On the singularities of convex functions*

G. Alberti, L. Ambrosio, P. Cannarsa

Abstract. Given a (semi)-convex function $u: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ and an integer $k \in [0, n]$, we show that the set Σ^k defined by

$$\Sigma^k := \{ x \in \Omega : \dim(\partial u(x)) \ge k \}$$

is countably H^{n-k} -rectifiable, i.e., it is contained (up to a H^{n-k} -negligible set) in a countable union of C^1 hypersurfaces of dimension (n-k). Moreover, if u is convex in Ω , we show that

$$\int_{\Omega' \cap \Sigma^k} \mathcal{H}^k(\partial u(x)) \, d\mathcal{H}^{n-k}(x) < +\infty$$

for any open set $\Omega' \subset\subset \Omega$.

 $\label{lem:keywords$

1. Introduction

This paper originated from our interest in the following question about the singularities of a convex functions:

^{*}Work partially supported by the Research Project "Equazioni di evoluzione ed applicazioni fisico-matematiche" (M.U.R.S.T, Italy)

G. ALBERTI et. al.

Problem: given a convex function $u : \mathbb{R}^n \to \mathbb{R}$, and an integer $k \in [0, n]$, how to estimate the size of the k-th singular set of u, i.e., of the set

$$\Sigma^{k}(u) := \left\{ x \in \mathbb{R}^{n} : \dim(\partial u(x)) \ge k \right\}?$$

Of course, the problem has a trivial answer if k = 0 or k = n, as $\Sigma^0(u) = \mathbb{R}^n$, whereas $\Sigma^n(u)$ is at most countable.

Moreover, if k=1, a solution to our problem could be given noting that ∇u has locally bounded first variation in \mathbb{R}^n (see e.g. [13] and [18]). Indeed, the jump set of such a function is known to be countably \mathscr{H}^{n-1} -rectifiable (see [9] and [20]), where \mathscr{H}^m denotes the m-dimensional Hausdorff measure in \mathbb{R}^n . Equivalently, \mathscr{H}^{n-1} -almost all of $\Sigma^1(u)$ can be covered with a sequence of C^1 hypersurfaces.

In this paper we show that, for any $k \in \{0, 1, ..., n\}$, $\Sigma^k(u)$ is countably \mathscr{H}^{n-k} -rectifiable (Theorem 4.1). Consequently, $\Sigma^k(u)$ is σ -finite with respect to \mathscr{H}^{n-k} and, in particular, its Hausdorff dimension does not exceed (n-k). Very simple examples show that $\Sigma^k(u)$ may well be a (n-k)-dimensional set, for instance, a plane.

Another result contained in Theorem 4.1 of this paper is the estimate

$$\int\limits_{\Sigma^k(u)\cap\Omega} \mathscr{H}^k(\partial u(x))\,d\mathscr{H}^{n-k}(x) \leq C(n) \left(\left[u\right]_{\operatorname{Lip}(\Omega)} + \operatorname{diam}(\Omega)\right)^n,$$

that holds true for any integer $k \in [0, n]$. Such bound provides a quantitative information on the "measure" of the set $\Sigma^k(u)$.

At this point, a brief description of our techniques is in order. The main idea of our approach is to connect the \mathscr{H}^m -rectifiability of a set S with an upper bound on the dimension of the contingent cone $\mathrm{T}(S,x)$ to S at any point $x\in S$ (Theorem 3.1). Then, the rectifiability of $\Sigma^k(u)$ follows by splitting $\Sigma^k(u)$ as a countable union of sets $\Sigma^k_\alpha(u)$ for which we are able to prove an upper bound on the dimension of the contingent cone. Such a bound is obtained showing $\mathrm{T}\big(\Sigma^k_\alpha(u),x\big)$ is orthogonal to $\partial u(x)$ (Proposition 2.2), and recalling that $\dim(\partial u(x))\geq k$.

