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INITIAL. BOUNDARY VALUE PROBLEMS AND OPTIMAL CONTROL
FOR NONAUTONOMOUS PARABOLIC SYSTEMS*

P. ACQUISTAPACE,I F. FLANDOLL${ anp B. TERRENI§

Abstract. A large class of linear nonautonomous parabolic systems in bounded domains is considered,
with control acting on the boundary through Dirichlet or Neumann conditions, from the poini of view of
semigroup theory. The results from [ Rend. Sem. Mat. Univ. Padova, 18 (1987), pp. 47-107], [ On fundamental
solutions for abstract parabolic equations, Lecture Nofes in Math., Vol, 1223, Springer-Verlag, Berlin,
Heidelberg, 1986, pp. 1-11] on abstract homogeneous parabolic Cauchy problems allow operators with
varying domains and Hélder continuous coefficients to be handled. A representation formula for solutions
corresponding to square integrable control functions is derived and used to solve a linear-quadratic regulator
problem over finite time horizon, by a direct study of the associated integral Riccali eguation.
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1. Introduction. During the last two decades relevant progress has been made in
the theory of boundary control of partial differential equations. In the case of equations
of parabolic type, both variational and semigroup methods have been successfully
applied (see, for instance, [1.2], [DS], [S1], [82], [Fa], [B1], [ La], [LT1], [LLT2], [F1],
[F2]). Most of these (and othér) papers deal with autonomous parabolic equations.
Only [1.2] and [DS] present results on the boundary control in the nonautonomous
case, by variational techniques.

This paper concerns nonautonomous systems of parabolic type, from the point
of view of semigroup theory. Our first purpose is to develop a suitable approach to
nonhomogeneous initial boundary value problems based on the theory of evolution
operators, in view of its application to boundary control problems.

Section 2 is devoted to this basic question. As in the autonomous case we are able
to deal with control functions which are only square integrable in time and space. In
particular our main goal is to derive a representation formula for solutions, similar to
the classical one {see [B2], [La], [LT1]), which will prove to be very useful in the
treatment of eontrol problems.

Section 2 is organized as follows. Section 2.1 contains a detailed analysis of two
concrete systems of equations of parabolic type with nonhomogeneous Dirichlet or
Neumann boundary conditions, which motivate the abstract model to be introduced
afterwards. In §82.2 and 2.3 we study an abstract homogeneous nonautonomous
parabolic Cauchy problem by the methods of [AT1], [AT2], which allow us to handle
operators with variable domains and whose coefficients are just Holder continuous in
time. In § 2.4, by using the properties of the Dirichlet and Neumann maps, we obtain
an abstract formulation of the concrete nonhomogeneous problems analyzed in § 2.1.
Finally, in § 2.5 we derive the representation formula for solutions of the abstract
version of nonhomogeneous initial boundary value problems; this formula is meaning-
ful for nonregular boundary data and will be considered as the state equation for the
control problems of § 3.
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'The second part of the paper, namely § 3, deals with the linear-quadratic regulator
(L-Q-R) problem, over finite time horizon, for an abstract evolution equation which
includes the concrete models discussed in § 2. Here we foliow the approach of [F2],
based on a direct solution of the Riccati equation arising in the L-Q-R problem.
However our assumptions on the final state cost operator Py (see (3.13) below) are
weaker than those imposed in [F2], and suggested by the more general results of [DI1].
We are able to solve directly the basic integral Riccati equation under general assump-
tions, much weaker and more natural for the applications than those imposed in [DS],
where the Riccati equation was deduced from the optimality system (see Remark
2.3(iii) below). It turns out that our approach in the more general setting of non-
autonomous problems still allows us to employ standard techniques of control theory.
This fact lets us hope that many other results on boundary control problems, such as,
e.z., infinite horizon optimal control [F2], [LT3], [DI2], [D], and the control of
stochastic systems [F2], [I], can also be extended to the nonautonomous framework.

We conclude this section by listing some notation.

If X is a Banach space and a < b we set:

L?(a,b; X):= space of strongly measurable functions f:la, b{—+X such

that [*[lf(1)|% dt<co (1=p<co; obvious modifications for p=c0);
C*([a, b1, X)=space of functions f:[a, b]> X which are k times con-
tinuously differentiable (k e N);
C*"(Ta, b], X) = space of functions f € C*([a, b], X} such that f*' is 9-Hblder
continuous (kelN, 00, 1}).
If X, Y are Banach spaces, we set:

F(X, Y):=space of bounded linear operators T: X > Y,

F(X)=2(X, XY},

‘C.([a, b], F(X, Y)):= space of operator-valued functions T(-):[a, b]>Z(X, Y)

which are strongly continuous, i.e., T(+)xe C%[a, b], Y) for each xe X.
If H is a Hilbert space, we set:
Z(H) = space of self-adjoint operators T £(H),
*(H)=space of sell-adjoint operators Te ¥(H) which are positive, i.e.,
(Tx|x) =0 for each xe H.
If H is a Hilbert space and T is a linear operator in H, we set:

Dy = domain of T

g(T} = spectrum of T;

p (I =resolvent set of T

T*:= adjoint operator of T (whenever it exists).

Finalty, if m ¢ N* and (} is a bounded open set of R", we shall use the following spaces
of C™-valued functions:

[CHET™, [CE? (17, [L" ()] (keN, ¢ e 0, 1[, pe[1, ®]),

whose definitions are clear, and the usual Sobolev spaces

[ W (@)]", [W™(a)]"(pell, of, =R),

[War )] (pell,of, #e]1/p,of).

2. Nonautonomous parabolic systems.

2.1. Two classical examples. We consider in this section two particular types of
parabolicinitial boundary value problems, namely, two parabolic systems with Dirichlet
and Neumann conditions, respectively. We think of them as prototypes of the class
of problems which are covered by the general theory of this section.

Let £ be a bounded open set of R", with boundary 3 of class C*. Fix T>>0 and
let {A;(#, X)}s 21,0 @ set of Nx N complex-valued matrices defined in [0, T'] » (),
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fulfilling the following hypotheses:
(2.1) (regularity)

Ay € CTVHL0, TLLCYONY) N e ([0, T1, [CHON™)
(2.2) (strong ellipticity)

L

Re E (Asj(ta JC) ' nflns)CN

si=1
Zv Y |nl> Vg, meeCY v(g x)e[0, T]xQ {»>0).
s=1
Under the above assumptions we consider the following problems:;

Diy(tx)= ¥ DAL %) Dy(t, x)]+y(6,%)=0 in[0, T]x 3,

{2.3) yi&ex)=u(t,x) in[0, T]xeQ,
¥(0,x}=po(x) iny

Dy{t, x)— il DAyt x) - Dy(t, )]+ »(1,x)=0 in[0, T]x{,

5f=

(2.4) i Ayt x)  Dy(t, x}v(x)=u(t,x) in[0, T] x €},

sf=1
¥(0, %) =yo(x} indl,

where y,, u are prescribed data on the parabolic boundary of [0, T]x{}. Here »(x)
is the unit outward normal vector at x & (). It is well known that if u, y, are sufficiently
smooth and fulfill suitable compatibility conditions at o€} at ¢ = 0, then problems (2.3),
(2.4) possess a unique solution; in addition we want to prove a representation formula
for such solutions which will allow us to generalize the concept of solution to the case
of less regular data u, y,.

Concerning existence and uniqueness, we will invoke the results of Theorem 4.7
of [AT3]; to this purpose we just need that problems (2.3), (2.4) obey the requirements
given there, namely, we need that the operator {Z_';:l D (Ay(t, x) - D))}, with boundary
conditions of Dirichlet or of conormal derivative type, satisfies the ellipticity assump-
tions of [ADN] and [GG]. This is in fact true, as pointed out in Remark 2.3(i) below.
Hence we can state the following propositions.

ProposiTioN 2.1, Under assumptions (2.1), (2.2), let y,c[ W)Y, and
let u be the trace on [0, TI1x6Q of a function Ue C*([0, T1,[ W"3(0Q)]™)N
CY2([0, T1, [LHO)TY); assume moreover that

(2.5) Y, Ag(0, %) - Dyolx)n(x) = u(0, %) ae. on o0,
=1

Then problem (2.4) has a unique solution y such that
(2.6) ye CH[0, TL, [LXQ)]™) N C(lo, T1, [ W>HQ)1V).

ProrosiTioN 2.2, Under assumptions (2.1), (2.2) let yoe[ W*2(D)]N, and
let u be the wace on [0, T1x0Q of a function Ue C*([0, T, [ W>Q)]™)N
CTH[0, TT, [LHO)IN); assume moreover that

(2.7} yo(x}=u(0,x) a.e on afd.
Then problem (2.3) has a unigque solution y such that (2.6) holds.
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Proof. The proofs of Propositions 2.1, 2.2 follow by Theorem 4.7 of [ AT3] with
minor modifications (since the operators considered there are not in divergence
form). il

Remark 2.3. (i) If we confine ourselves to problem (2.3), we may replace
hypothesis (2.2) by the weaker one

(2.8) Re 3 (Ag(6x)é& nlmer Z v|Ef|nl> YEeR”, ¥YqeCV, Y(,x)e[0, TTx;
1

5=

"

then the operator {3, ..., D,(Az(4 x} - D;)}, with Dirichlet boundary conditions, still
satisfies the ellipticity assumptions of [ADN] and [GG], as pointed out in [Am,
pp. 659-660]. On the other hand, we are not able to prove the same assertion in the
case of problem (2.4); that is, in order that the above operator, endowed with boundary
conditions of conormal derivative type, satisfies the eflipticity assumptions of [ADN]
and [GG], we need the stronger hypothesis (2.2} {(this can be seen by adapting the
argument of [ADN, p. 44]).

