
Chapter 2.7
Angular derivatives

As we have already said several times, this book is mainly devoted to three theorems: the
Wolff-Denjoy theorem, Shields’ theorem, and the Julia-Wolff-Carathéodory theorem. In
chapter 2.4 we followed the Wolff-Denjoy theorem up to its final version in convex domains;
in chapter 2.5 we worked out the generalization of Shields’ theorem. In this chapter we
shall deal with the Julia-Wolff-Carathéodory theorem, picking up the last loose threads,
and ending the book.

Our plan of attack is divided into three parts. First of all, we shall define K-regions
in generic bounded domains. The trick is the same used for the horospheres in chapter 2.4:
they are defined by means of certain limits expressed via the Kobayashi distance. Using
K-regions we can define K-limits in strongly convex domains; in particular, we shall show
that in Theorem 2.4.16, if D is strongly convex, we can infer the existence of the K-limit
at the point x ∈ @D, a much stronger statement than the existence of the non-tangential
limit.

The second part concerns restricted K-limits and the Lindelöf theorem. Using com-
plex geodesics, we shall define special and restricted curves in a strongly convex domain
(cf. section 2.2.3), and we shall prove a Lindelöf theorem for (not necessarily) bounded
holomorphic functions in a strongly convex domain, having exactly the same statement as
Theorem 2.2.25.

Finally, in the third part we shall deal with the main theorem. The idea is that the
right statement must be the one of Theorem 2.2.29, expressed in another language: we
must replace radial approach by approach along complex geodesics, vectors orthogonal
to x ∈ Bn by vectors tangent to @D, and orthogonal projections by holomorphic retrac-
tions associated to complex geodesics. In this way we can preserve the main features of
Theorem 2.2.29 in the new setting, and we can naturally apply the Julia lemma described
in chapter 2.4. However, the actual proof remains quite a difficult task, requiring a very
accurate investigation of the boundary behavior of the objects involved. It will be needed,
in a decisive way, Theorem 2.3.70; indeed, it will turn out that the different behavior of
the Kobayashi metric along normal and complex tangential directions is the reason behind
the different exponents appearing both in Theorem 2.2.29 and in the statement of the
Julia-Wolff-Carathéodory theorem for strongly convex domains.

2.7.1 K-regions

In section 2.4.2 we defined the small horosphere ED
z0

(x,R) and the big horosphere FD
z0

(x,R)
in a domain D ⊂⊂ Cn of center x ∈ @D, radius R > 0 and pole z0 ∈ D. If the domain D
is clearly indicated by the context, we shall often drop the superscript D by the notation;
on the other hand, if the domain D is an euclidean ball and the pole z0 is the center of
the ball, we shall often drop the subscript z0.
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In this section we shall be mainly concerned with another related concept. The small
K-region HD

z0
(x,M) and the big K-region KD

z0
(x,M) of vertex x ∈ @D, amplitude M > 0

and pole z0 ∈ D are given by

HD
z0

(x,R) =
©
z ∈ D

ØØ lim sup
w→x

£
kD(z, w)− kD(z0, w)

§
+ kD(z0, z) < log M

™
,

KD
z0

(x,R) =
©
z ∈ D

ØØ lim inf
w→x

£
kD(z, w)− kD(z0, w)

§
+ kD(z0, z) < log M

™
.

Clearly, we shall often write Hz0(x,M) and Kz0(x,M), as well as HB(x,M) and KB(x,M)
in an euclidean ball B if the pole is the origin.

Since for any z, z0, w ∈ D we have

|kD(z, w)− kD(z0, w)| ≤ kD(z0, z),

it follows that

0 ≤ lim inf
w→x

£
kD(z, w)− kD(z0, w)

§
+ kD(z0, z)

≤ lim sup
w→x

£
kD(z, w)− kD(z0, w)

§
+ kD(z0, z) ≤ 2 kD(z0, z).

The next lemma collects several elementary properties of K-regions:

Lemma 2.7.1: Let D be a bounded domain of Cn, z0 ∈ D and x ∈ @D. Then:

(i) for every M > 0 we have Hz0(x,M) ⊂ Kz0(x,M);
(ii) for every 0 < M1 < M2 we have

Hz0(x,M1) ⊂ Hz0(x,M2) and Kz0(x,M1) ⊂ Kz0(x,M2);

(iii) Hz0(x,M) = Kz0(x,M) = /∞ if M ≤ 1;
(iv) Bk

°
z0,

1
2 log M) ⊂ Hz0(x,M) for all M > 1;

(v)
S

M>1
Hz0(x,M) =

S
M>1

Kz0(x,M) = D;

(vi) for every M > 1 we have Hz0(x,M) ⊂ Ez0(x,M2) and Kz0(x,M) ⊂ Fz0(x,M2);
(vii) for every M > 1 and R > 0 set r = 1

2 log(M2/R); then

Hz0(x,M) \ Bk(z0, r) ⊂ Ez0(x,R) and Kz0(x,M) \ Bk(z0, r) ⊂ Fz0(x,R).

Proof: Everything immediately follows from the definitions, q.e.d.

The dependence of K-regions on the pole is quite inessential:
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Lemma 2.7.2: Let D be a bounded domain in Cn, z0 ∈ D and x ∈ @D. Then:

(i) if ϕ:D → D is an automorphism of D continuous up to the boundary then for
all M > 1 we have

ϕ
°
Hz0(x,M)

¢
= Hϕ(z0)

°
ϕ(x),M

¢
and ϕ

°
Kz0(x,M)

¢
= Kϕ(z0)

°
ϕ(x),M

¢
;

(ii) choose z1 ∈ D and set

log L = lim sup
w→x

£
kD(z1, w)− kD(z0, w)

§
+ kD(z0, z1) ≥ 0.

Then for any M > 1 we have Hz1(x,M) ⊂ Hz0(x,LM) and Kz1(x,M) ⊂ Kz0(x,LM).

Proof: (i) Obvious.
(ii) We have

kD(z, w)− kD(z0, w) =
£
kD(z, w)− kD(z1, w)

§
+

£
kD(z1, w)− kD(z0, w)

§
;

hence
lim sup

w→x

£
kD(z, w)− kD(z0, w)

§
+ kD(z0, z)

≤ lim sup
w→x

£
kD(z, w)− kD(z1, w)

§
+ kD(z1, z) + log L.

Analogously,

kD(z, w)− kD(z1, w) =
£
kD(z, w)− kD(z0, w)

§
+

£
kD(z0, w)− kD(z1, w)

§
,

and hence
lim inf
w→x

£
kD(z, w)− kD(z1, w)

§
+ kD(z1, z)

≥ lim inf
w→x

£
kD(z, w)− kD(z0, w)

§
+ kD(z0, z)− log L,

q.e.d.

Now we wish to have a better idea of the shape of K-regions. We start by showing
that in Bn they are exactly the Korányi regions introduced in section 2.2.3 (and indeed
K stands for Korányi):

Proposition 2.7.3: Let x ∈ @Bn. Then for every M > 1 we have

HBn

0 (x,M) = KBn

0 (x,M) =
Ω

z ∈ Bn

ØØØØ
|1− (z, x)|

1− kzk < M

æ
.

Proof: In Proposition 2.2.20 we showed that for all z ∈ Bn

lim
w→x

£
kBn(z, w)− kBn(0, w)

§
= 1

2 log
|1− (z, x)|2

1− kzk2 ;

since
kBn(0, z) = 1

2 log
1 + kzk
1− kzk ,

the assertion follows, q.e.d.
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Therefore we explicitely know the K-regions in Bn. Using Proposition 2.4.12, the in-
terested reader can investigate the (quite complicated) shape of K-regions in ∆n; however,
here we shall be mainly concerned with K-regions in strongly (pseudo)convex domains,
whose shape is suggested by the following result and by Proposition 2.7.6:

Proposition 2.7.4: Let D ⊂⊂ Cn be a strongly pseudoconvex domain, and choose z0 ∈ D
and x ∈ @D. Then there are an euclidean ball B contained in D, tangent to @D at x, and
a constant ε0 > 0 such that

∀M > 1 KB(x, ε0M) ⊂ HD
z0

(x,M). (2.7.1)

Proof: Let ε > 0 be given by Theorem 2.3.56; then, recalling Theorems 2.3.51 and 2.3.52,
for every z ∈ B(x, ε) we have

lim sup
w→x

£
kD(z, w)− kD(z0, w)

§
+ kD(z0, z) ≤ 1

2 log
µ

1 +
kz − xk
d(z, @D)

∂
+ 1

2 log
kz − xk
d(z, @D)

+ C,

(2.7.2)
for a suitable constant C ∈ R depending only on x and z0.