Although we have stated the problem for a convex function, the method we propose in this work also applies to semi-convex functions (see §2 for notation). Therefore our results are stated in this more general setup.

Semi-convexity – or, better, semi-concavity – properties are well known for solutions of nonlinear partial differential equations such as Hamilton-Jacobi-Bellmann equations of first or second order, see e.g. [16], [15].

Hence, the results of this paper provide *upper* bounds on the singular sets of solutions to these equations, and somehow complement the singularity propagation results of [6].

Finally, an interesting problem in this research is to provide lower bounds on the singular set of a solution in the neighborhood of a fixed singular point. Bounds of this kind are false for a general semi concave (or even concave) function, see Remark 2.4. However, they will be obtained in a forthcoming paper [3], using additional information derived from the equation.

2. Properties of semi-convex functions

We fix a bounded, convex, open set $\Omega \subset \mathbb{R}^n$, and we denote by $B_o(x)$ the open ball in \mathbb{R}^n centered at x with radius ρ .

For any $S \subset \mathbb{R}^n$ we denote by S^{\perp} the plane

$$\{p \in \mathbb{R}^n : q \mapsto \langle q, p \rangle \text{ is constant on } S\}.$$

For any integer m = 0, ..., n we denote by \mathcal{H}^m the Hausdorff m-dimensional measure in \mathbb{R}^n , defined by

(2.1)
$$\mathcal{H}^{m}(B) := \frac{\omega_{m}}{2^{m}} \sup_{\delta > 0} \inf \left\{ \sum_{i} \operatorname{diam}^{m}(B_{i}) : B \subset \bigcup_{i} B_{i}, \right.$$
$$\left. \operatorname{diam}(B_{i}) < \delta \right\},$$

where ω_m is the Lebesgue measure of the unit ball in \mathbb{R}^m if $m \geq 1$ and $\omega_m = 1$ if m = 0. In particular, \mathscr{H}^0 is the so-called counting measure.

If u is a Lipschitz function in Ω , we set

$$[u]_{\operatorname{Lip}(\Omega)} := \sup \left\{ \frac{|u(x) - u(y)|}{|y - x|} : \ x, y \in \Omega, \ x \neq y \right\}.$$

Definition. We say that u is semi-convex in Ω , and we write $u \in SC(\Omega)$, if we can find a non decreasing upper semicontinuous function $\omega : [0, +\infty[\to [0, +\infty[$ such that $\omega(0) = 0$ and (2.2)

$$t u(x_1) + (1-t) u(x_0) - u(x_t) \ge -t(1-t) |x_1 - x_0| \omega(|x_1 - x_0|)$$

for all $x_0, x_1 \in \Omega$, $t \in [0, 1]$ and $x_t := tx_1 + (1-t)x_0$.

If $u \in SC(\Omega)$, we denote by $\omega_{u,\Omega}$ the least function ω satisfying (2.2).

For any $x \in \Omega$ and any $u : \Omega \to \mathbb{R}$, the subdifferential $\partial u(x)$ of u at x is defined by

$$\partial u(x) := \big\{ p \in \mathbb{R}^n : \liminf_{y \to x} \frac{u(y) - u(x) - \langle p, y - x \rangle}{|y - x|} \ge 0 \big\}.$$

The subdifferential is a closed convex set, possibly empty.

If u is a convex function, the above set coincides with the well-known subdifferential of convex analysis, which captures all the relevant differential properties of convex functions. In particular, the subdifferential of a convex function is non-empty at every point (see for instance [8]). In the following proposition we list analogous properties of subdifferentials of semi-convex functions (see also [4] and [6]). We give a fairly detailed proof for the reader's convenience.