(ii) Adding lower order terms in problem (2.3), or {(2.4), does not alter the
situation: indeed, the change of unknown v:=e“'y (for a suitable @ <R) leads to a
new problem where the new differential operators still enjoy the properties stated in
Proposition 2.4 below; in particular, the abstract hypothesis (2.29) is preserved.

(iii) In (2.1) it is assumed that the coefficients of the differential operators satisfy
suitable Holder conditions with respect to time. Such a requirement is necessary in
order to fulfill the abstract assumption (2.29)(ii} below, which in turn allows us to
construct the evolution operator for the abstract problem (2.28), with its regularity
properties (3.4). I the coeflicients are just bounded and measurable in #, then we can
get some results for the concrete problems (2.3), (2.4) (see [LM1]), i.e., for the state
equation; however the subsequent step, namely the study of the Riccati equation,
seems very difficult and needs stronger hypotheses (see [DS]).

Existence and uniqueness of the solution of problems (2.3) and (2.4} is now
guaranteed, at least for smooth data y,, 4. Our next goal is to establish a representation
formula for the solution, which should possess the following features:

(i} It reduces to known representation formulas whenever they hold: see, e.g.,

[Te] for the autonomous versions of (2.3)-(2.4), [AT1] and [AT2] in the case
of homogeneous boundary conditions, [B2] and [La] within the context of
control theory,

(ii) It yields *weak” solutions, in some sense, when the data are less smooth;

(iii) It is handy from the point of view of control theory.

In order to construct such a formula, we need to reformulate problems (2.3), (2.4) in
an abstract form, and to establish some propetties of the evolution operators of the
new problem. This will be the object of the next section.

2.2. The abstract formulation of initial boundary value problems. Consider again
the situation of § 2.1, under assumptions (2.1), (2.2). If we define, for each t€[0, T,
the differential operators

(2.9) At x, D)o= 3 DJ[Ay(t,x}- Dpl-v, x€0,
i=1

5=

(2.10) Bt = e,

{2.11) B(t,x, D)= 3 Ayt x)v(x) - Dy, x a0,

si=1
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then we can introduce the following linear operators:

Dagiy={0 e [W(Q)1V: Bop =0} =] W>X(02) N Wi()]",

(2.12)
Ag()v= (e, -, D)y,

DAI(!):z {'UE [ WE’Z(Q)]N: %l(t; "y D)U = 0}3

(2.13)
Al(‘)u = ‘ﬂ(ta ‘s D)Ua

where [0, T].

The main properties of the operators Ay(1), A,(?) are listed in the following
proposition.

ProrosrmioNn 2.4. Under assumptions (2.1), (2.2) we have for + =0, 1;

(i) Foreachte[0, T1, A,(t) is the infinitesimal generator of an analytic semigroup
in [L2(Q)1Y;

(ii) for each te [0, T, Da, is dense in [L2(Q)]V;

(iii) the family {A.(1)},cj0.1 satisfies Hypothesis 11 of [AT1], ie., there exists
teelw/2, w) such that

| A{)[A *Ar(t)]il[Aa-(f)_l_Ar(’-")ﬁl] L)
2.14) t—g|*l2
( = CLTLHQ Yirel0,T],

provided A belongs 1o the sector Sy = {z € C: |arg z| < ).
Proof. (i) Itis well known (see [Am], [GG]) that the resolvent set of the operators
A,(t) contains the sector

Sotw={zeC:|arg (z—w)| < I}

for suitable #,€ ]7/2, m] and w ¢ R; we want to show here that we can choose @ = 0
and that

(2.15) I[A ~ A, ()]

YieS,,.

2™ =

£
1+1A

Suppose first =0, Fix [0, T] and let A€C be such that either Re A>0 or
(M/v){Re A|=3|Im Al. For v e[ W22(€1) N WP (Q)]V set

f(x)i=2v(x)— o£(t, x, D)y, xe},

Multiplying by v (with respect to the inner product of [£X0)]") and integrating by
parts, we get

(1+A)J‘ Jv|* dx+-[ i (Ay(t, x) - Di{x)| Do (x))e~ dx
o @ 5=1

(2.16)
=L (f(x})] g(x))en dx.

By taking the real part, we obtain by (2.2)

(2.17) {1+Re )\)J. [v]? dx+vJ’ | Do|? dx = | £l 2™ - ol t 2™
£93 0
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on the other hand, by taking the imaginary part in (2.16),

[Tm A J‘n [0 dx = || filp 2y - [ofcrzeay~+ M J. | Dol dx,
0
where

(2.18) M=% sup |A,(s, x).

s=1 [0,T]x{

Hence by (2.17)

M M
oo |1 e (12 ) B+ | ool a
O . v - oV I
Consequently, if (M/#)|Re A|=3|Im A| we deduce that

M .
(2.19) |Im A j [0]? dx §2(1+j) A e czean™ - ol ez,
0

whereas if (M/v) Re A>{|Im A| (2.17) vields

(2.20) (1+Re)) J. ol dx =] My czay™ « o)) ez -
n

Combining (2.19) and (2.20) we get the estimate

ol = JAv—st(z, -, D)ol YreS,,

—
1+|A|
where

2M M
_190=7T-arctg—v-, C=2(1+7) 1+ (w/2MY +1;

since we already know that p(Ay(¢)) is not empty, the desired estimate (2.15) for r=0
follows from the above inequality by standard arguments.

The case r=1 is completely analogous and we find the same constants &, and c.

The proof of part (ii) is obvious in both cases r= 0, 1.

(iii) Consider the case r=0. Fix fe[LXQ)]™, and set vi= [AL, we=
[A = Ag(8)]'[A — Ap(7)]v; then we must estimate

v=w=Ag()[A = Ag()] [ Ag(1) = Aglr) ' 1f

The function v —w solves the problem -

Mo=w)=st(t -, D)(o~w)= ¥ D.([Ay()-Ay(r,")]  Dp) inQ,

5i=1
v—we[ W) N W)™
Multiplying by v—w (in [L*(Q)]™), an integration by parts vields

(1+A)J [v—w]? dx + i (A_,j(t,x)-D,-('v—w)[Ds(v—w))Cf_de

0 y=

== | T (A1) = Ay(r, %)] Dp|Du(o— w))en ds,

0 5=
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which implies

(1+Rex\)J |v—w|2dx+fj 'D(v—w)* dx
a 2Ja

(2.21) 1
=% I L 1Ay(s ) Ag(r, )| Dol” ax
¥ Ja g1
1 n
IIrn )\II |v-w|2dx§—J. ) JASJ’(t")_Asj(T,')llevlzdx
02 2 0 %=1
(2.22) 1
+(M+—)f |D{v - w)|® dx.
2 ]
If we set
- A —A.
(2.23) N=7Y% sup supl (LX) — Ayl x)|

a+1/2 »
=1 0sr<t=T xel) |t — 1'|

then by (2.22) and (2.21) we easily get

1
[Tm A|J |o—w|? dx§N2[1+(M+H) V_z]lt—7|2a+lj | Dol dx
0 2 2 Q
2 1 ,
+-lM+-)|ReA| | |v—w|*dx
v 2, Ie)

Hence if (2/»}(M+3)|Re A| <Im A|

2M+1
(2.24) |Im AIJ‘ lo—w|* x<N2|:l+ :IJ:—TF“HJ. | Dg|? dx,
0
whereas if (2/v)(M +3) Re A >3{Im A|
. 2
(2.25) Re A J lv—w|? dxéilt—rlz““ J‘ | Do dx.
Q 2y a
Recaliing that, by (2.17),
J. | Dy)? x<~J. | F1? dx,

we conclude that

|)l|f [o—wlde=— (1+

and (2.14) follows for r=0, with

2M-+-1

4M+2 2M +1)2 p o 2]
=7 =N 21+ +( ) .
¥y = 7 —arctg B ¢ v e 1 AMaa

)\/1+[y/(4M+2)]2{t T|2H+IJ‘ P dx,

95

Concerning the case r = 1, we proceed similarly and we find that v — w now solves the

problem

AMeo—w)—dt, -, D)(v—w)= Z Di([Ay(t, -}~ Ay(r, )] - D) inQ

si=1

Z Ayt v Di(v—w)= Z‘, [Ag(m )= Ay(t,)]v, Do onsQ,

SJ_
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arguing as above, and taking into account the boundary conditions, we obtain the
result with the same constants 9, and ¢. The proof of Proposition 2.4 is complete. 0
Remark 2.5. The estimates {2.15) and (2.14) do not need that A, belongs to
ce([o, T, [C'(@)]Y). :
Consider now the operators A,()*, ie., the adjoint operators of A.(¢)(t€
[0, T], =0, 1). It is easy to verify that they are defined by

D=1 whHaN th)’z(ﬂ')]N:

2.26 o
(2.26) A(t)*y= (1, -, D)y = EIDJ[‘ASJ-(I, ) Doyl-y,

Dy = {y S W2’2(Q)]N: B(t, -, D)y = _i] ‘Agf(t’ I D;y :0}9
(2.27) : .