Let B be an euclidean ball tangent to @D at x and contained in D ∩B(x, ε); then

∀M > 1 KB(x,M) =
Ω

z ∈ B

ØØØØ
kz − xk
d(z, @B)

< M

æ
. (2.7.3)

Fix M > 1, write C = − log ε1 and set ε0 = ε1/2. If ε1M − 1 ≤ 1, then ε0M ≤ 1,
KB(x, ε0M) = /∞ and (2.7.1) is trivially satisfied. So assume ε1M − 1 > 1; in particular,

ε0M < ε1M − 1. (2.7.4)

Take z ∈ KB(x, ε0M). By (2.7.4), z ∈ KB(x, ε1M − 1); hence, since d(z, @B) ≤ d(z, @D),
(2.7.2) and (2.7.3) yield

lim sup
w→x

£
kD(z, w)− kD(z0, w)

§
+ kD(z0, z) < 1

2 log
∑
M

µ
M − 1

ε1

∂∏
< log M,

and (2.7.1) follows, q.e.d.

An immediate consequence is

Corollary 2.7.5: Let D ⊂⊂ Cn be a strongly pseudoconvex domain. Then for any z0 ∈ D
and x ∈ @D there exists ε0 > 0 such that

∀M > 1/ε0 Hz0(x,M) ∩ @D = Kz0(x,M) ∩ @D = {x}.

Proof: Let ε0 > 0 be given by Proposition 2.7.4; then x ∈ Hz0(x,M) as soon as ε0M > 1.
On the other hand, Lemma 2.7.1.(vi) yields Kz0(x,M) ⊂ Fz0(x,M2); hence the assertion
follows from Theorem 2.4.14, q.e.d.
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Later on we shall see that, for strongly convex domains, in the latter statement we
can replace ε0 by 1; see Proposition 2.7.8.(iii).

To control the shape of K-regions from the other side, we need a slight restriction: if
D should be contained in an euclidean ball tangent to D at a point x ∈ @D, then D should
be strongly convex near x. Therefore we have the following statement:

Proposition 2.7.6: Let D ⊂⊂ Cn be a C2 domain, and choose z0 ∈ D and x ∈ @D.
Assume that D is strongly convex near x, and let B be an euclidean ball containing D and
tangent to @D at x. Then there exists ε0 > 0 such that

∀M > 1 HD
z0

(x,M) ⊂ KB(x,M/ε0).

Proof: Let nx denote the outer unit normal vector to @D (and @B) at x, and for every δ > 0
set zδ = x− δnx. Choose σ > 0 so that zσ is in D and lies between x and the center of B.
If r is the radius of B, for δ < σ we have

kB(zσ, zδ) ≥ 1
2 log

σ

2− σ/r
− 1

2 log δ ≥ 1
2 log

σ

2
− 1

2 log δ.

Now, Theorem 2.3.51 provides us with c > 0 independent of δ such that

kD(zσ, zδ) ≤ 1
2 log c− 1

2 log d(zδ, @D) = 1
2 log c− 1

2 log δ,

where the latter equality holds for δ small.
Therefore if z ∈ D we have

lim
δ→0

£
kB(z, zδ)− kB(zσ, zδ)

§
+ kB(zσ, z)

≤ lim sup
D3w→x

£
kD(z, w)− kD(zσ, w)

§
+ kD(zσ, z) + 1

2 log
σ

2c
.

In other words we have shown that

∀M > 1 HD
zσ

(x,M) ⊂ KB
zσ

(x,M/ε1),

where ε1 = (2c/σ)1/2. Hence Lemma 2.7.2.(ii) implies that ε0 = L1ε1/L2 is as we need,
where 1

2 log L1 is the Kobayashi distance in B between zσ and the center of B, and

log L2 = lim sup
D3w→x

£
kD(zσ, w)− kD(z0, w)

§
+ kD(z0, zσ),

q.e.d.

We end this section with a couple of remarks regarding K-regions in strongly convex
domains. First of all, recalling Theorem 2.6.47 we immediately have
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Proposition 2.7.7: Let D ⊂⊂ Cn be a strongly convex C3 domain. Then for any z0 ∈ D,
x ∈ @D and M > 1 we have

Hz0(x,M) = Kz0(x,M).

Proof: Indeed Theorem 2.6.47 implies the existence of the limit in the definition of K-
regions, q.e.d.

Secondly, we can also correlate horospheres, K-regions and complex geodesics (cf. The-
orem 2.6.45):

Proposition 2.7.8: Let D ⊂⊂ Cn be a strongly convex C3 domain; fix z0 ∈ D, x ∈ @D
and let ϕx ∈ Hol(∆,D) be the unique complex geodesic such that ϕx(0) = z0 and
ϕx(1) = x. Then for all R > 0 and M > 1 we have:

(i) ϕx

°
E∆(1, R)

¢
= ϕx(∆) ∩ED

z0
(x,R);

(ii) ϕx

°
K∆(1,M)

¢
= ϕx(∆) ∩KD

z0
(x,M);

(iii) ϕx(0, 1) ⊂ KD
z0

(x,M). In particular, KD
z0

(x,M) ∩ @D = {x} for all M > 1.

Proof: Since ϕx(t) → x as t → 1, Theorem 2.6.47 yields

lim
w→x

£
kD(z, w)− kD(z0, w)

§
= lim

t→1

£
kD

°
z, ϕx(t)

¢
− ω(0, t)

§
. (2.7.5)

Then for any ≥ ∈ ∆ we have

lim
w→x

£
kD

°
ϕx(≥), w

¢
− kD(z0, w)

§
= lim

t→1

£
ω(≥, t)− ω(0, t)

§
= 1

2 log
|1− ≥|2
1− |≥|2 ,

and
kD

°
z0, ϕx(≥)

¢
= ω(0, ≥) = 1

2 log
1 + |≥|
1− |≥| ,

and the assertions follow, q.e.d.

2.7.2 The Lindelöf theorem

In this section we shall prove two Lindelöf’s theorems in strongly convex domains, gener-
alizing both Theorem 2.2.25 and Proposition 2.2.26.

We start by recalling some facts from chapter 2.6. From now on, D will be a bounded
strongly convex C3 domain of Cn, and z0 a fixed point of D, the pole. For each x ∈ @D
let ϕx ∈ Hol(∆,D) be the unique complex geodesic such that ϕx(0) = z0 and ϕx(1) = x
(cf. Theorem 2.6.45); we recall that ϕx ∈ C1(∆), by Theorem 2.6.43. Associated to ϕx

there is the dual map ϕ∗x ∈ A1
n(∆), normalized so that ϕ∗x(1) = nx, where nx is, as

usual, the outer unit normal vector to @D at x; note that this is not the normalization
used in chapter 2.6. Finally, denote by p̃x, respectively px, the left inverse of ϕx and the
holomorphic retraction associated to ϕx.
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A x-curve is a continuous curve σ: [0, 1) → D such that σ(t) → x as t → 1. If σ is a
x-curve, we shall set σx = px ◦ σ, and σ̃x = p̃x ◦ σ; σx is a x-curve in ϕx(∆), and σ̃x is a
1-curve in ∆.

To generalize Theorem 2.2.25, we must single out two particular classes of curves. A
x-curve σ is special if

lim
t→1

kD

°
σ(t), σx(t)

¢
= 0, (2.7.6)

and it is restricted if σx → x non-tangentially; note that, since ϕx(∆) is transversal to @D
(by Lemma 2.6.33), σ is restricted iff σ̃x → 1 non-tangentially.

We shall say that a function f :D → C has restricted K-limit L ∈ C at x ∈ @D if
f
°
σ(t)

¢
→ L as t → 1 for any restricted special x-curve σ; we shall write

K0-lim
z→x

f(z) = L.

We are now able to prove the announced generalization of the classical Lindelöf theorem:

Theorem 2.7.9: Let D ⊂⊂ Cn be a strongly convex C3 domain, and x ∈ @D. Let
f :D → C be a bounded holomorphic function, and assume there is a special x-curve σo

such that
lim
t→1

f
°
σo(t)

¢
= L ∈ C (2.7.7)

exists. Then f has restricted K-limit L at x.

Proof: Clearly we can assume f(D) ⊂⊂ ∆. Let σ be any special x-curve. Since

ω
°
f
°
σ(t)

¢
, f

°
σx(t)

¢¢
≤ kD

°
σ(t), σx(t)

¢
,

it follows that the limit of f
°
σ(t)

¢
as t → 1 exists iff the limit of f

°
σx(t)

¢
as t → 1 exists,

and the two are equal.
In particular, (2.7.7) implies that

lim
t→1

f
°
σo

x(t)
¢

= L.

But then, if σ is a restricted x-curve Theorem 1.3.23 applied to f ◦ ϕx implies

lim
t→1

f
°
σx(t)

¢
= L,

and so, by the previous observation, f
°
σ(t)

¢
→ L as t → 1 for any restricted special

x-curve σ, q.e.d.

Two observations are in order. First of all, the definition (2.7.6) of a special curve is
global, depending on the globally defined Kobayashi distance of the domain, whereas the
existence of a limit at a boundary point should be a purely local fact. The contrast is only
apparent: indeed, the localization principle for the Kobayashi distance Theorem 2.3.65
shows that a x-curve σ is special iff

lim
t→1

kD∩V

°
σ(t), σx(t)

¢
= 0

for any (and hence all) neighbourhood V of x in Cn.
Second, our Theorem 2.7.9 recovers Čirka’s Theorem 2.2.25. Indeed, it suffices to

show that a x-curve in Bn is special in this new sense iff it satisfies (2.2.33):
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Proposition 2.7.10: Fix a point x ∈ @Bn. Then a x-curve σ is special iff

lim
t→1

kσ(t)− σx(t)k2
1− kσx(t)k2 = 0.

