
Chapter 2.6
Complex geodesics

In the previous chapters we dealt with two of the main themes of this book, iteration
theory and common fixed ponts; now we would like to find a way of attacking the last
one. For inspiration, let us turn to our model example, the ball. A careful examination
of the proof of Theorem 2.2.29 reveals that a fundamental role is played by the possibility
of imbedding any radius t 7→ tx into an analytic disk ≥ 7→ ≥x, where x ∈ @Bn, t ∈ (0, 1)
and ≥ ∈ ∆. Clearly, if D ⊂⊂ Cn is any C2 domain, x ∈ @D and σ: [0, 1] → D is a
sufficiently well-behaved real-analytic curve tending non-tangentially to x, we can find a
holomorphic map ϕ:∆ → D such that ϕ(t) = σ(t) for every t ∈ (0, 1); the point is that
in Bn we can find σ and ϕ strongly connected to the geometry of Bn, whereas generic σ
and ϕ are not.

The leading idea is the (apparently harmless) observation that the map ≥ 7→ ≥x is
an isometry for the Poincaré and Bergmann distances; hence we can try to find, given
a domain D ⊂⊂ Cn and a point x ∈ @D, a map ϕ ∈ Hol(∆,D) which is an isometry
between the Poincaré distance on ∆ and the Kobayashi distance on D (in short, a complex
geodesic), and such that ϕ extends continuously to @∆, ϕ(@∆) ⊂ @D, ϕ(∆) is transversal
to @D and ϕ(1) = x. It turns out that in strongly convex domains such a map exists, and
it is uniquely determined by its value in 0. Using these complex geodesics, in the next
chapter we shall be able to deal with angular derivatives, ending the book.

But let us now describe what we shall do in this chapter. We shall begin by formally
introducing the notion of complex geodesic, and studying existence and uniqueness in
the unit ball of a norm in Cn, providing a first insight into the general situation. After
a digression on Banach spaces theory, we shall address the question of the existence of
complex geodesics in convex domains, proving a deep theorem of Royden and Wong: every
pair of points of a bounded convex domain is contained in the image of a complex geodesic.
As a corollary, we shall show that in a bounded convex domain the Carathéodory and
Kobayashi distances coincide.

In the last two sections, we shall describe Lempert’s theory of complex geodesics
in strongly convex domains, proving that every complex geodesic in a strongly convex
domain D extends continuously to the boundary, and that every pair of points of D is
contained in the image of a (essentially) unique complex geodesic. We shall also deal
with the boundary smoothness of complex geodesics in strongly convex Cr domains, and
we shall end this chapter proving that in a strongly convex C3 domain big and small
horospheres are one and the same thing, a fact that will be very handy in chapter 2.7.

A final warning for the novice reader: we shall consistently use the basic theory of
Hp spaces of the disk. The main facts are collected for easy reference in Theorem 2.6.12;
proofs and general framing can be found, for instance, in Hoffman [1962] and Duren [1970].
We shall also freely use standard facts of functional analysis; a good reference book is
Brezis [1983].
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2.6.1 Definitions and examples

Let X be a complex manifold, and take ϕ ∈ Hol(∆,X). Then ϕ is a C-extremal map with
respect to two distinct points z0, z1 ∈ X if there are ≥0, ≥1 ∈ ∆ such that ϕ(≥0) = z0,
ϕ(≥1) = z1 and

ω(≥0, ≥1) = cX(z0, z1);

ϕ is an infinitesimal C-extremal map with respect to z0 ∈ X and a non-zero tangent
vector v ∈ Tz0X if there are ≥0 ∈ ∆ and ξ ∈ C such that ϕ(≥0) = z0, dϕ≥0(ξ) = v and