A1(1)*J’ = ‘Qi(t: “a Dj H

whete ‘A, is the matrix whose elements are the conjugates of the elements of the
transposed ‘A,; of Ay. Consequently, it is clear that the following result holds.
PROPOSITION 2.6. All statements of Proposition 2.4 are irue if A,(t) is replaced by
A (D)
The results of Propositions 2.4 and 2.6 allow us to apply to the operators
{A()} ero.r1s LAL)*} 10, 7 the abstract theory of [AT1], [AT2], and [Ac] concerning
linear nonautonomous parabolic Cauchy problems of the following kind:

w(t)—A@u(n)=f(1), 1[0, T],
u(0)=x,

(2.28)

where fe C([0, T1, E), x € E (E being a general Banach space) and {A(8)} sero,m fulfills
{2.15) and (2.14). In the next section we will recall some facts concerping a problem
such as (2.28). :

2.3. The study of the abstract problem. We now consider problem (2.28), but we
restrict our considerations to the case of a Hilbert space H, which is enough for our
successive applications. We assume that:

(2.29) {A()} rero,r is a family of closed linear operators in H, such that:

Q@ A -ADOT Yeun= YaeS,, Vtelo,T],

M
1+]A|
. B B B t—s a+1/2
(i) JAODA - AT TAW ™~ Als) ‘]uﬂméB—w%,z—
YAeS8s, Vtsel0,T],
where € Jmw/2, 7] and a, M, B>0.

In particular, A(¢} generates an analytic semigroup 24" which can be represented as
a Dunford integral:

(2.30) A0 = (2q7) _[ e [A=A()] ' dh,
r
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I being a smooth path contained in S, and joining +0 e to +co e delm/2, 9.
Moreover, the fractional powers [—A(#)]” are well defined and we have the representa-
tions

2

(2.31) [-A()] " =2mi)! I ’(~—A)_"’[)L ~A(#)]7" da, ¥>0

(2.32) [~AD)]7 e = (241)! J (=A)7 e A~ A(D] L dA
™
where I' =, joins +0e™™ to +oo e leaving 0 on its right-hand side. We also recall
the well-known continuous inclusions
Dagy(y+e,00)c Di_agmye Dyn(y, )
Vyel0o,1[, Vec]o,1—9[, Yie [0, 77;

hete Dyy(y, p), 1=p=c0, is the real interpolation space (D, H),_, . introduced
in [LP], which can be characterized in the following way:

(2.34) Dacoly p)={xc H: §- £7|[ O~ 1]x]| 5 & L7(0, 00, dg/ £)).

We need the following lemma.
LemmMA 2.7, Under assumption (2.29) we have Jor each i, sc[0, T7:

(i) IT=ABD]™ ~[~A()]°|| sy
- {c(q‘}, a)lt—s|*"? ife>1
el o, )t —s|7TYE a0, 28] ifoelo, il

(ii) I[-A()]? e'{:ﬂm)ll,se(h')é c($ET Vx>0,

(iti) ”[‘A(’f)]aefA(r)—[_A(S)]ﬂemm” F(H)

=9, a)|t—s|*2TPT2 yes,
Proof. (i} An easy check shows that
[A=AM] =[A - A = AL - AT [A(1) = A(sY A()[A - A(s)]TY

hence by (2.31) and (2.29) we get

M 1-o Bl — atlf2 e
li=AOF =AW Lame [ [ ] R

(2.33)

Yoe[0,1],
which easily leads to the result.
Parts (i) and (iii} follow similarly by (2.32) and (2.29). d
We are ready to state the main result concerning problem (2.28).
ProrosiTiOoN 2.8. Under assumption (2.29), the evolution operator U(t, s) e
F(H, D), associated to problem (2.28), exists and possesses the Jollowing properties:
(1) (4, 8)=> U(t,5)e C(A, L(H))NC(A, L(H)), where A= {(t, 5)el0, T]: s<
t}, and

U, =1, U(t, r)U(r, s)= U(y, 5) Vrels t];
(i) (1, 5)» A(D)U{t, 5) e C(A, L(H)) and

A(r)U(t,s)=£-r~U(t,s), AU )| e =M (t-5)" Vo=ss(=T;
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(iii) Ifsel0, t[ and x€ Da,, then 3/3sU(t, s)x = —U(t, s)A(s)x in the following
sense:

RUG s+ -UW 5)]x» Ui, )A(s)x inH ash->0,,
RNUW s+R)Y=U $)]JA(s+h)Y T A(s)x > — UL, $)A(s)x inH ash->0_;
(iv) Ifv, Be[0,1], then (1, s)>[~A()]"U(1, H[-A(s)] P eC(a, F(H)) and

I-AOT U A P laean=Mgl(t—s)P 7V +1] V0=s=i=T;

(V) If 0sysB=1, then (1, s)=>[—A(D)]*U(L, )[—A(s)]° € C(4, Z(H)).

Proof. Parts (i)-(iii) are proved in Theorem 3.2 of [Ac] (recall that the domains
D,y are dense in H here), with the exception of the assertion (£ s)-> U(t, s)e
C,(A, £(H)). In order to show this property, we first recall that by the density of
domains and by Lemma 1.9(1) of [AT1] we have

(2.33) 113;||x—n[n—A(rr)]—1x|[H:0 ¥xe H Vrel0, T],

| A¢s)[n— A()] ' = A0 n— AT | 2oy = B/ —s|*"V?
VYneN", Vr,sec[0,T)
Now let (7, 7)€ dA, x € H; then we have (see [Ac, formula (2.6}]):

(2.36)

H
Uy, s)x—x ="' ™40x —x]+ J Z(r, s)x dr

=[O —1]{[x - n[n— A(7)] ']
+[nln—A(7)]™" —n[n—A(s)] ' Ix}
+J"S e [nA(s)[n—A(s)] " - rA(7)[n = A(7)} ' Tx do

0

{—5§ '
+j evA(s>nA(T)[n—A(T)]-lxdﬂj Z(r, ) drs

0
hence by (2.36) and Lemma 2.2(i} of [Ac] we easily obtain
MU, )% x| 1 = (M, B, @) {1+ n(t—s)lx—nln—A(D)] x|
[0+ (=)0 e — |22+ (0= 5)" 1}
By (2.35) there exists », eN* such that
x = vl — AT x| <be[e(M, B, )]
choosing n =7, and §, > 0 such that |
(M, B, )[(1+%,8,)5e’ (M, B, )] + x| (14 .8,) w287 2+ Ix] w821 < &, |
we immediately get _
(U )x—x|lg=e if|i—7|+]7—s|<8,.
Note that, in particular, the above proof shows that
(2.37) (1, 5)» "4 C (A, Z(H)).
Let us prove (iv). We write
AUt )[-AST P =—[- AW LA UL, )I-AG)]T;
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since each operator in the right-hand side is in ¢ (A, £(H)), we get that the left-hand
side also belongs to C(A, #(H)). In order to prove the estimate, we remark that if
x € H,then t-> U(t, s)[—A(5)] ®x is the classical solution [AT1, Def. 1.6] of the problem

w'(t)—A(Du(t) =90, tels, T,
u(0)=[-A(s)]"x,

and consequently [AT1, Thm. 6.3(i)] - [A(z) U(t, s)][-A(s)]™x solves the integral
equation

(2.39) v()=[QN) = A(#) " O[—A(s)]Px,  1e[s, T,
where the integral operator Q,.is defined [Ac, (2.1)-(2.2)] by

(2.38)

(2.40) [va](t)i=‘[.‘A(t)2 AL AT - A7) o) dr, tels, T).

Hence we can write
[~ADU (1, )[—A(s)] #x
==[-AO] TQUAM UG, s)II-A(s)]Px)](1)
—[-A()]7 IO A(s)] Px

(241) =- Jl (A" LA AR AR U, $)—Als)]Px dr

~[[-A] =M —[— A(5)]" e 46— A(s5)] Px
—[—A(s)]""‘g e(r—S)A(S)x’

and by Lemma 2.7 we readily obtain the result.
Finally, we prove (v). By (2.41) it is enough to show that if (t,s)>(7,7)in A and
x € H, then

{[—A(s)]77F "4 [~ A()]7#)x| ,y > 0.
If B = this follows by (2.37); otherwise we can write
([-A()]P %) [~ A()]7F)x

_ J~r~s [—A(s)]7~F* efAoy dE+[[~A(s)]* _[—A(T)]‘Y—ﬁ]x:

which by Lemma 2.7 implies the result. O
Assume now that the adjoint operator A(1)* of A(¢) also satisfies {2.29), i.e.,

. . M .
(2.42) (i) LA —AD*] I _@(H)_—"’:rm YieS,, Vi<[0,T],
(D) JAGTA - AT LAY T = [AS)* T 20y
|I_Sla+l/2
=) VAeS,, Yisclo,T].

