The injectivity of denotational semantics for linear logic proof-nets

Michele Pagani Dipartimento di Filosofia - Università Roma Tre Institut de Mathématiques de Luminy pagani@uniroma3.it

January 14, 2005

Abstract

The cut-elimination rules defined on MELL proof-nets give a syntactical equivalence relation, denoted by \sim_{cut} , whose canonical representatives are the cut-free proof-nets. On the other hand, the interpretation in a denotational semantics \mathcal{M} gives a semantical equivalence relation, denoted by \sim_M .

A model \mathcal{M} is a denotational semantics when \sim_M is invariant by cutelimination, that is $\sim_{cut} \subseteq \sim_{\mathcal{M}}$. Conversely, \mathcal{M} is *injective* (sometimes called *faithfull*) if $\sim_{cut} \supseteq \sim_{\mathcal{M}}$.

The injectivity is stated as a *completeness* problem ("is $\sim_{cut} = \sim_{\mathcal{M}}$?") in the framework of simple typed λ -calculus, and it has a positive answer in the theorems of Friedman [1] and Statman [3].

Tortora introduced the problem of injectivity for linear logic proofnets, obtaining some positive and negative results (see [4], [5] and [2]).

We will analyze the injectivity of coherent and relational semantics, presenting new methods and results. We will state the injectivity in a more dialectic exchange between proof-nets and denotational models, than the severe distinction syntax/semantics, by putting the question in this terms: "what denotational models are able to read from cut-free proof-nets?"

References

- H. Friedman. Equality between functionals. In Logic Colloquium, volume 453 of Lecture Notes in Mathematics, pages 22–37. Springer, 1975.
- [2] O. Laurent and L. Tortora de Falco. Slicing polarized additive normalization. In T. Ehrhard, J.-Y. Girard, P. Ruet, and P. Scott, editors, *Linear Logic in Computer Science*, volume 316 of *London Mathematical Society Lecture Note Series*. Cambridge University Press, Nov. 2004.
- [3] R. Statman. Completeness, invariance and lambda-definability. Journal of Symbolic Logic, 47(1):17–26, 1982.

- [4] L. Tortora de Falco. *Réseaux, cohérence et expériences obsessionnelles.* Thèse de doctorat, Université Paris VII, Jan. 2000. Available at: http://www.logique.jussieu.fr/www.tortora/index.html.
- [5] L. Tortora de Falco. Obsessional experiments for linear logic proof-nets. Mathematical Structures in Computer Science, 13(6):799-855, 2003.