Proposition 2.1. Let $u \in SC(\Omega)$. Then, u is locally Lipschitz continuous in Ω , the sets $\partial u(x)$ are non-empty, compact, and $p \in \partial u(x)$, if and only if

$$(2.3) \ u(y) - u(x) - \langle p, y - x \rangle \ge -|y - x| \,\omega_{u,\Omega}(|y - x|) \qquad \forall y \in \Omega.$$

Finally, the map $x \to \partial u(x)$ is upper semi-continuous, i.e.,

$$(2.4) x_h \to x, \ p_h \to p, \ p_h \in \partial u(x_h) \implies p \in \partial u(x).$$

Proof. Let x_0, x_1, x_2, x_3 be an ordered set of points lying on the same line contained in Ω . By using (2.2), it is not difficult to see that

(2.5)
$$\frac{u(x_3) - u(x_1)}{|x_3 - x_1|} - \frac{u(x_2) - u(x_1)}{|x_2 - x_1|} \ge -\omega_{u,\Omega}(|x_3 - x_1|).$$

Similarly,

(2.6)
$$\frac{u(x_2) - u(x_1)}{|x_2 - x_1|} - \frac{u(x_1) - u(x_0)}{|x_1 - x_0|} \ge -\omega_{u,\Omega}(|x_2 - x_0|).$$

Hence

$$-\omega_{u,\Omega}(|x_2 - x_0|) + \frac{u(x_1) - u(x_0)}{|x_1 - x_0|} \le \frac{u(x_2) - u(x_1)}{|x_2 - x_1|} \le \frac{u(x_3) - u(x_1)}{|x_3 - x_1|} + \omega_{u,\Omega}(|x_3 - x_1|).$$

This shows that u is locally Lipschitz continuous on lines. Moreover, if x_1 and x_2 belong to $\Omega' \subset\subset \Omega$, the above provides a uniform estimate of the Lipschitz constant, and therefore shows that u is a Lipschitz function in Ω' .

Since u is locally Lipschitz continuous, $\partial u(x)$ is compact.

Any vector $p \in \mathbb{R}^n$ satisfying (2.3) trivially belongs to $\partial u(x)$. Conversely, let $p \in \partial u(x)$, and let $x_1 = x$, $x_3 = y$, $x_2 = x_1 + t(y - x)$ in (2.5) with 0 < t < 1:

$$\frac{u(y) - u(x)}{|y - x|} \ge \frac{u(x + t(y - x)) - u(x)}{t|y - x|} - \omega_{u,\Omega}(|y - x|).$$

By letting $t \to 0^+$ we obtain that p fulfils (2.3).

By using (2.2), (2.5) and (2.6) it can be seen that the function

$$v(y) = \lim_{t \to 0^+} \frac{u(x+ty) - u(x)}{t}$$

is well defined, and convex. Therefore $\partial u(x)$ is not empty because it coincides, by (2.3), with $\partial v(0)$.

Finally, the upper semicontinuity of $x \to \partial u(x)$ is a straightforward consequence of (2.3).

In this paper we are interested in the properties of the singular sets of semi-convex functions.

Definition. For any integer $k \in [0, n]$ we define

$$\Sigma^k(u) := \{ x \in \Omega : \dim(\partial u(x)) \ge k \},$$

and for any $\alpha > 0$ we denote by $\Sigma_{\alpha}^{k}(u)$ the set of points $x \in \Sigma^{k}(u)$ such that $\partial u(x)$ contains some k-dimensional ball B_{α}^{k} of diameter 2α , i.e.,

$$(2.7) \quad \Sigma_{\alpha}^{k}(u) := \left\{ x \in \Sigma^{k}(u) : \exists B_{\alpha}^{k} \subset \partial u(x) \text{ with } \operatorname{diam}(B_{\alpha}^{k}) = 2\alpha \right\}.$$

We define now the contingent cone T(S, x) to a set $S \subset \mathbb{R}^n$ at a point x (see [4], [8], and [11], 3.1.21).

Definition. Let $x \in S$. We define

$$T(S,x) := \left\{ r\theta : \ r \ge 0, \theta = \lim_{h \to +\infty} \frac{x_h - x}{|x_h - x|} \right.$$
 with $x_h \in S \setminus \{x\}, x_h \to x \right\}.$

We denote by Tan(S, x) the vector space generated by T(S, x).