A7

Then Proposition 2.8 also holds for A(f)*.
The next result concerns the adjoint operator U(#, s)* of the evolution operator
U1, 5) relative to A(1).
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ProrosiTioN 2.9, Under assumptions (2.29), (2.42) let U(t, s) be the evolution

operator of problem (2.28). Then:
(D) U(t, s)* e L(H, Daye), for all s [0, 1;
(i) For each ¢ € H, s> U(t, s)*p solves the problem

d
(2.43) — Ul sPo=—A(y UL )", sl i,

Uy, t)*e=¢.

Proof. First of all, we show that the solution of (2.43) exists. Fix t,& 10, T and set

(2.44) V(ty; t, s):=the evolution operator relative to B(t)= Aliy— 0¥, 1[0, 1.

This means that

d
(2.45) o Vi b s)e=AlL—tF Vit bs)e, 1€ 1s, t],

V(o 8, 8)p =

Set W(1, s)= V(¢; t—s,0), se[0, £]. Then, applying Proposition 2.8 to problem (2.45),

we get W(t, s) € L(H, Da,y+) and

A Wi s)p=— [i Vi, O)rp] (A=) V(55 7, 00T
ds dr e ims

‘ =—A(s)*W(4, s)e, se[o, ¢,
W(t, o= V(0,000 =,
i.e., W(t, s) solves (2.43). The proof will be complete by showing that
(2.46) Vit t—s 0= W(t, s)= U4, $)*

Indeed for r< s, t[ we have
d
E ( W(t! r)@‘ U(T", S)x)H

= —(A*W(1, e | U(r s)e)u +{(W(L, e AN U(r s}e)u =0,
sa that (W(i, r)e| U(r, §)x) g =const. for all re[s, (1. As r~> ¢ and r—> st we get
(‘PlU(rsS)x)Hz(W(ts T")(Dlx)H V{PstI{,

ie., Wt 5)= Ul s)*% a
COROLLARY 2.10. Under assumptions (2.29), (2.42) we have for v, [0, 1]:

=AY U, sV [—AW*T Pl e = Mypl (2 - $PF7+1] Vo=Es<i=T
Proof. We have by (2.44) and (2.46)
[—A@E)*TT U, ) [—A)*° =[[-B(n)]"V{t; 7, 0)[~B(0)] P1.esss
hence the result follows by applying Probosition 2.8 to problem (2.45). g

COROLLARY 2.11. Under assumptions (2.29), {2.42) let B, v<[0,1]. Then for

0=s<t =T the closed linear operator

[—AMTPU, s)[-A(s)]
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possesses an extension [—A(t)] PU(, s)—A(s)]" € £(H), which satisfies

IT=AOT U N=AS) | sany = Myg[(1—5)* Y +1] Vo=s<i=T
Proof. As
[([-A)] T =[T-A()]*]" ¥Yye[o,1],
if xe D4 and ¢ € H we have
([-ADTPUE )[-A()"x] @) s = (x| [~ A()¥7U L, )~ A(D*] P,
and by Corollary 2.10
([=ADT U - A% @) | = Mypl (1~ )+ 10 N e

choosing y :==[~A(1)]PU(4, s)[—A(s)]"x and ¢ = ¥/||y |5, by the density of D4y
in H we get the result. 0

The study of the abstract problem (2.28) (which concerns homogeneous boundary
conditions) is complete. In the next section we will introduce nonhomogeneous
boundary data in the abstract framework.

24. The Dirichlet and Newmann maps. Let us go back to problems (2.3), (2.4):
we will examine the regularity properties of the Dirichlet and Neumann maps Gylt),
G (1) which are defined by (see (2.9)-(2.11)):

(L, -, Dyu=0 in§},
A = I3
(2.47) u = Gy )g@’{%ou e on 30,
(L, D)u=0 inQ,
4 =
(2.48) " Gl(t)gt}{%](t, . Dyu=g onsQ.

ProposiTiON 2.12. Ler A(t), A(t) be defined by (2.12), (2.13), respectively. If
r=0,1 the operator G,(t) is well defined from [L2) N into D _a 7, for each
%10, a,[, where ayi=1 and a,'=3. Moreover,

1> [=AO1°G, (1) & L0, T; (LGN, [LAQ)]Y) VIe0, ol

Proof. This result was pointed out in [La] assuming & e C*; here we give an
independent proof.

Let us start with the case r=0. Fix t€[0, T, let g e[ W">2(50)]", and consider
the variational problem corresponding to (2.9), (2.10):

At ., DYyuy=0 inQ,
(2.49)

Uy=g on 3{},
which means

n

(2.50) SEI _L [(Ag(t, x) - Do) Dyp ) + (ug| @)en] dx = 0 Yol CT (O™,

uo— Ge[ Wi ()",
where G is an element of [ W"*(Q)]" whose trace on 40 is g, and such that

(2.51) Igllowi22@an™ = 6ol Gl wiagy~ = ¢, & lliw 220
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By Poincaré inequality and Lax-Milgram theorem, problem (2.50) is uniquely solvable:
we denote its solution u, by Sy(#)g, and we easily get the estimate

(2.52) I5a(t) g | wiecan™ = e(M, v, o, el 8 llrwi>2ean™ Vel WA a0) 1",

where M i=%0_, | Agll cgo.riet@n™-

Note that if g&[W*>?(50)]", then by (2.1) and the classical results of [ADN]
we have Sy(1) <[ W (Q)]N and
(2.53) [So(t)g lew2zan™ = cllgiw22ean~ Vg e [WY*(30)1".

We want now to estimate So(¢) in a lower norm. For g e[ W"22(aQ)]" set ug!= So(t)g
and let  be the variational solution of

a

El J [(‘Aglt, x) - Dapr| Dyp)en + (| @)en] dx = j (uol @) dx
si=14J0Q [
(2.54) Vo e[CTE1T,
=0 onafl;
as upe [ W) )N < [LAO)1Y, we have ¢ e[ W ()N N[ WoA(Q)]Y, and
(2.55) - z DJ(JA_%,(t, ') M Dsltf) + f’b =1y 4.2, in Q;
sf=1

in addition
(2.56) [l cwor22ean™ = ell il iwe2can™ = ellwolizean™-
By density we may choose ¢ =y in (2.50); an integration by parts yields

[ (wlo- % prAGD Do) dx==] (u

0 C 582

=1

Z IAsj([s x) T Ds¢yj) dﬂ',
! Pt

si=1

and by (2.55) (since u,=g on o})

am [ (s

Now, as 9Q € C?, the function d(x), i.e., the distance of x € () from 8(), is of class c?
in a neighbourhood of 3Q and Dd(x) = —»(x) on 3} (see [GT, Appendix]); moreover
we can clearly modify d(x) inside @ in order to get d € C*(£)). Hence by (2.57) and
(2.56) it follows that

2 tAsj(t’ x) : Dsl)byj) dﬂ',
si=1 eV

li 0]l ?Lz(n,)]N =|(g, 'Ay(1, x) - DslPTG)[W"”'Z(an)]N,[W"“(em]‘ﬂ
= [lgllwaan™ Ay - Detv,|tw2aon
= c| gllrw2ean | ‘Ag + DarDid lipw2cenr™
= o(M, Q)| gllow 220 |9 wr2on™

= ellgllew22ear™ 4oll i

that is,

(2.58) [Sol)g i 2y E cllgll w2000 Ygel W22 (601N,

We now interpolate between (2.58) and (2.52}, using Theorems 7.7 and 9.4 of [LM]:
the proof of such theorems requires 3() € C, but it can be readily adapted to our case.
The result of interpolation is the estimate

(2.59) HSo(t)g ||[w“'2'2(am]"’ = c||g|| [E* o™ Vgel Wl/z'z(aﬂ)]N=
\
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which shows that the linear operator So(¢) may be boundedly extended to an operator
Go(2) e L(LL*)N, [WY**(Q)]™) defined by (compare with (2,47))

Go(2):[L*(aQ)}]N > [ W ()7,
Go(f)g=So(t)g Yge[ WY (a0) 1"

We now turn to the case r=1. Fix 1[0, T], let g [ W"?2(50)]", and consider the
problem corresponding to (2.9), (2.11):

(L, x, Dyu; =0  inQ),

Bt x, D)uy=g ons,
which, by [ADN], has a unique solution u,:= §,(t)g <[ W>*()]™, such that
(2.62) IS ()elcwaan~ = cllglwia@ay Vg e WY(a0)].
Multiply by u, in [Z*(©Q)]" in (2.61) and integrate by parts: the result is

(2.60)

(2.61)

Vf JDullzderJ‘ Mg dxé.[ [(Ay(t, x) - Dty | Day)en + (| ugden] dx
N 0 3

= J.n (glul)CN do = (g, “1)[W"”-Z(en)]”,[W'”’Z(an)]”l
!

=c ||3”[W“’2'2(am]”” il WiV,

which implies

(2.63) [5:(Oglrwr2on~ = cllgliw220an Yl W2 o0) 1N,
Interpolation between (2.63) and (2.62) (see the remark after (2.58)) yields
(2.64) ISd(t)eltweran = cllgluzann  Yee [ W2(30)1Y,

Le., §; may be boundedly extended to an operator G, (1) LL G, [W22aNM)
defined by {compare with (2.48)):

Gi(1): [ L2 > [ W/ ()17,

Gi(Ng=S()g Vge[ WY a0)]".
Now we recall that by Theorem 3.1 of [L1] we have for r=0, 1 (see (2.34)):
(2.66) Dia,nr = Da,n(9,2) Voelo, 1,
(2.67) Di_p gy = Daye(8,2) V<10, 1[.