|ξ|≥0 = ∞X(z0; v),

where |ξ|≥0 is the length with respect to the Poincaré metric of ξ considered as tan-
gent vector to ∆ at ≥0. We define analogously the concepts of K-extremal maps and
infinitesimal K-extremal maps, replacing the Carathéodory metric and distance by their
Kobayashi relatives. Finally, a complex geodesic (respectively, a complex C-geodesic) is
a map ϕ ∈ Hol(∆,X) which is K-extremal (C-extremal) with respect to ϕ(≥0) and ϕ(≥1)
for any pair of points ≥0, ≥1 ∈ ∆; an infinitesimal complex geodesic (respectively, an in-
finitesimal complex C-geodesic) is a map ϕ ∈ Hol(∆,X) which is infinitesimal K-extremal
(infinitesimal C-extremal) with respect to ϕ(≥0) and dϕ≥0(ξ) for any ≥0 ∈ ∆ and ξ ∈ C.
In other words, a complex geodesic is an isometry between ω and kX , and a complex C-
geodesic is an isometry between ω and cX . Let ϕ ∈ Hol(∆,X) be a (infinitesimal) complex
(C-)geodesic; we shall say that ϕ is passing through z0 ∈ X if z0 ∈ ϕ(∆), and that ϕ is
tangent to v ∈ Tz0X if z0 = ϕ(z0) and v = dϕ≥0(ξ) for some ≥0 ∈ ∆ and ξ ∈ C. The image
of a complex geodesic will be sometimes called a geodesic disk.

A first very easy lemma describing the properties of the complex geodesics is:

Lemma 2.6.1: Let X be a complex manifold. Then
(i) every complex geodesic (C-geodesic) is a proper injective map of ∆ into X;
(ii) every complex C-geodesic is a complex geodesic;
(iii) every infinitesimal complex C-geodesic is an infinitesimal complex geodesic.

Proof: (i) is obvious. If ϕ ∈ Hol(∆,X) and ≥1, ≥2 ∈ ∆, then

cX

°
ϕ(≥1), ϕ(≥2)

¢
≤ kX

°
ϕ(≥1), ϕ(≥2)

¢
≤ ω(≥1, ≥2),

and (ii) follows. (iii) is proved in the same way, q.e.d.

A complex geodesic is essentially given by its image:

Proposition 2.6.2: Let X be a complex manifold, and ϕ, √ ∈ Hol(∆,X) be two complex
(C-)geodesics such that ϕ(∆) = √(∆). Then there is ∞ ∈ Aut(∆) such that √ = ϕ ◦ ∞.

Proof: By Lemma 2.6.1.(i), ∞ = ϕ−1 ◦ √:∆ → ∆ is a well-defined homeomorphism.
Moreover, if dϕ≥0 6= 0, then ∞ is holomorphic in a neighbourhood of ∞−1(≥0). Since
{≥ ∈ ∆ | dϕ∞(≥) = 0} is discrete in ∆ and ∞ is bounded, by the Riemann extension
theorem ∞ is holomorphic everywhere, and hence ∞ ∈ Aut(∆), q.e.d.
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We shall say that the image ϕ(∆) of a complex (C-)geodesic ϕ:∆ → X determines
the map ϕ up to parametrization, and we shall often identify a complex geodesic and its
image.

There is a close relationship between C-extremal maps and complex C-geodesics:

Proposition 2.6.3: Let X be a complex manifold, ϕ ∈ Hol(∆,X) and ≥0 ∈ ∆. Then:
(i) If ϕ is C-extremal with respect to ϕ(≥0) and ϕ(≥1), where ≥1 ∈ ∆ is different from ≥0,

then ϕ is a complex C-geodesic;
(ii) If ϕ is infinitesimal C-extremal with respect to ϕ(≥0) and v ∈ Tϕ(≥0)X, v 6= 0, then
ϕ is a complex C-geodesic.

Proof: (i) By definition there is a sequence {f∫} ⊂ Hol(X,∆) such that

lim
∫→1

ω
°
f∫

°
ϕ(≥0)

¢
, f∫

°
ϕ(≥1)

¢¢
= ω(≥0, ≥1).

Up to a subsequence we can assume that {f∫ ◦ϕ} tends to a map g ∈ Hol(∆,∆) such that

ω
°
g(≥0), g(≥1)

¢
= ω(≥0, ≥1).

By the Schwarz-Pick lemma, g ∈ Aut(∆), and therefore for all ≥ ∈ ∆

ω(≥0, ≥) ≥ cX

°
ϕ(≥0), ϕ(≥)

¢
≥ lim

∫→1
ω
°
f∫

°
ϕ(≥0)

¢
, f∫

°
ϕ(≥)

¢¢
= ω

°
g(≥0), g(≥)

¢
= ω(≥0, ≥).

So ϕ is C-extremal with respect to ϕ(≥0) and ϕ(≥) for any ≥ ∈ ∆. Repeating this argument
once again we see that ϕ is a complex C-geodesic.

(ii) Up to parametrization, we can assume ≥0 = 0; therefore there is ξ ∈ C such
that dϕ0(ξ) = v and

|ξ| = ∞X(ϕ(0); v).