Proof: The complex geodesic ϕx:∆ → D is given by ϕx(≥) = ≥x, and the associated
holomorphic retraction is px(z) = (z, x)x. In particular, σx = (σ, x)x and

(σ, σx) = |(σ, x)|2 = kσxk2.

Now, for any z ∈ Bn let ∞z:Bn → Bn be an automorphism of Bn such that ∞z(z) = 0.
Then

kBn

°
σ(t), σx(t)

¢
= 1

2 log
1 +

∞∞∞σ(t)

°
σx(t)

¢∞∞

1−
∞∞∞σ(t)

°
σx(t)

¢∞∞ → 0

as t → 1 iff
∞∞∞σ(t)

°
σx(t)

¢∞∞ → 0 as t → 1. Since

1−
∞∞∞σ(t)

°
σx(t)

¢∞∞2 =
°
1− kσ(t)k2

¢°
1− kσx(t)k2

¢
ØØ1−

°
σ(t), σx(t)

¢ØØ2
=

1− kσ(t)k2

1−
ØØ°σ(t), x

¢ØØ2
, (2.7.8)

it follows that

∞∞∞σ(t)

°
σx(t)

¢∞∞2 =
∞∞σ(t)

∞∞2 −
ØØ°σ(t), x

¢ØØ2

1−
ØØ°σ(t), x

¢ØØ2
=
kσ(t)− σx(t)k2
1− kσx(t)k2 ,

and we are done, q.e.d.

In other words, in Bn a x-curve σ is special iff kσ − σxk2 goes to 0 faster than the
distance of σx from the boundary. This is what happens in general:

Proposition 2.7.11: Let D ⊂⊂ Cn be a strongly convex C3 domain, and fix z0 ∈ D
and x ∈ @D. Let σ be a restricted x-curve. If σ is special, then

lim
t→1

kσ(t)− σx(t)k2

d
°
σx(t), @D

¢ = 0. (2.7.9)

Conversely, if (2.7.9) holds and there is an euclidean ball B ⊂ D tangent to @D at x such
that σ(t) ∈ B eventually, then σ is special.

Proof: Assume σ special. Up to a translation and a rescaling, we can assume D ⊂ Bn and
that D and Bn are tangent to each other at x. Since σ is restricted, σx is non-tangential;
so we can replace d

°
σx(t), @D

¢
by d

°
σx(t), @Bn

¢
in the assertion, and we should show that

lim
t→1

kσ(t)− σx(t)k2
1− kσx(t)k2 = 0, (2.7.10)
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knowing that kD

°
σ(t), σx(t)

¢
→ 0 as t → 1. Since kBn ≤ kD, this implies, as in (2.7.8),

1−
°
1− kσ(t)k2

¢°
1− kσx(t)k2

¢
ØØ1−

°
σ(t), σx(t)

¢ØØ2
→ 0.

Therefore it suffices to show that there exists ε > 0 such that

∑
1−

°
1− kσ(t)k2

¢°
1− kσx(t)k2

¢
ØØ1−

°
σ(t), σx(t)

¢ØØ2

∏
· 1− kσx(t)k2
kσ(t)− σx(t)k2 ≥ ε (2.7.11)

for all t close enough to 1 and so that σ(t) 6= σx(t).
Analogously, if (2.7.9) holds and there is an euclidean ball B ⊂ D tangent to @D at x

such that σ(t) ∈ B eventually (and we can assume B = Bn), then (2.7.10) still holds.
Furthermore, if there is M < +1 such that

∑
1−

°
1− kσ(t)k2

¢°
1− kσx(t)k2

¢
ØØ1−

°
σ(t), σx(t)

¢ØØ2

∏
· 1− kσx(t)k2
kσ(t)− σx(t)k2 ≤ M (2.7.12)

it follows that
lim
t→1

kB

°
σ(t), σx(t)

¢
= 0;

but kB ≥ kD, and the converse assertion follows too.
So it remains to prove (2.7.11) and (2.7.12), assuming (as we may) kxk = 1 and nx = x.
For the sake of simplicity, we shall drop t in the following computations. We have

∑
1−

°
1− kσk2

¢°
1− kσxk2

¢
ØØ1−

°
σ, σx

¢ØØ2

∏
· 1− kσxk2
kσ − σxk2

=
∑

1− kσxk2
|1− (σ, σx)|

∏2 1
kσ − σxk2

∑
|1− (σ, σx)|2
1− kσxk2

− (1− kσk2)
∏
.

Now
|1− (σ, σx)|2
(1− kσxk2)2

=
|1− kσxk2 + (σx − σ, σx)|2

(1− kσxk2)2
=

ØØØØ1 +
(σx − σ, σx)
1− kσxk2

ØØØØ
2

.

By definition,

|(σx − σ, σx)| =
ØØ≠σx − σ, σx − ϕ∗x(σ̃x)

ÆØØ ≤ kσ − σxk ·
∞∞σx − ϕ∗x(σ̃x)

∞∞. (2.7.13)

Now let √ ∈ C1(∆) be given by √ = ϕ∗x − ϕ. Clearly, √(1) = 0; hence

∞∞σx − ϕ∗x(σ̃x)
∞∞ = k√(1)− √(σ̃x)k ≤ c1|1− σ̃x| = c1|p̃x(x)− p̃x(σx)|

≤ c2kx− σxk ≤ c3(1− kσxk2),
(2.7.14)
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for suitable c1, c2, c3 > 0, because √ and p̃x are C1 functions, and σx goes to x non-
tangentially. Therefore

|1− (σ, σx)|2
(1− kσxk2)2

= |1 + o(1)|2. (2.7.15)

Write σ = ≥σx + v, where v is orthogonal to σx. Since σ − σx → 0, it is clear that
≥ → 1 and v → 0. Then

|1− (σ, σx)|2
1− kσxk2

− (1− kσk2) =
kσ − σxk2 + |(σ, σx)|2 − kσk2kσxk2

1− kσxk2

=
|1− ≥|2kσxk2

1− kσxk2
+ kvk2

and
kσ − σxk2 = |1− ≥|2kσxk2 + kvk2.

By definition we have
≠
σ − σx, ϕ∗x(σ̃x)

Æ
≡ 0, that is

(1− ≥)
≠
σx, ϕ∗x(σ̃x)

Æ
=

≠
v, ϕ∗x(σ̃x)

Æ
.

Since ϕ∗x 6= 0, (v, σx) ≡ 0, σx → x and ϕ∗x(σ̃x) → x as t → 1, it follows that

|1− ≥| = o(1)kvk;

in particular, there are c4, c5 > 0 such that

c4kvk ≤ kσ − σxk ≤ c5kvk.

Furthermore, recalling (2.7.13) and (2.7.14) it follows that

|1− ≥| =
|(σx − σ, σx)|

kσxk2
≤ c6kσ − σxk(1− kσxk2) ≤ c5c6kvk(1− kσxk2),

for a suitable c6 > 0.
Putting all together we get

1
c2
5

≤ 1
kσ − σxk2

∑
|1− (σ, σx)|2
1− kσxk2

− (1− kσk2)
∏
≤ 1

c2
4

£
1 + o(1)

§
; (2.7.16)

so (2.7.11) and (2.7.12) follow from (2.7.15) and (2.7.16), and we are done, q.e.d.

Since we introduced a restricted K-limit, there should exist a K-limit. The definition
is very natural: we say that a function f :D → C admits K-limit L ∈ C at x ∈ @D if
f(z) → L as z → x within Kz0(x,M) for all M > 1; here z0 is any point of D. Clearly, by
Lemma 2.7.2.(ii), this definition does not depend on z0.

To study the relations among K-limits, restricted K-limits and non-tangential limits
we need a definition and one lemma.

Let D ⊂⊂ Cn be a strongly convex C3 domain, and fix z0 ∈ D. If σ is a x-curve,
σx is non-tangential iff

lim
t→1

£
kD

°
σx(s), ϕx(t)

¢
− ω(0, t)

§
+ kD

°
z0, σx(s)

¢
< log M

for some M > 1 and every s ∈ [0, 1), by (2.7.5); we shall say that σ is M -restricted.
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Lemma 2.7.12: Let D ⊂⊂ Cn be a strongly convex C3 domain; fix z0 ∈ D and x ∈ @D.
Let σ be a x-curve. Then:

(i) if σ(t) ∈ Kz0(x,M) for t close to 1, then σ is M -restricted;
(ii) if σ is special and M -restricted, then for any M1 > M we have σ(t) ∈ Kz0(x,M1) for
all t sufficiently close to 1;
(iii) every non-tangential x-curve is special and restricted.

Proof: (i) For any z ∈ D we have

lim
t→1

£
kD

°
px(z), ϕx(t)

¢
−ω(0, t)

§
≤ lim

t→1

£
kD

°
z, ϕx(t)

¢
− ω(0, t)

§

and kD

°
z0, px(z)

¢
≤ kD(z0, z) because px ◦ ϕx = ϕx, and (i) follows.