In the following lemma we investigate the properties of $\Sigma_{\alpha}^{k}(u)$.

Proposition 2.2. For any $u \in SC(\Omega)$, the set $\Sigma_{\alpha}^{k}(u)$ is closed in Ω and

(2.8)
$$\operatorname{Tan}(\Sigma_{\alpha}^{k}(u), x) \subset \left[\partial u(x)\right]^{\perp}$$

for any $x \in \Sigma_{\alpha}^{k}(u) \setminus \Sigma^{k+1}(u)$. In particular, the dimension of $\operatorname{Tan}(\Sigma_{\alpha}^{k}(u), x)$ is not greater than (n-k) for any $x \in \Sigma_{\alpha}^{k}(u) \setminus \Sigma^{k+1}(u)$.

Proof. Let us prove that $\Sigma_{\alpha}^{k}(u)$ is closed. Let $\{x_i\} \subset \Sigma_{\alpha}^{k}(u)$ be converging to $x \in \Omega$, and let $B_{\alpha}^{k}(p_i) \subset \partial u(x_i)$ be k-dimensional balls centered at p_i with radius α . Possibly passing to subsequences, we can assume with no loss of generality that there is a k-dimensional ball B_{α}^{k} with radius α such that each point $p \in B_{\alpha}^{k}$ can be approximated by points in $B_{\alpha}^{k}(p_i)$. By the upper semicontinuity of the differential (see (2.4)) we get $B_{\alpha}^{k} \subset \partial u(x)$, hence $x \in \Sigma_{\alpha}^{k}(u)$.

In order to show (2.8), we only need to prove that the map $p \to \langle \eta, p \rangle$ is constant on $\partial u(x)$ for any $\eta \in \mathrm{T}(\Sigma_{\alpha}^k(u), x)$ with $|\eta| = 1$. Let $\{x_h\} \subset \Sigma_{\alpha}^k(u) \setminus \{x\}$ be a sequence converging to x such that

$$\lim_{h \to +\infty} \frac{x_h - x}{|x_h - x|} = \eta.$$

Possibly extracting a subsequence, we can assume with no loss of generality that there is a k-dimensional ball B_{α}^{k} with radius α such that each $p \in B_{\alpha}^{k}$ can be approximated by vectors in $\partial u(x_{h})$. By (2.4), $B_{\alpha}^{k} \subset \partial u(x)$. Since $\partial u(x)$ is a k-dimensional set, we only need to know that $p \mapsto \langle \eta, p \rangle$ is constant on B_{α}^{k} . Let $p, p' \in B_{\alpha}^{k}$, and let $p_{h} \in \partial u(x_{h})$ be converging to p'; by adding the inequalities

$$\frac{u(x_h) - u(x) - \langle p, x_h - x \rangle}{|x_h - x|} \ge -\omega_{u,\Omega}(|x_h - x|)$$

$$\frac{u(x) - u(x_h) - \langle p_h, x - x_h \rangle}{|x_h - x|} \ge -\omega_{u,\Omega}(|x_h - x|),$$

and passing to the limit as $h \to +\infty$, we get

$$\langle \eta, p' \rangle \le \langle \eta, p \rangle.$$

Since p and p' are arbitrary, (2.8) follows.

Remark 2.3. Proposition 2.2 yields $\operatorname{Tan}(\Sigma_{\alpha}^{n}(u), x) = \{0\}$ for any $x \in \Sigma_{\alpha}^{n}(u)$. Hence, $\Sigma_{\alpha}^{n}(u)$ is a discrete set in Ω and $\Sigma^{n}(u)$ is at most countable.