By definition, there is a sequence {f∫} ⊂ Hol(X,∆) such that f∫

°
ϕ(0)

¢
= 0 and

lim
∫→1

|(df∫)ϕ(0)v| = |ξ|.

Up to a subsequence we can assume that {f∫ ◦ ϕ} tends to a map g ∈ Hol(∆,∆) such
that g(0) = 0 and |g0(0)| = 1, for v = dϕ0(ξ). By Schwarz’s lemma, g ∈ Aut(∆) and
therefore for all ≥ ∈ ∆

ω(0, ≥) ≥ cX

°
ϕ(0), ϕ(≥)

¢
≥ lim

∫→1
ω
°
f∫

°
ϕ(0)

¢
, f∫

°
ϕ(≥)

¢¢
= ω

°
g(0), g(≥)

¢
= ω(0, ≥);

so ϕ is C-extremal with respect to two points and, by (i), the assertion follows, q.e.d.

Clearly, the first problem we must address is the existence of complex geodesics.
Lemma 2.6.1 immediately shows that there are no complex geodesics in compact manifolds,
or in Riemann surfaces other than ∆; indeed, as we shall fully appreciate in the next
sections, the existence of complex geodesics is not at all a trivial property. Therefore we
decided to devote the rest of this section to the study of a model case, the unit balls for
a norm in Cn, where the existence is immediate, and where we can also easily investigate
the uniqueness of complex geodesics passing through two given points.

The existence is immediately provided by
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Corollary 2.6.4: Let B ⊂⊂ Cn be the unit ball for a norm ||| · |||:Cn → R+. Then for
any x ∈ @B the map ϕ(≥) = ≥x is a complex C-geodesic.

Proof: This follows from Propositions 2.3.5 and 2.6.3, q.e.d.

In particular, if B is the unit ball for some norm on Cn, then for any z ∈ B there
is always a complex geodesic passing through 0 and z. To study the uniqueness, we need
some machinery.

Lemma 2.6.5: Let ϕ ∈ Hol(∆,∆). Then for all ≥ ∈ ∆ we have

2 |≥| |ϕ(0)|+ (1− |≥|)|ϕ(≥)− ϕ(0)| ≤ 2 |≥|. (2.6.1)

Proof: The Schwarz-Pick lemma yields
ØØØØ

ϕ(≥)− ϕ(0)
1− ϕ(0)ϕ(≥)

ØØØØ ≤ |≥|,

for all ≥ ∈ ∆. Since

|1− ϕ(0)ϕ(≥)| ≤ 1− |ϕ(0)|2 + |ϕ(0)| |ϕ(≥)− ϕ(0)| ≤ 2(1− |ϕ(0)|) + |ϕ(0)| |ϕ(≥)− ϕ(0)|,

then
|ϕ(≥)− ϕ(0)| ≤ 2|≥|(1− |ϕ(0)|) + |≥| |ϕ(0)| |ϕ(≥)− ϕ(0)|,

and (2.6.1) follows, q.e.d.

Lemma 2.6.6: Let B ⊂⊂ Cn be the unit ball for a norm ||| · |||:Cn → R+ and let
ϕ ∈ Hol(∆,Cn) be such that ϕ(∆) ⊂ B. Then

|||ϕ(0) + ∏
°
ϕ(≥)− ϕ(0)

¢
||| ≤ 1 (2.6.2)

for all ≥ ∈ ∆∗ and ∏ ∈ C such that |∏| ≤ (1− |≥|)/2|≥|.

Proof: If n = 1 the assertion follows from (2.6.1), for B = ∆r for some r > 0. For
n > 1 assume, by contradiction, that (2.6.2) does not hold for some ≥ ∈ ∆∗ and ∏ ∈ C
such that |∏| ≤ (1 − |≥|)/2|≥|. But then there is a complex linear form Λ:Cn → C such
that |Λ(z)| ≤ |||z||| for all z ∈ Cn and

Λ
°
ϕ(0) + ∏

°
ϕ(≥)− ϕ(0)

¢¢
= |||ϕ(0) + ∏

°
ϕ(≥)− ϕ(0)

¢
||| > 1. (2.6.3)

But Λ ◦ ϕ sends ∆ into ∆, and so (2.6.3) contradicts (2.6.1), q.e.d.