(ii) We have

kD

°
σ(s), ϕx(t)

¢
−ω(0, t) + kD

°
z0, σ(s)

¢

≤ 2 kD

°
σ(s), σx(s)

¢
+ kD

°
σx(s), ϕx(t)

¢
− ω(0, t) + kD

°
z0, σx(t)

¢
;

hence

lim
t→1

£
kD

°
σ(s), ϕx(t)

¢
− ω(0, t)

§
+ kD

°
z0, σ(s)

¢
< log M + 2 kD

°
σ(s), σx(s)

¢
,

and (ii) follows.
(iii) Let σ be a non-tangential x-curve, B ⊂ D the euclidean ball tangent to @D at x

given by Proposition 2.7.4, and ε0 > 0 the corresponding constant; up to a translation
and a rescaling, we can assume B = Bn. Since σ is non-tangential, there is M > 1 such
that σ(t) ∈ KB(x, ε0M) eventually; by Proposition 2.7.4 and part (i), σ is M -restricted.
In particular, being σx non-tangential, there is c1 > 0 such that

∀t ∈ [0, 1) kσx(t)− xk ≤ c1 d
°
σx(t), @D

¢
. (2.7.17)

Next, σ satisfies (2.2.36), for it is non-tangential; hence there is c2 > 0 such that

∀t ∈ [0, 1) kσ(t)− xk ≤ c2

ØØ1−
°
σ(t), x

¢ØØ. (2.7.18)

Now, by definition hσ, ϕ∗x ◦ σ̃xi ≡ hσx, ϕ∗x ◦ σ̃xi; then

1− (σ, x) = hσ − x, ϕ∗x ◦ σ̃x − ϕ∗x(1)i+ hx− σx, ϕ∗x ◦ σ̃xi,

and so
|1− (σ, x)| ≤ c3

£
kϕ∗x ◦ σ̃x − ϕ∗x(1)k+ kx− σxk

§
≤ c4

£
|1− σ̃x| + kx− σxk

§

≤ c5kx− σxk,
(2.7.19)

for suitable c3, c4, c5 > 0, because ϕ∗x and p̃x are C1 maps.
Putting together (2.7.17), (2.7.18) and (2.7.19) we find

kσ − σxk ≤ kσ − xk+ kx− σxk ≤ c6 d(σx, @D),

for a suitable c6 > 0; hence

lim
t→1

kσ(t)− σx(t)k2

d
°
σx(t), @D

¢ = 0,

and, by Proposition 2.7.11, σ is special, q.e.d.
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So Lemma 2.7.12 shows that K-limit implies restricted K-limit, and that restricted
K-limit implies non-tangential limit, exactly as in the ball.

We end this section proving a Lindelöf theorem for not necessarily bounded holomor-
phic functions, generalizing Proposition 2.2.26. We shall say that a function f :D → C is
K-bounded at x ∈ @D if f is bounded in every K-region Kz0(x,M), where z0 is any point
of D; it is clear that this definition does not depend on z0. Then

Theorem 2.7.13: Let D ⊂⊂ Cn be a strongly convex C3 domain, and choose x ∈ @D.
Let f :D → C be a holomorphic function K-bounded at x, and assume there is a restricted
special x-curve σo such that

lim
t→1

f
°
σo(t)

¢
= L ∈ C.

Then f has restricted K-limit L at x.

Proof: First of all, we claim that if σ is a M -restricted special x-curve, then there ex-
ists M0 > M such that

lim
t→1

kKz0 (x,M0)

°
σ(t), σx(t)

¢
= 0. (2.7.20)

Let B ⊂ D be the euclidean ball tangent to @D at x given by Proposition 2.7.4, and ε0 > 0
the corresponding constant. Choose M1 > M so that M1ε0 > M ; in particular,

/∞ 6= KB(x, ε0M1) ⊂ KD
z0

(x,M1).

Finally, since σx is non-tangential and σ is M -restricted, σx(t) ∈ KB(x, ε0M1) for t close
enough to 1. Choose M0 > M1.

Consider now p−1
x

°
σx(t)

¢
. By definition, p−1

x

°
σx(t)

¢
is the intersection of a com-

plex affine hyperplane with D; moreover, this hyperplane tends to the complex tangent
plane TC

x (@D) to @D at x as t goes to 1. Therefore the function

δ(t) = inf
©
kvk

ØØ σx(t) + v ∈ p−1
x

°
σx(t)

¢
∩ @KB(x, ε0M0)

™

tends to 0 at the same rate as

δ0(t) = inf
©
kvk

ØØ v ∈ TC
x (@D), σx(t) + v ∈ @KB(x, ε0M0)

™
.

On the other hand, since σx is non-tangential, δ0(t) tends to 0 at the same rate as the
function δε0M0 defined in Lemma 2.2.23 calculated in the orthogonal projection of σx(t) into
the affine line x+Cnx — it is easy to see that this projection still belongs to KB(x, ε0M1)
for σx(t) does. In conclusion

δ(t) = O
°
(1− kσx(t)k)1/2

¢
= O

°
d(σx(t), @D)1/2

¢
, (2.7.21)

again because σx is non-tangential. We point out that if v ∈ Cn is such that kvk < δ(t)
and σx(t) + v ∈ p−1

x

°
σx(t)

¢
, then σx(t) + v ∈ KB(x, ε0M0).

Now consider the map √t:C → Cn defined by

√t(≥) = σx(t) + ≥
°
σ(t)− σx(t)

¢
.
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Clearly, √t(0) = σx(t) and √t(1) = σ(t); moreover, √t(≥) belongs to the affine hyperplane
defining p−1

x

°
σx(t)

¢
for all ≥ ∈ C. Let

R(t) = sup{r > 0 | √t(∆r) ⊂ Kz0(x,M0)};

Proposition 2.7.11 and (2.7.21) imply

R(t) ≥ δ(t)
kσ(t)− σx(t)k −→ +1

as t → 1, and so (2.7.20) is proved.
In particular, (2.7.20) holds for σo, with a specific M0 > 1. On Kz0(x,M0), f is

bounded by R > 0, say; hence

k∆R

°
f
°
σo(t)

¢
, f

°
σo

x(t)
¢¢
≤ kKz0 (x,M0)

°
σo(t), σo

x(t)
¢
,

and so
lim
t→1

f
°
σo

x(t)
¢

= L. (2.7.22)

Finally, let σ be any restricted special x-curve. The classical Lindelöf Theorem 1.3.23
together with (2.7.22) implies

lim
t→1

f
°
σx(t)

¢
= L;

hence, arguing as before, we find that f
°
σ(t)

¢
→ L as t → 1, and we are done, q.e.d.

This theorem will be very handy in the next section, where we shall apply it exactly
as in section 2.2.4 we applied Proposition 2.2.26 to prove Theorem 2.2.29.

2.7.3 The Julia-Wolff-Carathéodory theorem in strongly convex
domains

We shall finally deal with the main concern of this chapter, the generalization to strongly
convex domains of the Julia-Wolff-Carathéodory theorem.

Let us fix some notations. D is still a bounded strongly convex C3 domain of Cn, and
z0 a fixed point of D. We denote by Kz0 :D → [0, 1] the function Kz0(z) = tanh

°
kD(z0, z)

¢
,

and for any x ∈ @D we write ϕx, ϕ∗x, p̃x and px for (respectively) the unique complex
geodesic such that ϕx(0) = z0 and ϕx(1) = x, its dual map, its left inverse and the
holomorphic retraction associated to ϕx. Moreover, we define the geodesic normal vector ∫x

by ∫x = ϕ0x(1). It is clear that ∫x is transversal to @D at x, but in general it is different
from the real normal vector nx. We shall use τx to denote a generic complex tangent vector
to @D at x. Finally, if f :D → D is a holomorphic map, we set fx = px ◦ f :D → D and
f̃x = p̃x ◦ f :D → ∆. Using these notations, we can state our main theorem:
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Theorem 2.7.14: Let D ⊂⊂ Cn be a strongly convex C3 domain, and fix z0 ∈ D. Let
f :D → D be a holomorphic map such that for some x ∈ @D we have

lim inf
w→x

£
kD(z0, w)− kD

°
z0, f(w)

¢§
= 1

2 log α < +1 (2.7.23)

for a suitable α > 0. Then f has K-limit y ∈ @D at x, and the following maps are
K-bounded at x:

(i)
£
1− f̃y(z)

§±£
1− p̃x(z)

§
;

(ii)
£
f(z)− fy(z)

§±£
1− p̃x(z)

§1/2
;

(iii) d
°
f̃y

¢
z

°
∫x

¢
;

(iv)
£
1− p̃x(z)

§1/2
d
°
f − fy

¢
z

°
∫x

¢
;

(v) d
°
f̃y

¢
z

°
τx

¢±£
1− p̃x(z)

§1/2
;

(vi) d
°
f − fy

¢
z

°
τx

¢
.

Furthermore, the functions (i) and (iii) have restricted K-limit α at x, and the maps (ii),
(iv) and (v) have K-limit 0 at x.

