures ([11], 2.10,.27)
and of Lipschitz mappings between rectifiable sets. In fact, denoting
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by π : R
2n → R

n the projection on the first factor, by [11], 3.2.22 we
infer

� n
(

Γ(v)
)

≥

∫

Ω

� k
(

π−1(x) ∩ Γ(u)
)

d
� n−k(x) .

Since π−1(x) ∩ Γ(u) = {(x, p) : p ∈ ∂u(x)}, (4.6) is equivalent to
(4.2).

Remark 4.2. Let M ⊂ R
p be a countably

� m-rectifiable set, and
let π : M → R

n be a Lipschitz function. In [11], 3.2.31 Federer shows
that the set

{

z ∈ R
n :
� k

(

π−1(z)
)

> 0
}

is countably
�

m−k-rectifiable. Hence, the rectifiability of Σk(u)
follows by the rectifiability of Γ(u) by applying Federer’s proposition
with M = Γ(u), p = 2n, m = n and π equal to the projection on the
first variable.

A similar approach is followed by Baldo and Ossanna in [5].
However, this method does not apply to a general semi-convex func-
tion, like a function with Hölder continuous gradient. Therefore, us-
ing Theorem 3.1 to derive the rectifiability of Σk(u) is more powerful.
Moreover, we believe it is more direct as well, because it minimizes
the application of sophisticated techniques from Geometric Measure
Theory.

Acknowledgement. The authors are very grateful to G. Anzellotti
for attracting their attention to Theorem 3.2.31 of Federer’s book
[11].
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