Now we can prove a sort of maximum principle. Let D be a domain in Cn; we shall
say that a point x0 ∈ @D is a complex extreme point of D if the only vector y ∈ Cn such
that x0 + ∆y ⊂ D is y = 0. Then
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Corollary 2.6.7: Let B ⊂⊂ Cn be the unit ball for a norm on Cn, and let ϕ ∈ Hol(∆,Cn)
be such that ϕ(∆) ⊂ B. Then if ϕ(∆) contains a complex extreme point of B, ϕ is constant.
Conversely, if x ∈ @B is not a complex extreme point, then there is ϕ ∈ Hol(∆,Cn) such
that ϕ(∆) ⊂ @B and ϕ(0) = x.

Proof: If ϕ(∆) contains a complex extreme point, that we can assume to be ϕ(0), then
(2.6.2) implies that ϕ is constant. The converse follows from the definitions, recalling
Corollary 2.1.11, q.e.d.

This is what we need for

Proposition 2.6.8: Let B ⊂⊂ Cn be the unit ball for a norm ||| · |||:Cn → R+, and choose
a point z ∈ B \ {0}. Then up to parametrization ϕ(≥) = ≥z/|||z||| is the unique complex
geodesic passing through 0 and z iff z/|||z||| is a complex extreme point of B.

Proof: Let ϕ ∈ Hol(∆, B) be a complex geodesic passing through 0 and z, and assume
that z/|||z||| is a complex extreme point of B. Up to parametrization, we can assume
ϕ(0) = 0; then, by Proposition 2.3.5, we have |||ϕ(≥)||| = |≥| for every ≥ ∈ ∆; in particular,
we can also suppose ϕ(|||z|||) = z. Define h:∆ → Cn by h(≥) = ϕ(≥)/≥; clearly, h is
holomorphic and h(∆) ⊂ @B. But z/|||z||| ∈ h(∆); hence, by Corollary 2.6.7, h is constant,
and so ϕ(≥) = ≥z/|||z|||.

Conversely, assume that x = z/|||z||| is not a complex extreme point, and let y ∈ Cn\{0}
be such that x + ≥y ∈ B for all ≥ ∈ ∆. Actually, by Corollary 2.1.11, x + ≥y ∈ @B for
all ≥ ∈ ∆.

Choose ∏ ∈ ∆, and define ϕ∏ ∈ Hol(∆,Cn) by

ϕ∏(≥) = ≥

∑
x + ∏

≥ − |||z|||
1− |||z|||≥ y

∏
.

Then ϕ∏(∆) ⊂ B, ϕ∏(0) = 0 and ϕ∏(|||z|||) = z; hence, by Propositions 2.3.5 and 2.6.3,
every ϕ∏ is a complex geodesic passing through 0 and z, q.e.d.

For instance, if Bn is the euclidean unit ball of Cn, Proposition 2.6.8 determines all
the complex geodesics of Bn:

Corollary 2.6.9: The unique geodesic disk passing through two distinct points z0 and z1

of Bn is the one-dimensional affine subset of Bn containing z0 and z1.

Proof: Since the automorphisms of Bn send affine lines into affine lines, we can as-
sume z0 = 0. But then the assertion follows from Proposition 2.6.8, because every point
of @Bn is a complex extreme point of Bn, q.e.d.

So every pair of points of Bn is contained in a unique geodesic disk, and every complex
geodesic in Bn extends continuously to the boundary. As we shall see later on, this
situation is typical of strongly convex domains. In weakly convex domains, however, we
cannot expect such a nice behavior, as indicated by



256 2.6 Complex geodesics

Proposition 2.6.10: A map ϕ ∈ Hol(∆,∆n) is a complex geodesic iff at least one com-
ponent of ϕ is an automorphism of ∆.

Proof: Write ϕ = (ϕ1, . . . , ϕn) and fix ≥0 ∈ ∆∗. Then, by Proposition 2.6.3 and Corol-
lary 2.3.7, ϕ is a complex geodesic iff

ω(0, ≥0) = max
j=1,...,n

ω
°
ϕj(0), ϕj(≥0)

¢
,

and the assertion follows from the Schwarz-Pick lemma, q.e.d.

Therefore, though every pair of distinct points of ∆n is still contained in a geodesic
disk, there is absolutely no uniqueness, and there are complex geodesics that cannot be
extended continuously to the boundary.

2.6.2 An extremal problem

In the next section we shall prove the existence of complex geodesics in convex domains
showing that every K-extremal map is the solution of a linear extremal problem in a
suitable complex Banach space. In this section we shall describe this extremal problem
in its full generality; we shall also collect a few facts about Hp spaces that we shall need
later.