The rest of this section is devoted to the proof of this theorem. The idea is first to
use the Julia lemma proved in chapter 2.4 to show that the maps (i)-(vi) are bounded in
K-regions, next to prove that they have the stated limit along a restricted special curve —
usually t 7→ ϕx(t) —, and finally to invoke Theorem 2.7.13. From now on, we shall assume
the hypotheses of Theorem 2.7.14, without mentioning them anymore.

We begin showing that f has K-limit at x:

Proposition 2.7.15: f has K-limit y ∈ @D at x.

Proof: Let y ∈ @D be given by Theorem 2.4.16. We already know that f has non-tangential
limit y at x; we claim that f has K-limit y at x.

Fix M > 1, and let {z∫} ⊂ Kz0(x,M) be a sequence converging to x. Then, by
Lemma 2.7.1.(vii), for every R > 0 we eventually have z∫ ∈ Ez0(x,R), and so, by The-
orem 2.4.16, for every R > 0 we eventually have f(z∫) ∈ Ez0(y, αR). This implies that
every limit point of the sequence {f(z∫)} should belong to

T
R>0 Ez0(y, αR). But this

intersection is exactly {y}, by Theorem 2.4.14; hence f(z∫) → y, and the assertion follows,
q.e.d.

To deal with function (i), we need the following lemma:

Lemma 2.7.16: (i) For every R > 0 we have

px

°
Ez0(x,R)

¢
= Ez0(x,R) ∩ ϕx(∆) = ϕx

°
E∆(1, R)

¢
;

(ii) for every R > 0 we have (f̃y ◦ ϕx)
°
E∆(1, R)

¢
⊂ E∆(1, αR).

Proof: (i) This follows from px ◦ ϕx = ϕx and Proposition 2.7.8.(i).
(ii) Indeed

(f̃y ◦ ϕx)
°
E∆(1, R)

¢
⊂ p̃y

°
f
°
Ez0(x,R)

¢¢
⊂ p̃y

°
Ez0(y, αR)

¢
= E∆(1, αR),

by Proposition 2.7.8.(i), Theorem 2.4.16 and (i), q.e.d.
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Corollary 2.7.17: We have

lim
t→1

1− f̃y

°
ϕx(t)

¢

1− t
= lim

t→1
(f̃y ◦ ϕx)0(t) = α.

Proof: We have
lim inf

≥→1

£
ω(0, ≥)− ω

°
0, f̃y

°
ϕx(≥)

¢¢§
= 1

2 log α. (2.7.24)

Indeed, (2.7.23) immediately yields an inequality, and the reverse inequality follows from
Lemma 2.7.16.(ii) and Proposition 1.2.6.

Hence the assertion follows from (2.7.24) and the classical Julia-Wolff-Carathéodory
Theorem 1.2.7, q.e.d.

Since t 7→ ϕx(t) is a restricted special x-curve and t = p̃x

°
ϕx(t)

¢
, it remains to show

that the function (i) is bounded in K-regions:

Proposition 2.7.18: Take M > 1. Then for all z ∈ Kz0(x,M) we have
ØØØØ
1− f̃y(z)
1− p̃x(z)

ØØØØ ≤ 2αM2.

Proof: Let z ∈ Kz0(x,M), and set
1
2 log R = log M − kD(z0, z).

Clearly, z ∈ Ez0(x,M). Then, by Theorem 2.4.16, f(z) ∈ Ez0(y, αR); in particular, by
Lemma 2.7.16.(i), fy(z) ∈ Ez0(y, αR), and thus

lim
t→1

£
kD

°
fy(z), ϕy(t)

¢
− ω(0, t)

§
− kD

°
z0, fy(z)

¢
< log(αR),

for −kD

°
z0, fy(z)

¢
< 1

2 log(αR). Now, fy = ϕy ◦ f̃y; hence

log(αR) > lim
t→1

£
ω
°
f̃y(z), t

¢
− ω(0, t)

§
− ω

°
0, f̃y(z)

¢

= 1
2 log

|1− f̃y(z)|2

1− |f̃y(z)|2
− 1

2 log
1 + |f̃y(z)|
1− |f̃y(z)|

= log
|1− f̃y(z)|
1 + |f̃y(z)|

.

Since log R = log M2 − 2 kD(z0, z), we have

log
|1− f̃y(z)|
1 + |f̃y(z)|

< log α + log M2 − 2 kD(z0, z) ≤ log(αM2)− 2 kD

°
z0, px(z)

¢

= log(αM2)− log
1 + |p̃x(z)|
1− |p̃x(z)| ,

and so

log
ØØØØ
1− f̃y(z)
1− p̃x(z)

ØØØØ ≤ log
|1− f̃y(z)|
1− |p̃x(z)| < log

µ
αM2 1 + |f̃y(z)|

1 + |p̃x(z)|

∂
≤ log(2αM2),

q.e.d.
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Corollary 2.7.19: We have

K0-lim
z→x

1− f̃y(z)
1− p̃x(z)

= α.

Proof: Corollary 2.7.17, Proposition 2.7.18 and Theorem 2.7.13, q.e.d.

Before attacking map (ii), we need precise information about the behavior of the
function Kz0 under the projection px:

Proposition 2.7.20: For every x ∈ @D there exists cx > 0 such that

∀z ∈ D cxkz − px(z)k2 ≤ Kz0(z)2 −Kz0

°
px(z)

¢2
. (2.7.25)

Proof: We begin checking the consistency of (2.7.25). It is clear that Kz0(z) ≥ Kz0

°
px(z)

¢
;

we claim that Kz0(z) = Kz0

°
px(z)

¢
iff z = px(z), that is iff z ∈ ϕx(∆). Indeed, assume

that z ∈ D is such that Kz0(z) = Kz0

°
px(z)

¢
. There are two cases:

(a) z ∈ @D. Then Kz0(z) = 1; so px(z) ∈ @D too and, by (2.6.31), this implies
z = px(z) ∈ ϕx(@∆).

(b) z ∈ D. Let √ = p̃x ◦ ϕz. Clearly, √(0) = 0; since Kz0

°
ϕz(≥)

¢
= |≥| and

Kz0

°
px(z)

¢
= |p̃x(z)|, we have

ØØ√
°
p̃z(z)

¢ØØ = |p̃x(z)| = Kz0

°
px(z)

¢
= Kz0(z) = |p̃z(z)|;

therefore, by Schwarz’s lemma, √(≥) = eiθ≥ for some θ ∈ R and, in particular,

px ◦ ϕz(@∆) = ϕx(@∆) ⊂ @D.

By (2.6.31) it follows that ϕz(@∆) = ϕx(@∆), and so z ∈ ϕx(∆) and z = px(z).
So (2.7.25) is consistent. Now we want to prove it for z ∈ @D, where it becomes

cxkz − px(z)k2 ≤ 1−Kz0

°
px(z)

¢2
. (2.7.26)

Theorems 2.3.51 and 2.3.52 yield the existence of a constant c0x > 0 depending only on x
and z0 such that

c0x d
°
ϕx(≥), @D) ≤ 1− |≥|

for all ≥ ∈ ∆. Since px(z) ∈ ϕx(∆), it follows that

∀z ∈ @D 1−Kz0

°
px(z)

¢2 ≥ 1− |p̃x(z)| ≥ c0x d
°
px(z), @D

¢
. (2.7.27)

On the other hand, if px(z) 6= z by definition
°
z − px(z)

¢±∞∞z − px(z)
∞∞ is orthogonal to

ϕ∗x
°
p̃x(z)

¢
, and therefore it is close to a vector tangent to @D when z is close to ϕx(@∆).

Since px(z) is close to @D iff z is close to ϕx(@∆) (and thus to px(z) itself), the strong
convexity of D yields the existence of a constant c00x > 0 independing of z such that

∀z ∈ @D d(px(z), @D) ≥ c00xkz − px(z)k2, (2.7.28)
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and (2.7.26) follows from (2.7.27) and (2.7.28).
Finally, assume z ∈ D, and define F :∆ → Cn+1 by

F (≥) =
°√

cx

£
ϕz(≥)− px

°
ϕz(≥)

¢§
, p̃x

°
ϕz(≥)

¢¢
.

Then (2.7.26) says that

∀τ ∈ @∆ kF (τ)k2 ≤ 1.

Hence (note that F (0) = 0) we have F (∆) ⊂ Bn+1 and kF (≥)k2 ≤ |≥|2 for all ≥ ∈ ∆. In
particular,

cxkz − px(z)k2 + Kz0

°
px(z)

¢2 =
∞∞F

°
p̃z(z)

¢∞∞2 ≤ |p̃z(z)|2 = Kz0(z)2,

q.e.d.

This is what we need for:

Proposition 2.7.21: The map (f − fy)/(1− p̃x)1/2 is K-bounded.

Proof: By Propositions 2.7.20 and 2.7.18 there is a constant c > 0 such that for ev-
ery z ∈ Kz0(x,M) we have

kf(z)− fy(z)k2
|1− p̃x(z)| ≤ c

Kz0

°
f(z)

¢
−Kz0

°
fy(z)

¢

|1− p̃x(z)| ≤ 2αcM2 Kz0

°
f(z)

¢
−Kz0

°
fy(z)

¢

|1− f̃y(z)|
.