(2.65)

On the other hand, the real interpolation spaces Dy (43, 2) and Dy +(8, 2} can be
characterized in the following way:

DAo(r)("}s 2) = DAo(r)"‘("-?s 2)
[W** )1V if 9e]o, Y,
{u e[ WYV '[ d(x) u(x)|* dx <oo} if§=1
o)

[WE™ ™ if & e 5, 10\,
[BoQ)Y if9=4,

(2.68)
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(2.69)
(W)Y if 90,3\ 3,
[B™()]N if & =3, .
n 2
Dy, (9, 2) 1 {u e[ W Q)]V: J- d(x)™'| % Aglt, x) - Du(x)D. d{x)| dx <°0}
0 =1
ifo=3,
{ue [W*S(Q)1Y: B4(2, -, D)u=00na3f}} ifde B
(2.70)
([W?*2()1Y if ¢ €710, 3\ {3},
[BY(O)]Y if 9 =3,
N 2
D a,y+(8,2) = {u e[ W)V J d(x)'| ¥ Ayt x) Daul{x)Dyd(x)| dx <°0}
0 =1
Hue [ W)Y B,(t,-, D)u=00n00} ifde B, 1l

Here [B"3(€2)]" is the Besov-Nikol'skij space. A proof of the results (2.68)-(2.70) is
in Theorem 7.5 of [Gt] (see also [Tr, Thm. 4.3.3]) in the case N =1 and 9Q2 € C”, but
the same argument works in our situation.

The above results (namely, (2.66)-{2.69) together with (2.60), (2.65)) show that

Go(t) € Z(LLAEM]Y, Di_ayny?) VIel0, il
Gy e L LG, Di—agor?) Y810, HIB
the norms of Go(t), Gi(t) are bounded independently of (€0, T] in view of (2.59},

(2.64).
On the other hand, if we set

F,(8)=[~A()]” exp (% Ar(t)) G(1),
we have F, e C([0, T], L L3017, [L*(€)1V)) by Lemma 2.7(ii); in addition, choos-
ing pel0, a,—J[ (with ag=1, a,=3) we see that
| Fa(t) —1— A 017G, (1] 2 LN Lan™
1/n
J‘ [—'Ar(t)]l_p exXp (gAr(t)) dé

0

(2.71)

=

2aram”
C
=AD" G zarzaan™iion®y = 5>

so that F, ()= [~A(0)1°G.(1) in L{L*3)TY, [LX()]Y) as n— o0, uniformly with
respect to ¢; thus [—A,(-}]7G,(+) is a continuous function. This shows that
(272)  [=Ad )]°Gol )€ C([0, T, LA LMY ILHMIY)) VIel0,4,
(273)  [—A(DTPGi(-)e C([o, TT, LLLAEMIN (L)1) Vaeelo, il
and, in particular, the proof is complete. 0
We are ready to write a representation formula for (regular) solutions of problems
(2.3), {2.4), which depends just on low-order norms, and hence can be extended to
the case of less smooth data. This construction will be performed in the next section.
2.5. The representation formula. Consider again problems (2.3), (2.4) with smooth
data: our representation formula for their solution is provided by the following
proposition.
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ProrosiTion  2.13. Assume (2.1), (2.2), let y,c[W?* ()Y and ue
C([0, TL, [W* ") ]")YN C*" 210, T1, [LAQ)1Y) (r=0 or r=1), and suppose
moreover that the compatibility conditions (2.7) or (2.5) hold. Then the solution of problem
(2.3), or (2.4), iy given by

t

y(t, ) =Udy, O)yo+_[ [[=AA)*1" 7 U8, sV [~ A()]°Go(s)uls, -) ds,

4]

(2.74)
te[0, T] (<10, a,[).

Proof. By Proposition 2.2 or 2.1 we know that problems (2.3) or (2.4) have a
unique solution

ye [0, TL,LW>(Q@N™) N C([o, T, [LXQ)TV).
Consider the function y — G,{t)u: by (2.47), (2.48), (2.53), and (2.6.2) we get (see (2.9))
y(t, )= G)ult,-)e Dy,
ALDLy () = Gu(Du(t, )= (1, -, D)y(s, ).

Next, denoting by U,(1, s5) the evolution operator associated to {A,( 1)} iero, 71, We have
by Corollary 2.10

“[‘_'A,‘(S)*]yU,.(f, S)*llg([LE(ﬂ)]N)éMy(E "S)ﬁv V'}’ S ]0, 1[, VOES <'t§ T;

{2.75)

and consequently
(2.76) L[=AL)* T UL ) ¥ eqrran™ =M, (1—-5)"" ¥Yyel0,1[, Y0ss<(=T
Now fix te[0, T], let z€ D4 )+, and define
(2.77) his)= (s UG V¥ 2oy, sel0, 1.
By Proposition 2.9 and (2.75) we may compute
W(s) = (Doy(s, ) Uit s)*2) ~ (s, ) = Gols)uls, ) A()* U (1, )*z)
— (G (s)uls, )| A ()" U (1, 5)*2)
=(Als, -, D)y(s, )| U1, 5)*z)
— (A )y (s, ) = Gils)uls, N Ut Y*2) = (Go(s)us, )| A ()* U (4, 5y z)
= —(Gi(s)uls, | A()* U (4, 5)*2).
On the other hand, by (2.72), (2.73) we may write for ¢ <10, o,[ (with ao=21, o, =2)
h(s)=([=A ()G, (s)u(s, ) |[[- A, ()] °U,(1, 8)*z)
= ([[-A) T U )T AD Glsuls, D]z),  selo,d,
and h'e L*(0, t). Hence by integrating in 10, ¢[ we get

(8 ) 22y = (Ut 0)yol Y 2) pizeay™

= (L [[-A()*1 U1, s PI-AL) T Gis)u(s, - ) ds fZ)

7
L™

and finally by density we deduce (2.74). 0
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Remark 2.14. (i) The representation formula (2,74) makes sense for any yo €
[LX)]Y and ue[L*(J0, TT x32)]%, since by Proposition 2.2(i), (2.76), and (2.72),
{2.73) we have

t

(2.78) |J’(‘=')||[L1m)]”§C{“J’o"[ﬁ(m]”*J‘ (1=sY" uls, wzeon® dﬂ'}s

g
which implies

TZ'B
(2.79) ¥l o, rixan™ = € { Tlyoligezcn™ + ra || “%LZ(JO,T[XSQ)]N} -

(ii) We may rewrite formula (2.74) in a shorter, although improper, form, namely

!

(2.80) y(O=U(1,0)y,— J’ U(t, )A ()G (s)u(s) ds,  te[0,T],
1]}

where the integrand is to be understood as in (2.74). In the foregoing section we will

study an abstract version of (2.80) (see (3.1) below) within the context of control theory.

3. The L-Q-R problem over finite-time horizon.

3.1. State problem and cost functional. This section concerns the classical linear-
quadratic regulator (L-Q-R) problem, over finite horizon [0, T], for a class of abstract
evolution equations corresponding to nonautonomous parabolic systems with boundary
control. As we have shown in § 2, an equation of the form

¢
(3.1) y(&)=U(4, O)yo—J_ UL, s)A(s)G(s)uls) ds, tel0, T,
a
is appropriate to cover a wide class of concrete problems. In § 2 we derived in two
concrete examples equation (2.80), which is an equation of the form (3.1), under
hypotheses (2.1) and (2.2} (or, from the abstract point of view, (2.29) and (2.42)).
Such assumptions will not be directly needed in most part of the next results on control
problems; thus, in order to identify those properties which are really relevant from
the control point of view, and to point out both analogies and novelties of thé
nonautonomous case with respect to the avtonomous one (treated, e.g., in [B1], [La],
[LT1], [LT2], [F1], [F2]), we will hereafter impose explicitly only assumptions (3.2)-
(3.5) listed below.
Let H, U two separable (for simplicity) complex Hilbert spaces. In (3.1} we shall
take yoc H and ue L*(0, T; U). Here is our list of hypotheses:

(3.2) {A{t}}ero,r1 is a family of closed linear operators in H with (dense) domains
Dy, such that A(z) generates an analytic semigroup in H and 0€ p(A(2)).

(3.3) {U(1, $)}tozs==7 is the (strongly continuous) evolution operator in H associ-
ated to {A()},cro.ry; in particular,

| U1, )| secery = Mo, for all (¢, s)e A, where A= {(z, s) e [0, TT: s < t}.

(3.4)  The operator-valued function (t, s) > U(t, 5)* belongs to ([0, T}, L(H));
moreover, for each p€[0,1] and (1, s)e A, U(l, ¥ e L(H, D_aiy#7), the
map (& s)~>[—A(s)*1"U(4, s)* is strongly measurable and satisfies

=AU, sPI= AT | ey = My, [ (8- )77 +1]
V(s s)ed, ¥n,pel0,1].
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(3.5} {G(t)},e[d,n is a family of operators in Z( U, H ) such that there exists o € 10, 1]
with the following properties: G(t) € £(U, Dj_a¢y+=) for each t< [0, T] and
the map ¢—[—A(#)]*G(¢) belongs to L™(0, T; £{U, H).

