An empirical complexity study for a 2CPA solver

Marco Baioletti, Andrea Capotorti, Sauro Tulipani
Dip.Matematica e Informatica
Università degli Studi di Perugia

Abstract

The computational decision problem CPA, which has already been studied by the authors in some other papers, is a variant of the probability satisfiability problem PSAT defined by Papadimitriou as a computational problem, but already known since the works of Boole and de Finetti. In this paper we study its behaviour of a simple algorithm, which can solve CPA instances, when it is applied to the, still NP-complete, subproblem 2 CPA , whose instances have at most two literals per clause. We locate, as it is done for some satisfiability problems (for instance SAT) a critical value for the ratio $\alpha=m / n$, where m is the number of binary clauses present in the instance and n is the number of events. This point divides "almost all coherent" instances from "almost all not coherent"; moreover the most difficult instances lies near this point. One of the problem we have solved is how to generate fair random 2 CPA instances, i.e. avoiding logically unsatisfiable or trivially incoherent instances.

Keywords: Probability assessments, Coherence decision, NP-complete problems, Simplification rules.