But now |1− f̃y(z)| ≥ 1−|f̃y(z)| = 1−Kz0

°
fy(z)

¢
; hence for every z ∈ Kz0(x,M) we have

kf(z)− fy(z)k2
|1− p̃x(z)| ≤ 2αcM2 Kz0

°
f(z)

¢
−Kz0

°
fy(z)

¢

1−Kz0

°
fy(z)

¢ ≤ 2αcM2,

q.e.d.

The proof of the existence of the limit requires

Lemma 2.7.22: We have

lim
t→1

£
kD

°
z0, ϕx(t)

¢
− kD

°
z0, fy

°
ϕx(t)

¢¢§
= 1

2 log α; (2.7.29)

lim
t→1

£
kD

°
z0, ϕx(t)

¢
− kD

°
z0, f

°
ϕx(t)

¢¢§
= 1

2 log α; (2.7.30)

lim
t→1

£
kD

°
z0, f

°
ϕx(t)

¢¢
− kD

°
z0, fy

°
ϕx(t)

¢¢§
= 0. (2.7.31)
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Proof: By (2.7.23) it follows that

lim inf
t→1

1
2 log

1−
ØØf̃y

°
ϕx(t)

¢ØØ

1− t
= lim inf

t→1

£
kD

°
z0, ϕx(t)

¢
− kD

°
z0, fy

°
ϕx(t)

¢¢§

≥ lim inf
t→1

£
kD

°
z0, ϕx(t)

¢
− kD

°
z0, f

°
ϕx(t)

¢¢§

≥ 1
2 log α;

on the other hand, by Corollary 2.7.17

lim sup
t→1

1
2 log

1−
ØØf̃y

°
ϕx(t)

¢ØØ

1− t
≤ lim

t→1

1
2 log

ØØ1− f̃y

°
ϕx(t)

¢ØØ

1− t
= 1

2 log α,

and (2.7.29) follows. Furthermore,

lim sup
t→1

£
kD

°
z0, ϕx(t)

¢
− kD

°
z0, f

°
ϕx(t)

¢¢§
≤ lim

t→1

£
ω(0, t)− ω

°
0, f̃y

°
ϕx(t)

¢¢§
= 1

2 log α,

and (2.7.30) is proved. Finally, (2.7.31) is a trivial consequence of (2.7.29) and (2.7.30),
q.e.d.

Hence

Proposition 2.7.23: We have

K0-lim
z→x

f(z)− fy(z)
°
1− p̃x(z)

¢1/2
= 0.

Proof: By Theorem 2.7.13 and Proposition 2.7.21 it suffices to show that

lim
t→1

f
°
ϕx(t)

¢
− fy

°
ϕx(t)

¢

(1− t)1/2
= 0.

Using Proposition 2.7.20 and Corollary 2.7.17 we are reduced to proving that

lim
t→1

Kz0

°
f
°
ϕx(t)

¢¢
−Kz0

°
fy

°
ϕx(t)

¢¢

1− f̃y

°
ϕx(t)

¢ = 0.

Since |1− f̃y(z)| ≥ 1− |f̃y(z)| = 1−Kz0

°
fy(z)

¢
, it suffices to show that

lim
t→1

1−Kz0

°
f
°
ϕx(t)

¢¢

1−Kz0

°
fy

°
ϕx(t)

¢¢ = 1.

Indeed, for all z ∈ D

kD

°
z0, f(z)

¢
− kD

°
z0, fy(z)

¢
= 1

2 log
1 + Kz0

°
f(z)

¢

1 + Kz0

°
fy(z)

¢ − 1
2 log

1−Kz0

°
f(z)

¢

1−Kz0

°
fy(z)

¢ ,

and the assertion follows from (2.7.31), q.e.d.
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Now we can start to deal with the differential of f . As usual, we need several prelimi-
nary lemmas. First of all, we should discuss the behavior of the Kobayashi metric ∑D(z; v)
near the boundary, beginning with

Lemma 2.7.24: Let D ⊂⊂ Cn be a strongly convex domain. Then there are a neigh-
bourhood U of @D and a constant c0 > 0 such that for every z ∈ D ∩ U and v1, v2 ∈ Cn

we have
∑D(z; v1 + v2) ≤ c0

£
∑D(z; v1) + ∑D(z; v2)

§
.

Proof: Let U be a tubular neighbourhood of @D, and choose R > r > 0 so that for
every x ∈ @D the euclidean ball BR(x), respectively Br(x), tangent to @D at x of radius R,
respectively r, contains D, respectively is contained in D ∩ U . Take z ∈ D ∩ U , and
let x ∈ @D be such that kz − xk = d(z, @D). Then for every v1, v2 ∈ Cn we have

∑D(z; v1 + v2) ≤ ∑Br(x)(z; v1 + v2) ≤ ∑Br(x)(z; v1) + ∑Br(x)(z; v2),

because ∑Br(x)(z; ·) is a norm on Cn. Now, by the choice of x,

∀v ∈ Cn ∑Br(x)(z; v) ≤ R

r
∑BR(x)(z; v);

therefore

∑D(z; v1 + v2) ≤
R

r

£
∑BR(x)(z; v1) + ∑BR(x)(z; v2)

§
≤ R

r

£
∑D(z; v1) + ∑D(z; v2)

§
,

and we are done, q.e.d.

In Theorem 2.3.70 we have shown that ∑D(z; ∫x) is of the same order as d(z, @D)−1

as z → x, and that ∑D(z; τx) is of the same order as d(z, @D)−1/2 as z → x non-tangentially.
We need a refinement of these facts:

Proposition 2.7.25: (i) ∑D(z; ∫x) d(z, @D) is bounded in every K-region Kz0(x,M);
(ii) ∑D(z; τx)2d(z, @D) is bounded in every K-region Kz0(x,M), uniformly in kτxk.

Proof: (i) This immediately follows from Theorem 2.3.70.
(ii) Since D has C2 boundary, we can extend differentiably the outer unit normal

vector field n to a neighbourhood U of @D, exactly as in section 2.3.6. Then if z ∈ U ∩D
and v ∈ Cn, there is a well-defined splitting v = vT (z) + vN (z), where vN (z) = (v,nz)nz

and vT (z) = v − vN (z). In Theorem 2.3.70 we have shown that

lim
z→x

∑D

°
z; (τx)N (z)

¢
d(z, @D) = 0, (2.7.32)

and
lim
z→x

∑D

°
z; (τx)T (z)

¢2
d(z, @D) = 1

2LD,x(τx, τx), (2.7.33)

uniformly in kτxk, where LD,x is the Levi form of D at x.
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To prove the assertion, we can restrict our attention to z ∈ Kz0(x,M) close enough
to x. For those points, Lemma 2.7.24 yields c1 > 0 such that

∑D(z; τx)2 ≤ c1

£
∑D

°
z; (τx)T (z)

¢
+ ∑D

°
z; (τx)N (z)

¢§2

≤ 2c1

£
∑D

°
z; (τx)T (z)

¢2 + ∑D

°
z; (τx)N (z)

¢2§
.

So by (2.7.33) it suffices to show that ∑D

°
z; (τx)N (z)

¢2
d(z, @D) is bounded in Kz0(x;M);

by (2.7.32) we can reduce ourselves to showing that (τx)N (z)/d(z, @D)1/2 is bounded in
all K-regions.

Now let B ⊃ D be an euclidean ball tangent to @D at x; up to a linear isomorphism
we can assume B = Bn. Since Kz0(x,M) ∩ @D = {x}, and Kz0(x,M) is contained
in Ez0(x,M2) which is, by Corollary 2.6.49, strongly convex near x, it follows that d(z, @D)
is of the same order as d(z, @B) as z goes to x within Kz0(x,M). So it remains to show
there exists C > 0 such that

∀z ∈ Kz0(x,M)
k(τx)N (z)k
d(z, @B)1/2

=
k(τx)N (z)k
(1− kzk)1/2

≤ C.

The strong convexity of D implies
∞∞∞∞nz −

z

kzk

∞∞∞∞
2

≤ c2(1− kzk)

for some c2 > 0 and for all z ∈ D sufficiently close to x. Hence
∞∞∞∞(τx)N (z)−

µ
τx,

z

kzk

∂
z

kzk

∞∞∞∞
2

≤ 4kτxk2
∞∞∞∞nz −

z

kzk

∞∞∞∞
2

≤ 4c2kτxk2(1− kzk).

Therefore it suffices to show that |(τx, z)|2/(1 − kzk) is bounded for z ∈ Kz0(x,M) close
enough to x. But indeed, recalling that (τx, x) = 0 because τx ∈ TC

x (@Bn), we have

|(τx, z)|2 = |(τx, z − (z, x)x)|2 ≤ kτxk2kz − (z, x)xk2 < kτxk2(1− |(z, x)|2)

≤ 2kτxk2|1− (z, x)| ≤ 2kτxk2M
ε0

(1− kzk),

where ε0 > 0 is given by Proposition 2.7.6, q.e.d.

