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Let A = (A4, <,...) expand a Boolean lattice (A, <). A is called weakly o-
minimal if and only if each definable subset of A definable in A is a Boolean
combination of convex sublattices. So weak o-minimality naturally extends
in this framework the well known notion for expansions of total orderings

(see [MMS)).
Examples include

e atomless Boolean lattices (A, <) (they are o-minimal, too);

e any expansion of an atomless Boolean lattice by a maximal ideal I (this
is not o-minimal when [ is not principal).

We are interested in studying w-categoricity and related notions in this frame-
work (compare with [HMMNT] in the linear case).

Theorem 1. Let T be a finite sequence of ideals of a Boolean lattice (A, <)
closed under the Heyting algebra operations. Then the following are equiva-

lent for A= (A, <,T):

(1) A is weakly o-minimal;
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(77) A is w-categorical;
(131) A/I has only finitely many atoms for every I € T.

Recall that a complete countable theory T is called p-w-categorical if and
only if the Boolean algebras of definable sets of countable models of T are
pairwise isomorphic.

Theorem 2. Any complete theory of weakly o-minimal expansions of Boolean
lattices is p-w-categorical.
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