Remark 2.4. One may wonder whether the inclusion in (2.8) is indeed an equality. This fact could be regarded as a "singularity

propagation" phenomenon. Now, Theorem 3.1 below shows that the set of points $S \subset \Sigma_{\alpha}^{k}(u)$ at which the inclusion is strict is countably \mathscr{H}^{n-k-1} -rectifiable, hence σ -finite with respect to \mathscr{H}^{n-k-1} . Indeed, since $\mathrm{Tan}(S,x) \subset \mathrm{Tan}(\Sigma_{\alpha}^{k}(u),x)$, by the definition of S it follows that

$$\dim(\operatorname{Tan}(S,x)) \le n-k-1$$

for any $x \in S$. However, the following example shows that equality (2.8) may fail at some point. Let n=2, k=1, and let $u(x,y):=\sqrt{x^2+y^4}$. It is easy to check that u is continuously differentiable in $\mathbb{R}^2 \setminus \{0\}$, and convex in \mathbb{R}^2 . Moreover, $\partial u(0) = [-1,1] \times \{0\}$, so that $\dim [\partial u(0)]^{\perp} = 1$. On the other hand, $T(\Sigma^1(u)) = \emptyset$. Based on the above, it is not hard to construct an example of function $u: \mathbb{R}^2 \to [0, +\infty[$ such that the exceptional set S is countable.

3. A rectifiability criterion

Let us first give a definition.

Definition. We say that $S \subset \mathbb{R}^p$ is countably \mathscr{H}^m -rectifiable if there is a countable family of C^1 hypersurfaces $\Gamma_h \subset \mathbb{R}^p$ of dimension m such that

(3.1)
$$\mathscr{H}^m\left(S\setminus\bigcup_{h=1}^{\infty}\Gamma_h\right)=0.$$

If $D \subset \mathbb{R}^m$ and $f: D \to \mathbb{R}^p$ is a Lipschitz function, then a Lusin-type argument shows that f(D) is countably \mathscr{H}^m -rectifiable (see [19], Lemma 11.1).

We can now state a sufficient condition for rectifiability.

Theorem 3.1. Let $S \subset \mathbb{R}^n$, and let us assume that Tan(S, x) has dimension not greater than m for any $x \in S$. Then, S is countably \mathcal{H}^m -rectifiable.

Proof. Let us denote by $\varphi(x)$ the function x/|x|, defined for all $x \in \mathbb{R}^n \setminus \{0\}$. Then, the following two properties are satisfied for any $x \in S$ and any $\epsilon > 0$:

(i) there exists r > 0 such that

(3.2)
$$\forall y \in S \cap B_r(x) \setminus \{x\}, \exists v \in T(S, x) \text{ s.t. } |\varphi(y - x) - v| < \epsilon;$$

(ii) for any r > 0 there exists $\rho < r/2$ such that (3.3)

$$\forall v \in \mathrm{T}(S,x), \exists y \in S \cap B_{r/2}(x) \setminus B_{\rho}(x) \text{ s.t. } |\varphi(y-x)-v| < \epsilon.$$

Both these properties can be proved arguing by contradiction. Let us fix $\epsilon < 1/7$, and for $0 < \rho < r/2$ define

$$S_{r,\rho} := \{ x \in S : (3.2) \text{ and } (3.3) \text{ hold} \}$$

We claim that $S_{r,\rho}$ is locally contained in the graph of a Lipschitz function. More precisely, let $x \in S_{r,\rho}$, let M be the set $\mathrm{Tan}(S,x)$ and let us denote by $\pi : \mathbb{R}^n \to M$ the orthogonal projection on M. We will show that there is a set $D \subset M$ such that $\pi : S_{r,\rho} \cap B_{\epsilon\rho}(x) \to D$ is one to one and $f = \pi^{-1}$ is Lipschitz continuous.