We need two more lemmas:

Lemma 2.7.26: We have

∀z ∈ Kz0(x,M) kD(z0, z)− kD

°
z0, px(z)

¢
≤ log M. (2.7.34)

Proof: For any ε > 0 there is t < 1 such that

ε + log M > kD

°
z, ϕx(t)

¢
− ω(0, t) + kD(z0, z)

≥ kD

°
px(z), ϕx(t)

¢
− kD

°
z0, ϕx(t)

¢
+ kD(z0, z)

≥ kD(z0, z)− kD

°
z0, px(z)

¢
,

and (2.7.34) follows, q.e.d.
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Lemma 2.7.27: Take M1 > M > 1 and set r = (M1 − M)/(M1 + M) < 1. For ev-
ery z ∈ Kz0(x,M) let σz ∈ Hol(∆,D) denote a complex geodesic such that σz(0) = z;
then

σz(∆r) ⊂ Kz0(x,M1).

Proof: Let δ = 1
2 log(M1/M) > 0; then ≥ ∈ ∆r iff ω(0, ≥) < δ. Then

lim
t→1

£
kD

°
σz(≥), ϕx(t)

¢
− ω(0, t)

§
+ kD

°
z0, σz(≥)

¢

≤ 2 kD

°
σz(≥), z

¢
+ lim

t→1

£
kD

°
z, ϕx(t)

¢
− ω(0, t)

§
+ kD(z0, z)

< 2ω(0, ≥) + log M < log M1

for all z ∈ Kz0(x,M) and ≥ ∈ ∆r, q.e.d.

Now we can show that the components of the differential of f (with appropriate
weights) are bounded in K-regions:

Proposition 2.7.28: The map d(f̃y)z(∫x) is K-bounded.

Proof: For all z ∈ Kz0(x,M) let σz:∆ → D be the unique (Corollary 2.6.30) complex
geodesic such that σz(0) = z and σ0z(0) = ∫x/∑D(z; ∫x). By Lemma 2.7.27, for every
M1 > M > 1 there exists r > 0 independent of z such that σz(∆r) ⊂ Kz0(x,M1) for
all z ∈ Kz0(x,M).

Now Cauchy’s formula yields

d(f̃y)z(∫x) = ∑D(z; ∫x)
d

d≥
(f̃y ◦ σz)(0) =

∑D(z; ∫x)
2πi

Z

|∏|=r

f̃y

°
σz(∏)

¢

∏2
d∏.

If we replace f̃y

°
σz(∏)

¢
by f̃y

°
σz(∏)

¢
− 1, the integral does not change and we get

d(f̃y)z(∫x) =
1
2π

πZ

−π

f̃y

°
σz(reiθ)

¢
− 1

p̃x

°
σz(reiθ)

¢
− 1

·
p̃x

°
σz(reiθ)

¢
− 1

p̃x(z)− 1
· ∑D(z; ∫x)(p̃x(z)− 1)

reiθ
dθ.

If z ∈ Kz0(x,M), the first factor in the integrand is bounded, thanks to Lemma 2.7.27
and Proposition 2.7.18. For the second factor, Lemma 2.7.27 together with Proposi-
tion 2.7.8.(ii) yield

ØØØØ
1− p̃x

°
σz(reiθ)

¢

1− p̃x(z)

ØØØØ ≤ M1
1−Kz0

°
px

°
σz(reiθ)

¢¢

1−Kz0

°
px(z)

¢ .

On the other hand,

1
2 log

"
1−Kz0

°
px

°
σz(reiθ)

¢¢

2
£
1−Kz0

°
px(z)

¢§
#

≤
ØØkD

°
z0, px(z)

¢
− kD

°
z0, px

°
σz(reiθ)

¢¢ØØ

≤ kD

°
px(z), px

°
σz(reiθ)

¢¢

≤ kD

°
z, σz(reiθ)

¢
= ω(0, r);
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hence

∀z ∈ Kz0(x,M)
ØØØØ
1− p̃x

°
σz(reiθ)

¢

1− p̃x(z)

ØØØØ ≤ 2M1
1 + r

1− r
. (2.7.35)

To estimate the third factor, note that, by Proposition 2.7.25.(i) and Theorem 2.3.52, there
exists c0 > 0 such that

∑D(z; ∫x)|1− p̃x(z)| ≤ c0M
1−Kz0

°
px(z)

¢

1−Kz0(z)

for every z ∈ Kz0(x,M). But Lemma 2.7.26 yields

1
2 log

∑
1−Kz0

°
px(z)

¢

2
°
1−Kz0(z)

¢
∏
≤ kD(z0, z)− kD

°
z0, px(z)

¢
≤ log M,

and thus

∀z ∈ Kz0(x,M) ∑D(z; ∫x)|1− p̃x(z)| ≤ 2c0M
3, (2.7.36)

q.e.d.

Proposition 2.7.29: The map [1− p̃x(z)]1/2d(f − fy)z(∫x) is K-bounded.

Proof: For all z ∈ Kz0(x,M) let σz:∆ → D be as in the proof of Proposition 2.7.28. Then
Cauchy’s formula yields

d(f − fy)z(∫x) =
∑D(z; ∫x)

2πi

Z

|∏|=r

f
°
σz(∏)

¢
− fy

°
σz(∏)

¢

∏2
d∏,

that is

[1− p̃x(z)]1/2d(f − fy)z(∫x)

=
1
2π

πZ

−π

f
°
σz(reiθ)

¢
− fy

°
σz(reiθ)

¢

£
1− p̃x

°
σz(reiθ)

¢§1/2

"
1− p̃x

°
σz(reiθ)

¢

1− p̃x(z)

#1/2
∑D(z; ∫x)

°
1− p̃x(z)

¢

reiθ
dθ,

and the assertion follows from Lemma 2.7.27, Proposition 2.7.21, (2.7.35) and (2.7.36),
q.e.d.

Proposition 2.7.30: The function [d(f̃y)z(τx)]/[1 − p̃x(z)]1/2 is K-bounded, uniformly
in kτxk.
Proof: For every z ∈ Kz0(x,M) let σz:∆ → D be the unique complex geodesic such that
σz(0) = z and σ0z(0) = τx/∑D(z; τx). Then

d(f̃y)z(τx)
[1− p̃x(z)]1/2

=
−1
2π

πZ

−π

1− f̃y

°
σz(reiθ)

¢

1− p̃x

°
σz(reiθ)

¢ ·
1− p̃x

°
σz(reiθ)

¢

1− p̃x(z)
· ∑D(z; τx)[1− p̃x(z)]1/2

reiθ
dθ,

and the assertion follows from Lemma 2.7.27, Proposition 2.7.18, (2.7.35), Theorem 2.3.52
and Proposition 2.7.25.(ii), q.e.d.
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Proposition 2.7.31: The map d(f − fy)z(τx) is K-bounded, uniformly in kτxk.

Proof: Let σz:∆ → D be as in the proof of Proposition 2.7.30. Then

d(f − fy)z(τx)

=
1
2π

πZ

−π

f
°
σz(reiθ)

¢
− fy

°
σz(reiθ)

¢

£
1− p̃x

°
σz(reiθ)

¢§1/2

"
1− p̃x

°
σz(reiθ)

¢

1− p̃x(z)

#1/2
∑D(z; τx)[1− p̃x(z)]1/2

reiθ
dθ,

and the assertion follows from Lemma 2.7.27, Proposition 2.7.21, (2.7.35), Theorem 2.3.52
and Proposition 2.7.25.(ii), q.e.d.

So it remains to show that the maps (iii), (iv) and (v) have the stated restricted
K-limits. The first case is quite easy:

Proposition 2.7.32: We have

K0-lim
z→x

d(f̃y)z(∫x) = α.

Proof: By Proposition 2.7.28 and Theorem 2.7.13, it suffices to show

lim
t→1

d(f̃y)ϕx(t)(∫x) = α.

We know, by Propositions 2.7.28 and 2.7.30, that kd(f̃y)zk is bounded in K-regions; hence
the assertion follows from Corollary 2.7.17 and the fact that ϕ0x(t) → ∫x as t → 1, q.e.d.

The next case requires again an integral representation, and a different perturbation
of the usual x-curve t 7→ ϕx(t):

Proposition 2.7.33: We have

K0-lim
z→x

[1− p̃x(z)]1/2d(f − fy)z(∫x) = 0.

Proof: First of all we claim that

lim
t→1

(1− t)1/2d(f − fy)ϕx(t)

°
ϕ0x(t)

¢
= 0. (2.7.37)

Choose ε ∈ (0, 1) and for every t ∈ (0, 1) let σt:∆ε → D be defined by

σt(≥) = ϕx

°
t + ≥(1− t)

¢
.

Clearly, σt(0) = ϕx(t) and σ0t(0) = (1− t)ϕ0x(t). Moreover, for all ≥ ∈ ∆ε we have

|1− t− ≥(1− t)|
1− |t + ≥(1− t)| =

(1− t)|1− ≥|
1− |1− (1− t)(1− ≥)| ≤

1 + ε

1− ε
;



314 2.7 Angular derivatives

hence σt(∆ε) ⊂ Kz0(x,M) for all M > (1 + ε)/(1 − ε). In particular, for all θ ∈ R the
x-curve t 7→ σt(εeiθ) is special and M -restricted.