Remark 3.1. (i) The above assumptions can be relaxed in various directions, with
minor conseguences on the subsequent results. So, for instance, (3.4) is needed only
for 7y =1—a: in this case we would obtain slightly weaker regularity results for the
Riccati equation. However, the applications discussed in § 2 do not motivate a further
level of generality.

(i) Condition (3.4) with w >0 is not necessary to give sense to equation (3.1):
just a much weaker version of it is needed in order to define the L-Q-R problem (3.10)
below. However it will be used in (more or less) this generality as a technical tool in
the study of the Riccati equation. Except for (3.4) with u > 0, all the other assumptions
are the natural (and minimal, in a sense) ones in order to give a meaning to equation
(3.1) and problem (3.10).

(iii} In the examples of § 2, we have under assumptions (2.1), (2.2):

H=[LYM)]Y, U=[LXa0)]";

{A(#)}, defined by (2.12) or (2.13), fulfills (3.2) by Proposition 2.4

The existence of {U(¢, s)} with the properties (3.3) is guaranteed by Proposition
2.8(i);

Conditions (3.4} for {U(%, s)*} are proved in Corollary 2.10;

{G(1)}, defined by (2.47) or (2.48), satisfies (3.5} in view of Proposition 2.12.

As at the end of §2, we agree that the formal notation U(t, s)A(s)G(s) stands for
[[—A(sY¥]' U (¢, s)*]*[—A(5)]*G(s), which is well defined as an element of ¥( U, H)
for each (¢, 5) € A, by (3.4)-(3.5). More precisely we have Lemma 3.2.

LemMma 3.2. The operator-valued function

(3.6) U(t, 5)A(s)G(s) = [[—A()*]' U (4, s)* T [-A()]°G(s), O0=s<i=T,

is strongly measurable with respect to s€[0, t[ for each fixed t€]0, T], and strongly
continuous with respect to t € |s, T] for each fixed s € [0, T[. Moreover,

(3.7) U1, s)A(s)G(s)

[eum=c(t—s)*" ¥(g s)eA,

Proof. The first assertion follows directly by (3.4), (3.5). Concerning the second
one, let s€[0, T[ and #e 15, T] be fixed: it is easy to verify that if € ](s+#,)/2, T]
we have

U1, s)A(sYG(s) = U(1, (s + 1)/ 2)[U((s + 10}/ 2, $YA(5) G(s)];

but £ U4, (s+1,)/2) is strongly continuous, whereas the bounded operator U({s+
16)/2, s)A(5s) G(s) does not depend on t, so that U(t, s) A(s) G(s) is strongly continuous
at ¢ = ty. Finally, the estimate (3.7) follows by (3.4) and (3.5). d

The next lemma gives a precise interpretation of the function (3.1).

LemMma 3.3, (i} Ifue LX0, T; U), then (3.1) defines a functiony < L*(0, T, H) and

(3.8) 191l 20,7 = el poll ar +llel] 20, 7,0
(ii} Ifue L"(0, T; U) for some p> 1/, then ye C{([0; T], H) and
(3.9) 12l o, 11,000 = el woll 1 + e o703}

Proof. Part (i) is an easy consequence of (3.3), (3.7} and Young’s inequality.
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(ii) If p>1/a, by (3.7) we have for 0=r<t=T

i (p—-1}/p
= [J c(t _S)~(1—a)p/(p~1) ds] ””H LR
,

J.l Ut s)A(sYG(s)u(s) ds
p—1
-1

=c (=) ]| oo,

which, together with (3.30), implies in particular (3.9). Moreover, if 7€ ]0, T] and
g >0, we have for small §>0

ég VIE[tD—S, r0+6].
H

-I.t U(t, s)A(s)YG(s)u(s) ds

Therefore by (3.3) we get for |t — 10| = 8:
1y (8) = y{to}ll &
= | Ut 0)yo— Ulto, Myo| 0

+ H[U(t, to— &)= Ulty, to— 8)] Jtoﬁ Ulty,— 8, s)A(s) G{s)u(s) ds

0

H

+HJ U(t, 5)A(s) G(s)u(s) ds +”J Ulty, $)A(s)G(s)u(s) ds

H
= (| UL, 0)po— Ulte, 0)yol| s +(2Mo+ 2)e,

and the result follows by the strong continuity of - U {(z,0). The ease t,=0 is even
simpler. | '

We can now define the optimal control problem which is the object of our study
in this section. We shall consider the following L-Q-R problem:

(3.10) Minimize
J(u)= L LM (0|3 w + (N(Du() |u() ] di+ (Pry(TH p(T))n

over all controls w & L*(0, T; U) subject to the state equation (3.1).
Here we assume: _
(3.11)  M(f)eS*(H), for all te[0, T} and M e L0, T; L(H));

(3.12)  N()eZ*(U) with N(t)=v>0, for all &[0, T]
and Ne G([0, T], 2(U));

(3.13) PreSt(H), and there exists Bel(3—a),3]N[0.5] such that Pre
E(H’D[MA(T)*]Z'E)'

Remark 3.4. Dueto Lemma 3.3 of [F1], assumption (3.13) implies that the operator
[—A(T)* 18P [—A(T)1*(£ € ]0, B]) can be extended to an operator L, € Z(H).

Note that y, given by (3.1), is not continuous in general, but only in L0, T: H):
hence the term (Pry(T)|y(T)}y is not well defined a priori for all controls ue
LX0, T; U), but only for controls in a dense subspace of L*(0, T; U), by Lemma
3.3(ii). However, the regularity property (3.13), along with (3.4), yields Lemma 3.5.

LEMMA 3.5. The mapping u-(Pry(T)|y(T))u, defined (for instance) from
C([0, T), U} into R, is locally uniformly continuous with respect to the topology of
L0, T; U), and hence it can be extended to L*(0, T; U).
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Proof. Let L, be the bounded extension to H of the operator
[—A(T)*1°*P;[-A(T)]°"* (see Remark 3.4). If u e C{[0, T], U), choosing ¢ € ]0, 8 —
(3~ )| we have by (3.1), (3.3), (3.4), and (3.5)

(Pey(T)y(T))
= || L[ - AT P p( D[4

=1L {I-ACTTUCT 06l
+ J I[—AGY*T ™ U(T, s [—A(TY T P T [~ A() "G () u(s) | dS}

zefbnlis || Do utua]

=cf ||yo|| %{ +(T+ ng+-zaﬁzs—1) "“ ” iZ(U,T;U)}-

Hence if u,, u,e C([0, T, U) and y,, y, are the corresponding functions (3.1) with
initial state v, we have

[Py (T) 9 T)) = (Prya T) | 2 T)) |
=[| LY -ACDT "y Dl + LY T-A(T)T# 2 3a(T) a]
L= AT F LT =y T
= e{llyoll + il 20, rion + litall 0.t = ol 320,10 O

Remark 3.6. The initial state y, can be taken in a space larger than H with-
out changing the main results of this and subsequent sections. More precisely, we
need to fulfill two essential requirements, namely (1°) y< L*0, T; H), and (2°)
[—A(T)] #y(T) is well defined; in order to get them, it is sufficient that [~AO)] Ppoc H
for some 8e]0,3[, i.e., that y, belongs to the dual of D _ sy with respect to H
(indeed [—A(0)] ™ can be extended to an isomorphism between the dual of Di_ aopy
and H). In this case the condition y € L*(0, T; H) is satisfied because of (3.4) (with
@ =0), since we have

(UL, 0)yo| XY = ([~ A0)] %y | [ AO*I°U(1, 0¥ %) 51
§‘ “[‘A(O)]%J’ollnMaora”x"H Vxec H,

ie, U, 0)yollus =ct7° 810,3l; on the other hand, [—A(T)|™y(T) is well defined
(even if 8¢ [3, 1[) by (3.4), since

[-A(T)PU(T, 0)yo = [[—AO*1°U(T, 0)* [~ A(T)*] *1*[-A(0)] ).

3.2. The Riccati equation. The main step in the solution of problem (3.10) is the
direct study of the associated Riccati equation, which takes the form

T

P(t)=U(T, t}*P;U(T, ¢)+J Us, t)*
(3.14) [M(s)—P(s)A(s)G(s)N{s) 'G(s)*A(s)*P(5)1U(s, 1) ds.
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The nonlinear term in (3.14) is not well defined in the present form. For this reason
we consider the following version of (3.14):

T

P(1)=U(T, y*PrU(T, 1) +J. U(s, 1)*

@19 [ M(s)—[[—A()¥T PP K () ~A()* T “P(s1U (5, 1) ds,
where

(3.16) K(s)=[~A($)]"G(s)N(s) '[[-A()]"G)T"

By (3.5) and (3.12) we have

(3.17) K(-)e L®(0, T; Z"(H)).

Note that the integration in (3.15) is performed in the strong sense.