Possibly replacing $S_{r,\rho}$ by $S_{r,\rho}-x$, it is not restrictive to assume that x=0. Let $y, z \in S_{r,\rho} \cap B_{\epsilon\rho}(0)$ with $y \neq z$. Since $|y-z| < 2\epsilon\rho < r/2$, by (3.2) we get

(3.4)
$$\exists v \in T(S, y) \text{ such that } |\varphi(y - z) - v| < \epsilon.$$

Similarly, (3.3) yields

$$(3.5) \exists \bar{z} \in S \cap B_{r/2}(y) \setminus B_{\varrho}(y) \text{ such that } |\varphi(y - \bar{z}) - v| < \epsilon.$$

By using the inequality $|\nabla \varphi(x)(y)| \leq 2|y|/|x|$, and

$$|\bar{z} - ty| \ge |\bar{z} - y| - (1 - t)|y| \ge \rho - \epsilon \rho \ge \rho/2$$
 $\forall t \in [0, 1],$

we have

$$(3.6) |\varphi(\bar{z}-y)-\varphi(\bar{z})| \leq \int_0^1 |\nabla \varphi(\bar{z}-ty)||y| \, dt \leq \frac{2|y|}{\rho/2} \leq 4\epsilon.$$

Moreover, since $\bar{z} \in B_{r/2}(y)$, we get by (3.2) $w \in T(S,0)$ such that

$$(3.7) |\varphi(\bar{z}) - w| < \epsilon.$$

Putting together (3.3), (3.4), (3.5) and (3.6) we obtain

(3.8)
$$|\varphi(z-y) - w| \le |\varphi(z-y) - v| + |v - \varphi(\bar{z} - y)| + |\varphi(\bar{z} - y) - \varphi(\bar{z})| + |\varphi(\bar{z}) - w| \le 7\epsilon.$$

By (3.8) we infer

$$|\varphi(z-y) - \pi(\varphi(z-y))| \le |\varphi(z-y) - w| \le 7\epsilon < 1.$$

This shows that $\pi(z-y) \neq 0$ if $z \neq y$, hence π is one to one in $S_{r,\rho} \cap B_{\epsilon\rho}(0)$. Moreover,

$$\left|\pi\left(\varphi(z-y)\right)\right| \ge \sqrt{1-(7\epsilon)^2}$$

and

$$(3.9) |\pi(z) - \pi(y)| \ge \sqrt{1 - (7\epsilon)^2} |y - z|.$$

Let $D = \pi(S_{r,\rho} \cap B_{\epsilon\rho}(0))$, and let $f: D \to \mathbb{R}^n$ be the inverse function of π . By (3.9), f is a Lipschitz function, and $f(D) = S_{r,\rho} \cap B_{\epsilon\rho}(0)$.

This shows that $S_{r,\rho}$ is countably \mathscr{H}^m -rectifiable. Since any point $x \in S$ belongs to $S_{1/n,1/p}$ for sufficiently large natural numbers n, p with p > 2n, also S is countably \mathscr{H}^m -rectifiable.

4. Estimates on singularities and rectifiability

Let u be a semi-convex function, and let us denote by $\Gamma(u)$ the graph of the subdifferential, i.e.

$$\Gamma(u) = \{(x, p) \in \mathbb{R}^n \times \mathbb{R}^n : p \in \partial u(x)\}.$$

In the following we apply the rectifiability criterion of §3 to the problem described in the introduction. **Theorem 4.1.** Let $u: \Omega \to \mathbb{R}$ be semi-convex and Lipschitz continuous. Then, for any integer $k \in [0, n]$, the set

$$\Sigma^k(u) := \{x \in \Omega : \dim(\partial u(x)) \ge k\}$$

is countably \mathcal{H}^{n-k} -rectifiable. Moreover, if $\omega_{u,\Omega}(t) \leq Ct$ for some $C \geq 0$, then $\Gamma(u)$ is countably \mathcal{H}^n -rectifiable in $\mathbb{R}^n \times \mathbb{R}^n$ and

$$(4.1) \qquad \mathscr{H}^n\big(\Gamma(u)\big) \leq C(n) \bigg(1 + (C+1)^2\bigg)^{n/2} \big[u\big]_{\mathrm{Lip}(\Omega)}^n.$$