Now write

(1− t)1/2d(f − fy)ϕx(t)

°
ϕ0x(t)

¢

=
1

2π(1− t)1/2

πZ

−π

f
°
σt(εeiθ)

¢
− fy

°
σt(εeiθ)

¢

(1− t− ε(1− t)eiθ)1/2
· (1− t− ε(1− t)eiθ)1/2

εeiθ
dθ

=
1
2π

πZ

−π

f
°
σt(εeiθ)

¢
− fy

°
σt(εeiθ)

¢

£
1− p̃x

°
σt(εeiθ)

¢§1/2
· (1− εeiθ)1/2

εeiθ
dθ.

The second factor in the integrand is bounded, and the first factor converges punctually
and boundedly to 0 as t → 1, by Propositions 2.7.21 and 2.7.23; therefore (2.7.37) follows
from the dominated convergence theorem.

Finally, we know, by Propositions 2.7.29 and 2.7.31, that
∞∞[1 − p̃x(z)]1/2d(f − fy)z

∞∞
is bounded in K-regions; hence (2.7.37) implies

lim
t→1

(1− t)1/2d(f − fy)ϕx(t)(∫x) = 0,

for ϕ0x(t) → ∫x as t → 1, and Theorem 2.7.13 yields the assertion, q.e.d.

We have one function left, the hardest one. To dispose of this last case, ending the
book, we shall use a trick similar to the one used in Step (e) of the proof of Theorem 2.2.29.

Proposition 2.7.34: We have

K0-lim
z→x

d(f̃y)z(τx)
[1− p̃x(z)]1/2

= 0.

Proof: As usual, by Theorem 2.7.13 and Proposition 2.7.30 it suffices to show that

lim
t→1

d(f̃y)ϕx(t)(τx)
(1− t)1/2

= 0. (2.7.38)

We need some preparation. Consider the map Φ:∆×C → Cn given by

Φ(≥, η) = ϕx(≥) + ητx.

Clearly, Φ−1(D) ∩ (C × {0}) = ∆ and Φ−1(D) ∩ ({≥} × C) is convex for all ≥ ∈ ∆.
Furthermore, since D is strongly convex, τx is tangent to @D at x and t 7→ ϕx(t) is
transversal, there is an euclidean ball B ⊂ Φ−1(D) of center (t0, 0) and radius 1− t0 for a
suitable t0 ∈ (0, 1).

Now define h̃:B → ∆ by
h̃(≥, η) = f̃y

°
Φ(≥, η)

¢
.
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We note that h̃(≥, 0) = f̃y

°
ϕx(≥)

¢
and @h̃(≥, 0)/@≥ = d(f̃y)ϕx(≥)(τx). Hence we can write

h̃(≥, η) = f̃y

°
ϕx(≥)

¢
+ η d(f̃y)ϕx(≥)(τx) + o(|η|).

Set
h(≥, η) = f̃y

°
ϕx(≥)

¢
+ 1

2η d(f̃y)ϕx(≥)(τx) = f̃y

°
ϕx(≥)

¢
+ η(1− ≥)1/2g(≥),

where g(≥) = d(f̃y)ϕx(≥)(τx)/2(1 − ≥)1/2. Since h is the arithmetic mean of the first two
partial sums of the power series expansion of h̃, h sends B into ∆. Furthermore, (2.7.38)
is equivalent to g(t) → 0 as t → 1.

Choose ε > 0 and set c = α2/ε2(1− t0). We wish to estimate
lim sup

t→1

ØØg
°
t + ic(1− t)

¢ØØ.

Set ≥t = t + ic(1 − t); it is easy to check that (≥t, 0) ∈ B if (1 − t) ≤ 2(1 − t0)/(1 + c2).
Moreover

(1− t0)2 − |≥t − t0|2 > (1− t0)(1− t)
if (1 − t) < (1 − t0)/(1 + c2); hence if t is sufficiently close to 1 we can find ηt ∈ C such
that

(1− t0)2 − |≥t − t0|2 > |ηt|2 > (1− t0)(1− t) (2.7.39)
and

ηt(1− ≥t)1/2g(≥t) ∈ R. (2.7.40)
In particular, (≥t, ηt) ∈ B if (1− t) < (1− t0)/(1 + c2). By definition,

|1− ≥t| = (1− t)
p

1 + c2 ≥ c (1− t);
hence (2.7.39) yields

|ηt(1− ≥t)1/2g(≥t)| ≥ (1− t0)1/2c1/2(1− t)|g(≥t)|. (2.7.41)
Now, ≥t ∈ K∆(1, 2

√
1 + c2) if (1− t) < (1− t0)/(1 + c2); hence, by Corollary 2.7.19

1− f̃y

°
ϕx(≥t)

¢

1− ≥t
= α + o(1)

as t → 1, that is
f̃y

°
ϕx(≥t)

¢
= 1−

°
α + o(1)

¢
(1− ic)(1− t). (2.7.42)

Putting together (2.7.40), (2.7.41) and (2.7.42) we get

1 ≥ Re[h(≥, η)] ≥ 1−
°
α + o(1)

¢
(1− t) + (1− t0)1/2c1/2(1− t)|g(≥t)|,

that is
|g(≥t)| ≤

α + o(1)
(1− t0)1/2c1/2

.

Therefore
lim sup

t→1

ØØg
°
t + ic(1− t)

¢ØØ ≤ α

(1− t0)1/2c1/2
= ε.

Clearly the same estimate holds for ≥ 0t = t− ic(1− t). Since, by Proposition 2.7.30, |g(≥)|
is bounded in the angular region bounded by these two lines, it follows that

lim sup
t→1

|g(t)| ≤ ε.

Since ε is arbitrary, the assertion follows, q.e.d.
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Notes

As already discussed in the notes to chapter 2.2, the K-regions in Bn have been intro-
duced by Korányi [1969] and Korányi and Stein [1968] to study the boundary behavior
of harmonic and holomorphic functions in Bn. Their results were later generalized by
Stein [1972] himself to a generic C2 domain D ⊂⊂ Cn, replacing Korányi regions by the
so-called admissible approach regions A(x,M) of vertex x ∈ @D and aperture M > 1
defined by

A(x,M) =
©
z ∈ D

ØØ |(z − x,nx)| < Mδx(z), kz − xk2 < Mδx(z)
™
,

where
δx(z) = min

©
d(z, @D), d(z, x + Tx@D)

™
;

note that δx(z) = d(z, @D) if D is convex. A substantially larger (and more complicated)
family of admissible approach regions has been also defined by Čirka [1973].

Our definition of K-regions (taken from Abate [1988f]), was originally motivated by
the successful definition of horospheres in bounded domains given in chapter 2.4; note that,
by Propositions 2.7.4 and 2.7.6, in strongly convex domains our K-regions and the admis-
sible approach regions have comparable shapes near the boundary. Another kind of ap-
proach regions involving invariant objects has been introduced by Cima and Krantz [1983]:
if x ∈ @D and M > 1, they defined the K-admissible (where K here stands for Kobayashi)
approach region A(x,M) of vertex x and aperture M > 1 by

A(x,M) = {z ∈ D | ∑D(z;−nx) < M};

again, by Theorem 2.3.70, in strongly pseudoconvex domains the shape of K-admissible
approach regions near the boundary is similar to the shape of admissible approach regions.

Čirka [1973] has been the first one to sistematically study Lindelöf’s theorems for
domains in Cn. He proved that if a bounded holomorphic function defined in a C1 do-
main D has limit along a non-tangential x-curve for some x ∈ @D, then it has the same
limit along a large class of x-curves depending on the position of @D with respect to com-
plex submanifolds of Cn tangent to TC

x (@D) at x; see also Zav’jalov and Drožžinov [1982],
Khurumov [1983] and Dovbush [1987].

Another version of the Lindelöf theorem in Cn is due to Cima and Krantz [1983]. Let
D ⊂⊂ Cn be a C2 domain; for every x ∈ @D and M > 1 denote by

Γ(x,M) = {z ∈ D | kz − xk < M d(z, @D)}

the cone of vertex x and aperture M . Then Cima and Krantz proved that if a bounded
holomorphic function f :D → C admits limit L along a non-tangential x-curve, then f has
limit L along any x-curve σ such that

lim
t→1

kD

°
σ(t),Γ(x,M)

¢
= 0

for some M > 1. Actually, their result holds for normal holomorphic functions, which are
not necessarily bounded.
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Our version of the Lindelöf theorem is a very particular case of a large class of Lin-
delöf’s theorems discussed in Abate [1988f]. The idea is that every time we have a device
allowing the projection of x-curves into an analytic disk transversal to @D at x, then we
can define restricted and special curves exactly as in section 2.7.2, and the argument used
to prove Theorem 2.7.9 yields a Lindelöf’s theorem.

A first tentative extension of the Julia-Wolff-Carathéodory theorem to bounded do-
mains in C2 is due to Wachs [1940]. As discussed in the notes to chapter 2.2, after the
preliminary version of Hervé [1963a], Rudin [1980] gave the final form to the Julia-Wolff-
Carathéodory theorem in Bn. Our version, Theorem 2.7.14, is taken from Abate [1988f],
as well as most of this chapter.