ProrosirioN 3.7 (local solution). Fhere exist an interval [Ty, T] and a unique
function P e C([To, T], Z(H)) such that:

G} [—A()*1'7P() s well defined and strongly measurable from [T,, T]
into $(H},

() [i—A*1 PO eon=c(T— ()12 for all 1< [ To, TT,

(i) P(-) solves (3.15) in [To, T].

Proof. For any Tye[0, T[ denote by B,(T,, T) the Banach space of ail strongly
measurable functions Q:[ Ty, T[ - £(H) such that

@l BTy, TV T_SuPT (T- lt)Y“Q(f)" o) <%0,
b=

where y:={1—a—28)v0. For Q¢ B,(T,, T), define
Ir(Q)t)=[—A@* ] UL ) PrU(T 1)

+J [—A(D)*]*U(s, D* [ M(s) - Q(s)*K(s)Q(s)]U (s, 1) ds,
te[T,, T).

Let us show that I'y, maps B,(T,, T) into itself. By (3.4), (3.13), (3.3), (3.11), and
{3.17) we get

”FTO'(Q)(I)“,E(H)
= Ml—“ﬁﬁ[l (T~ t)2ﬁ+a_1]|‘[—A( T)*]2'6PT | ey " u(T, M zn

+ Ml—a,O J. (S - t)aﬁ[”M(S)" SL(H)

t

K () sz (T =) 7 NQU S, irp, MU (s Dl ey s
< [(T= 1) (T =) +H(T- 0" |Ql5,nmnl ¥YrelTo, Th
this shows that T'r(Q) € B,(Ty, T} and
(3.18) UFTU(Q)“ 8,(Ty.T) RNV To)aw“Q” 237(1“.3,1“)-
Next, we show that I'r, is a contradiction in the ball

By(T{)a Ts p).'= {QE B‘y(T()s T) ”Q" By(To,T)‘ép}
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for a suitable p > 0. Indeed if Q,, Q,¢ B, (T, T; p) we have as before:
[T 7 Qu){(#) =T Q) ()| ey

=c¢ J 5= N serry + 1| Qal(s)

=c(T-0" "pllQi— Q. sy, YIE[T,, T,
which implies
(3.19) IT7(Q0) =T QM s, 7,1 = co(T— 77| Qi = Qell 5,70,y -

By (3.18) and (3.19) we see that it is possible to choose a (large} p>0and a T,e[0, T]
(close to T), such that 'y, maps B,(T,, T; p) into itself and is a contraction in
B,(Ty, T; p). Thus we get a unique solution of the equation

Q=T(Q) inl[T,, TL.

Hence P:=[—A(-)*]*7'Q(-) is the unique operator-valued function that satisfies
(i)-(iii). The property P C/{[Ty, T], £(H)) follows by (3.15), whereas the property
P(t)eZ(H) is a consequence of the fact that P(+)* is also in C,([ Ty, T], £(H)}) and
satisfies (i)-(iii), so that P(£)*=P(t) in [ T,, T]. ]

Remark 3.8. Since [—A(T,)]' *P(Ty) e L(H), for each Bel—-a, (1—a)/
2[ N[0, (1~ a)/2] the operator [—A( To)*|PP( T,)[—A(T,)]? is continuous with respect
to the topology of H (see [F1, Lemma 3.3]).

The result of Proposition 3.7 justifies the following definition:

DEerFINITION 3.9. Let J be an interval in [0, T] such that T e J, We say that P is
a solution of (3.15) in J if: o

(i) Pe C(J,Z(HY)), [-A(-)*]'"*P(+) is well defined and strongly measurable

from J into 2(H), _

(if} For each re J\{T} there exists a constant ¢(7) such that

[[=A*T P sy S e(w}(T—1)7" Vie[r, T,

where y={1—a —28)v0,

(iii) (') satisfies {3.15) in J.

We must prove the existence and uniqueness of a global solution, i.e., a solution
in [0, T], of (3.15). The proof will be based on an a priori bound; to this purpose we
introduce an evolution operator which will be related to the optimal trajectories of
problem (3.10). _ ,

LEMMA 3.10. Let P be a solution of (3.13) in J. Consider the integral equation

2] Qu(s) — Qa(8)|| ey ds

t

Dt s)x = U(4, s)x+j [[—A)*' U, )*TFK(r)

(3.20) =AW POIF(r, shxdr,  tel,

where x € H. Then there exisis a unique operator-valued function ©:A; - F(H), with
Ay ={{t, ) e J*: t> s}, such that O(t, 5)x is a solution in C([s, T], H) of (3.20) for each
x € H and s € J. Moreover, ¥ is a strongly continuous evolution operasor.
Proof. Fix sel If (-, s)xe C([s, T], H), then
[—AC)*T P )D(-, s)xe L7(5, T; H)

for some p> 1/« (by Definition 3.9(ii)); thus (3.16), (3.5), (3.12}, and Lemma 3.3(i)
imply that the right-hand side of (3.20) is in C{[s, T], H). Therefore it is standard to
apply the contraction principle to (3.20), in order to get existence of a unique solution
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of (3.20)in C([s, T1, H), denoted by @(-, 5)x. The proof that @is a strongly continuous
evolution operator is classical. O
Using the evolution operator @ it is possible to rewrite the Riccati equation (3.15)
in two alternative integral forms as follows. _
Lemma 3.11. If P is a solution of (3.15) in J and T J, then for each te JN[0, T]

P(t)= fI)('I_", t)*P(T)@('I—’, H+ J. ! d(s, OF
(321) M)+ = A1 “Ps) T K () ~A(s)*] " P(s)1(s, 1) ds

T

(3.22) ()= U(T, *P(Tyo(T, t)+j. Ulo, Y*M{o)®(o, 1) do.

Proof. The proof is classical (see, e.g., [Gil, [LT1]). O

We are now able to prove the following a priori bound, which is the key point in
showing global existence.

Levaa 3.12. There exists ¢>0 with the following property: if P is a solution of
(3.15) in some interval J, then

(323) I=AN* TPl ey S «(T—0" Ve I\T}

where y=(1—a—2B)v0.

Proof. Of course (3.23) is obvious if te JN[T,, TL, with T, given by Proposition
3.7. Thus we may confine ourselves to consider the interval FN[0, Ty].

Our first step consists in showing that there exists ¢ 0, independent of P and J,
such that

(324) uP(I)ngg(H)i ¢ Yitel
Indeed, choose T= T in Lemma 3.11: by (3.21) we have
(3.25) P(y=z0 VYield,

moreover, by {3.15) we get
T
(P(Ox|x)p = || PYRUCT, x| % +J. | M{sY2U (s, £)x |4 ds
1
=c|x||} VxeH, Vield,

with ¢ independent of P and J. Thus (3.24) follows by (3.25). Next, by (3.22) we
deduce for s, te JN[O, Tol, s=t:

[= A P()B(1, 5) =[~A@*] U (To, 1) P To)&( Ty, 5)
(3.26) + j ' [—A(*]'"“U{a, 1)* M (o) P(o, 5) do

= I](Ia S] + IZ(I: S)a
where T, is taken as in Proposition 3.7. By (3.21) and (3.24) we obtain a first estimate:
TD
I I K (Y- A P()D(L, x| disclx|y YxeH,

5

(3.27) V¥seJ N[0, Tl

with ¢ independent of 5 e JNI0, Tyl and x € H.
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The proof now proceeds in the following manner. Starting from (3.27), we will
apply a bootstrap process in order to get more and more summability for the function
[—A()*}*P(-)®(-, s}x in the interval J([s, Ty], where seJ[0, T,). Our final
goal is the estimate

(3.28) (=AM TP, s)x|lu=clxlla VxecH, Vs tcJN[0, T], s=t,

with ¢ independent of x, P, s, ¢, and J: choosing in (3.28) s =1, (3.23) will follow, thus
completing the proof of Lemma 3.12.
The bootstrap procedure works as follows. Let p e[2, oo be given, and set

p . 1
f 2,—
l—ap lpel: na_:ls
Po=

. 1
1+ ifp=—,
a

Clearly, if @ <[3,1] we have 1/a=2 so that p,=-+c0 whatever be p. If otherwise
a €10,3[, then

2
o 4o [ 1]
1—ap 1-2a Pe|%y

(3.29) Po—p

Assuming the truth of the estimate (¢ independent of x, P, s, J)
(3'30) H{_A(')*]l_ap(')d)('sS)x” LP(S,TO;H)gc”x"H VXEH, VSEJO[Os TO],

we will prove the same estimate with p replaced by p;. This argument starts with p =2,
in which case we assume (3.27) instead of (3.30), and stops afier a finite number of
iterations (by virtue of (3.29)), the final estimate being {3.28). Suppose that (3.30)
holds for a certain p=2: by (3.26) it is enough to show that

(3.31) 155 ) 2rogs, e = el %
(3.32) 1520, $)] eoogsmyeen = €] %] .

Concerning (3.31), by (3.27), using (3.3), (3.4), and (3.17) we get

TD
[ pote s

T, ' V . Py
sefietine [ [ [ w-ni-amr-ermec axtaa | al
and a Young-type estimate [HLP, Thm. 383], along with our assumption (3.30), yields
TO
| " vote spetp ar= el

with ¢ independent of P and J {with obvious modifications if p,=0c0). The bound
(3.31) now follows by (3.4) and (3.11), applying the simplest version of Young’s
inequality.