Moreover,

(4.2)
$$\int_{\Sigma^k(u)} \mathcal{H}^k(\partial u(x)) d\mathcal{H}^{n-k}(x) \leq \mathcal{H}^n(\Gamma(u)).$$

Proof. By Theorem 3.1 and Proposition 2.2, the sets $\Sigma_{\alpha}^{k}(u)$ are countably \mathcal{H}^{n-k} -rectifiable. Since

$$\Sigma^k(u) = \bigcup_{p \in \mathbb{N}} \Sigma_{1/p}^k(u),$$

also $\Sigma^k(u)$ is countably \mathscr{H}^{n-k} -rectifiable.

Let us assume now that $\omega_{u,\Omega}(t) \leq Ct$ for some $C \geq 0$. Given any $x_0 \in \Omega$ we define

$$v(x) = u(x) + \frac{C}{2}|x - x_0|^2.$$

It is not hard to see that v is convex and

$$(4.3) \quad \langle p - q, x - y \rangle \ge |x - y|^2 \quad \forall x, y \in \Omega, \, p \in \partial u(x), \, q \in \partial u(y).$$

In addition, we have

$$\Gamma(u) = \Phi_C(\Gamma(v))$$

G. ALBERTI et. al.

where $\Phi_C: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is defined by

$$\Phi_C(x,p) := (x, p - (C+1)(x-x_0)).$$

Since the Lipschitz constant of Φ_C equals $\sqrt{1+(C+1)^2}$, by well-known properties of Hausdorff measures (see for instance [11], paragraph 2.10.11) we infer the inequality

(4.4)
$$\mathscr{H}^n(\Gamma(u)) \le \left(1 + (C+1)^2\right)^{n/2} \mathscr{H}^n(\Gamma(v))$$

Let $D \subset \mathbb{R}^n$ be the projection of $\Gamma(v)$ on the second factor, (a similar idea is also used in [13]) and let $\varphi : D \to \mathbb{R}^n$ be the function which assigns to each $p \in D$ the unique (by (4.3)) $x \in \Omega$ such that $p \in \partial v(x)$. By (4.3) we get

$$|\varphi(p) - \varphi(q)|^2 leq\langle p - q, \varphi(p) - \varphi(q)\rangle \le |p - q| |\varphi(p) - \varphi(q)|,$$

so that φ is a contraction. Since $\Gamma(v)$ coincides with the graph of φ , by the area formula for Lipschitz functions (see [11], 3.2.1) we obtain

$$\mathscr{H}^n(\Gamma(v)) = \int_D \psi(\nabla \varphi(p)) dp,$$

where

$$\psi(A) = \sqrt{1 + \sum_{B \subset A} \det^2(B)}$$

for any $n \times n$ matrix A. In particular,

$$(4.5) \mathcal{H}^n(\Gamma(v)) \le C(n) \mathcal{H}^n(D) \le \omega_n C(n) [v]_{\mathrm{Lip}(\Omega)}^n.$$

Hence, (4.1) follows by (4.4) and (4.5). Finally, (4.2) follows by general properties of products of Hausdorff measures ([11], 2.10,.27) and of Lipschitz mappings between rectifiable sets. In fact, denoting

by $\pi: \mathbb{R}^{2n} \to \mathbb{R}^n$ the projection on the first factor, by [11], 3.2.22 we infer

$$\mathscr{H}^{n}(\Gamma(v)) \geq \int_{\Omega} \mathscr{H}^{k}(\pi^{-1}(x) \cap \Gamma(u)) d\mathscr{H}^{n-k}(x)$$
.