Let us verify (3.32). First we observe that for any 5[0, 1[ and e €10, 1 — 5[ the
operator [—A(Tg)*]" ™" P(T)[—A(Ty)]" can be uniquely extended to a bounded
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linear operator in H. Indeed, by (3.15) and (3.13) we have for each x € D_acrp
[~ A(T)*]' ™" *P(To)[—A(To)]"x
=[[—A(T)* ] " U(T, T [-A(TY 1P N[-A(T)* 1 Pr)

[—A( To)*] e U(s, ToY*

M ()~ [[— AT P() K () ~A()*1" *P(s)]
[[-A(T)* T U(s, To)*T*x ds,
and hence by (3.4}, (3.13), (3.11), and Proposition 3.7
I=A(To)* 1" P(T )~ ACTo) 1"

[I-A(T)*T"U(T, To)*Tx+ f

= c{[l F(T =T "1 +(T—-T,) "]+ J (s=To) " (T—s) > ds} [ES

T
=c¢|x|u

(with ¢ independent of x, P, J). Moreover, if 5> 1/p—a we have by (3.20), (3.3),
(3.4), (3.17), and (3.30)

Ty (p=1)/p
I[—A(T)] " ®(To, $)x || e = e[ x]| e+ [J (T,— pyle-ttmp/le-D dr]

A=A PR, x| 0, mn = clxlla
(c independent of x, P, s, J). Therefore we can rewrite I,(1, 5} as
L6t s)=[[-A@®)*] ™ U(To, [~ A(T)*]" ")
AT T P(T)~A(T)]" - A(To) 7" ¥ To, 8)1;
hence if we take n€11/p—ea, 1/p[ and £€10,1/p[ we see using (3.4) that

J " [=A@)* 1 U(To, O -A(To)* 17 x| dt

TG
=¢ .[ (Ty— )% dt| x| = cf[x|1%,

since (n+ £ — a)po< 1. Thus we immediately obtain (3.32). Hence we get (3.30) with
p replaced by po; consequently (3.28) follows, and the proof of Lemma 3.12 is
complete. a

We can now prove the main result of this section.

TaeoreM 3.13 (global solution). There exists a unique solution P of equation (3.15)
in [0, T]. Moreover, it has the following properties:

(i) P(t)=0 for each t<[0, T];

(ii) P satisfies the integral Riccati equations (3.21) and (3.22),

(iii) P satisfies the bounds (3.24) in [0, T] and (3.23) in [0, T(;

(iv) Foreachn [0, 1[, the linear operator [—A()*¥]"P(1), te [0, T[, is well defined,
strongly measurable in t, and equibounded on compact subsets of [0, T[.

Proof. Let T, be given by Proposition 3.7. For each T,€[0, To[, consider the
Banach space L™(T;, To; ¥(H)) and the balls

B(T,, To; p)={Qe L™(T,, To; L(H)): |Qlit=(r, 1oy =p}, p>0.
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define the mapping [ -, on LY(T,, T,; £(H)) by
(@I = [ AGY T U(Ty, ) —A(To)*1™ ' I[—A(To)*1" *P(T) U(T,, 1)]

+ J‘ ° [—A®* ™" U (s, H* [ M(s) — Q(s)*K () Q(s)]U(s, 1) ds,
1 te[ Ty, Tol,
7,1, (Q)(To} = [~A(Ty)*]' *P(Ty).
\s in the proof of Proposition 3.7, we have
IT 7 7 QM| c=r, 7oy = ei|[[=A(TR)* T PLTo} | oy + €2
3.33) - + e To— 1) Ql2=cr, 1503y »
YQeL™(T,, To; £(H)),

HI‘TI,TG(Ql) ““FT. ,T.}(Qz)

= eop(To— T Q1= Qall gz iy YO, Qr€ L°(T, Toy F{H));
ere ¢, * - *, €4 are constants independent of Ty, T;. Using the a priori bound (3.23),
y (3.33) and (3.34) we see that we can select p=>0 and T, ¢ |0, T, such that:
(a) To,— T, and p are independent of T,;
(b) I'r, r, is a contraction which maps B(T,, Ty; p) into itself. Thus there exists
unique solution @ of the equation

Q= FT.,TO(Q)

1 the space L™(T,, Ty; £(HY)), and this procedure can be repeated in the interval
T, —(Ty—T,), T1], and so on, with constant step. As in the proof of Proposition 3.7,
7e conclude that there exists a unique solution P of (3.15) in [0, T7.

Finally, property (i) follows by (3.25), and similarly properties (ii) and (iii) are
roved in Lemmas 3.11 and 3.12. As to (iv), it is sufficient to use (3.4), (3.11) and the
st assertion of Lemma 3.10 in equation (3.22) with T'= T, ]

| LT, Toi E(H))

3.34)

3.3. Synthesis. The results of the preceding section lead to the following theorem.
TueoreM 3.14. Let yo& H be given. Then:

(i) There exists a unique optimal control iiye L*(0, T; U) for problem (3.10);

(ii} Denoting by P(-} the solution of the Riccati equation (3.15), we have

3.35) T(dg) = (P{O)yo|yo)ur ;

(ili) Ifyoe L*(0, T; HY) is the optimal trajectory, .., the solution of the state equation
3.1) corresponding to ii(+), we have the feedback formula for Giy( - ):

3.36) Uo(1) = N(6) "Gty AQ)* P(1) ¥o(1),  tel0, T[;
{(iv) The aptimal trajectory $,(+) is expressed by
1.37) Fo() = D(t, 0}y,

here ©(i, 8} is defined by the integral equation (3.20) with J=[0, T];
(v) The optimal pair (ily, §5) is characterized by the following optimality system:
T
Yo(t) = U(1,0) Yo—J U(t, 5)A(s)G(s5) Uo(s) ds,
0
3.38) fo(t) = N(1) 7' G(t)* A(2)*p(1), tef0, T[,
T

p()=U(T, t)*Prﬁo(T)"l'J U(s, 1)*M(s)fo(s) ds.

!
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In (3.36) and (3.38) we have set
(3.39) G()* A(t)* = —[[— A * G -AW®*]

as both operators P(z), U(r, t)* (with r> 1} have their range contained in Do
for each 5 € [0, 1[, both (3.36) and (3.38) are meaningful.
Proof. Recalling (3.39), set

(3.40) ito(£) = N{) T 'G)* Aty P(1)D(1, 0} Yo

note that d,e L*(0, T; U) because of (3.23} (since 2(1 —~a —2B)<1) and Lemma 3.10
(with J=[0, T]). Now let 5,(-) be the function (3.1) corresponding to #io{-). Then
$oe L’(0, T'; H) by Lemma 3.3(i). Moreover, compating (3.1) with (3.20), and taking
into account (3.16), we see that (3.37) holds. Consequently (3.40) implies (3.36). In
addition, evaluating P(0) Y, by means of (3.21) with T =T, we easily check that (3.35)
also holds. Next, setting p(f) = P(1) Yo(1), (3.40) and (3.37) immediately yield

Oo(1) = N(£) P G(O)* A(e)*p(2);

on the other hand, by (3.37) and (3.22) with T =T we obtain the last equation in
(3.38), so that the pair (i, jio) satisfies (3.38).

In order to conclude the proof of the theorem, it is sufficient to show that:

(a) If (i, o) is a solution of the system (3.38) in L0, T; U)x L*0, T; H), then
{7, is an optimal control;

(b) The optimal control is unique.
From the equality

(21121)_(Zzlzz);(zl‘zzlzl_zz)‘*'z Re (Zz|zl_zz),

which holds true for any inner product, we derive for each ue LX0, T; U), denoting
by p(-) the corresponding function (3.1)

(3.41) j(u)*J(ﬁo):L(”, o)+ Ly(u, i),

where J(-) is the cost functional appearing in {(3.10) and
T v
me=jﬁmmwrﬁmmm—mmﬂ

+ (N()[(t) — do( )] u () = Go(£)) s} dt
(P — P TP (T) = Yo T,

L{(u, i) =2Re f (M) Yol D)y () = o)) + (N()o(1} | u(1) = do()) } dt

+2Re (PrVo(T) | p(T)— Yol THar

Now, using (3.1) and integrating by parts,
T

Iz(u,ﬂo)=2ReJ {—J (M(1) VoD U (1, ) Al5) G(8)u(5) = ihol5)]) s

]

+(N(s)do(s) | u(5) = dols)) &

—(PrYo(TY U(T, $)A(s) G(s)[u(s) ﬁo(S)])H} ds,




BOUNDARY CONTROL FOR PARABOLIC SYSTEMS 117

nd by the last two identities in (3.38) we easily get

T
I{u, iip) =2 Re J‘ (—G(Y*A(s)*p(s)+ N(8)iho(s) | u(s) = do(s)) s ds =0.

0

On the other hand, clearly, I,(u, #,)=0, so that (3.41.-) yields

Jw)z () YueLX0,T; U),
.e., iy is an optimal control. This proves (a).
Finally, if @ is another optimal control, the equality J(d,) = J(a) implies
Il(ﬁ: ﬁ()) = 05

ind by the uniform coerciveness of N(f) (see (3.12)) we obtain @ = #,. This proves
b). The proof of Theorem 3.14 is complete. d
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