Since $\pi^{-1}(x) \cap \Gamma(u) = \{(x,p) : p \in \partial u(x)\}, (4.6)$ is equivalent to (4.2). \blacksquare

Remark 4.2. Let $M \subset \mathbb{R}^p$ be a countably \mathscr{H}^m -rectifiable set, and let $\pi: M \to \mathbb{R}^n$ be a Lipschitz function. In [11], 3.2.31 Federer shows that the set

$$\left\{z \in \mathbb{R}^n : \mathscr{H}^k\left(\pi^{-1}(z)\right) > 0\right\}$$

is countably \mathscr{H}^{m-k} -rectifiable. Hence, the rectifiability of $\Sigma^k(u)$ follows by the rectifiability of $\Gamma(u)$ by applying Federer's proposition with $M=\Gamma(u),\, p=2n,\, m=n$ and π equal to the projection on the first variable.

A similar approach is followed by Baldo and Ossanna in [5]. However, this method does not apply to a general semi-convex function, like a function with Hölder continuous gradient. Therefore, using Theorem 3.1 to derive the rectifiability of $\Sigma^k(u)$ is more powerful. Moreover, we believe it is more direct as well, because it minimizes the application of sophisticated techniques from Geometric Measure Theory.

Acknowledgement. The authors are very grateful to G. Anzellotti for attracting their attention to Theorem 3.2.31 of Federer's book [11].

References

- [1] G. Alberti, L. Ambrosio: paper in preparation.
- [2] L. Ambrosio: Su alcune proprietà delle funzioni convesse. *Atti Accad. Naz. Lincei*, to appear.
- [3] L. Ambrosio, P. Cannarsa, H.M. Soner: On the propagation of singularities of semi-convex functions, paper in preparation.

G. ALBERTI et. al.

- [4] J.P. Aubin, H. Frankowska: Set-Valued Analysis. Birkhäuser, Boston 1990.
- [5] S. Baldo, E. Ossanna: paper in preparation.
- [6] P. Cannarsa, H.M. Soner: On the singularities of the viscosity solutions to Hamilton-Jacobi-Bellman equations. *Indiana Univ. Math. J.* **36** (1987), 501-524.
- [7] P. Cannarsa, H. Frankowska: Some characterizations of optimal trajectories in control theory. SIAM J. Control Optim. 29 (1991).
- [8] F.H. Clarke: Optimization and Nonsmooth Analysis. John Wiley & Sons, New York 1983.
- [9] E. De Giorgi: Nuovi teoremi relativi alle misure (r-1)-dimensionali in uno spazio ad r dimensioni. Ricerche Mat. 4 (1955), 95-113.
- [10] I. Ekeland, R. Temam: Convex Analysis and Variational Problems. North-Holland, Amsterdam 1976.
- [11] H. Federer: Geometric Measure Theory. Springer-Verlag, Berlin 1969.
- [12] W.H. Fleming: The Cauchy problem for a nonlinear first order partial differential equations. *J. Differential Equations* **5** (1969), 515-530.
- [13] J.H.G. Fu: Monge Ampere functions. I. Preprint of the Centre for Mathematical Analysis, Australian National University, 1988.
- [14] J.H.G. Fu: Monge Ampere functions. II. Preprint of the Centre for Mathematical Analysis, Australian National University, 1988.
- [15] H. Ishii, P.-L. Lions: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differential Equations 83 (1990), 26-78.
- [16] P.-L. Lions: Generalized Solutions of Hamilton-Jacobi Equations. Pitman, Boston 1982.
- [17] F. Morgan: Geometric Measure Theory A beginner's guide. Academic Press, Boston 1988.
- [18] Yu.G. Reshetnyak: Generalized derivative and differentiability

- almost everywhere. Math. USSR Sbornik 4 (1968), 293-302.
- [19] L. Simon: Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra 1983.
- [20] A.I. Vol'pert, S.I. Hudjaev: Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics. Martinus Nijhoff, Dodrecht 1980.

G. Alberti Scuola Normale Superiore P.za Cavalieri 7 56126 Pisa, Italy L. Ambrosio and P. Cannarsa Dipartimento di Matematica II Università di Roma Tor Vergata, 00173 Roma, Italy