Let X be a complex Banach space with dual X∗. A function P :X → R+ is a
Minkowski functional if
(i) P (x + y) ≤ P (x) + P (y) for all x, y ∈ X;
(ii) P (∏x) = ∏P (x) for all x ∈ X and ∏ ≥ 0;
(iii) there exists c > 0 such that c−1kxk ≤ P (x) ≤ ckxk for all x ∈ X, where k · k is the

norm in X.
In particular, P (0) = 0 and for every r > 0 the set {x ∈ X | P (x) < r} is a convex open
neighbourhood of 0.

If P is a Minkowski functional on X, the function P ∗:X∗ → R+ given by

∀u ∈ X∗ P ∗(u) = sup
x6=0

Reu(x)
P (x)

is called the dual Minkowski functional. P ∗ is a Minkowski functional on X∗, of course.
Let Y be a subspace of X, and x0 ∈ X a point not in the closure of Y . Set

mP = mP (x0, Y ) = inf
y∈Y

P (x0 + y),

and
MP = MP (x0, Y ) = inf

©
P ∗(u)

ØØ u ∈ Y ◦ and Reu(x0) = 1
™
,

where Y ◦ = {u ∈ X∗ | u|Y ≡ 0} is the annihilator of Y . Since x0 /∈ Y , it is clear
that mP > 0. Then the extremal problem associated to the affine subspace x0 + Y is to
find x ∈ x0 + Y such that P (x) = mP (x0, Y ). Any solution of the extremal problem will
be called an extremal element of x0 + Y . Analogously, the dual extremal problem is to
find u ∈ Y ◦ with Reu(x0) = 1 such that P ∗(u) = MP (x0, Y ), and any solution of the dual
extremal problem will be called a dual extremal element of x0 + Y .

The main fact regarding these extremal problems is the following duality principle:
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Theorem 2.6.11: Let X be a complex Banach space, P :X → R+ a Minkowski functional
on X, Y a subspace of X and x0 ∈ X \ Y . Then:
(i) mP (x0, Y )MP (x0, Y ) = 1;
(ii) there is always a dual extremal element of x0 + Y ;
(iii) if x ∈ x0 + Y and u ∈ Y ◦ are such that Reu(x) = P (x)P ∗(u) = 1, then x is an
extremal element of x0 + Y and u is a dual extremal element of x0 + Y .

Proof: Let eY = Rx0 ⊕ Y be the linear span over R of x0 and Y . Define a R-linear
functional f : eY → R by setting f(∏x0 + y) = ∏ for all ∏ ∈ R and y ∈ Y . Since

P (∏x0 + y) = ∏P (x0 + y/∏) ≥ ∏mP

if ∏ > 0, and P (∏x0 + y) ≥ 0 for any ∏ ∈ R, we conclude that

f(x) ≤ m−1
P P (x)

for all x ∈ eY . By the Hahn-Banach theorem, we can extend f to an R-linear func-
tional F :X → R such that F (x) ≤ m−1

P P (x) for all x ∈ X. Now define a C-linear
functional u:X → C by

u(x) = F (x)− iF (ix).

If x ∈ X then
|u(x)| ≤ |F (x)|+ |F (ix)| ≤ 2m−1

P ckxk,

where c is the constant appearing in the definition of P , and so u ∈ X∗. Moreover, if y ∈ Y
then

u(y) = F (y)− iF (iy) = f(y)− if(iy) = 0,

for Y is a complex subspace of X, and so u ∈ Y ◦. Furthermore Reu(x0) = f(x0) = 1;
thus u is a candidate dual extremal element.

By definition of u,
MP ≤ P ∗(u) ≤ m−1

P ; (2.6.4)

in particular, mP MP ≤ 1. On the other hand, for any v ∈ Y ◦ with Re v(x0) = 1 we have

∀y ∈ Y P (x0 + y)P ∗(v) ≥ Re v(x0 + y) = Re v(x0) = 1;

in particular, mP MP ≥ 1. But then mP MP = 1, and (2.6.4) implies that u is a dual
extremal element of x0 + Y , completing the proof of (i) and (ii).

Finally, let x ∈ x0 + Y and u ∈ Y ◦ be such that Reu(x) = P (x)P ∗(u) = 1. Then
Reu(x0) = Reu(x) = 1, and so P ∗(u) ≥ MP and P (x) ≥ mP . On the other hand,

mP MP ≤ mP P ∗(u) ≤ P (x)P ∗(u) = 1 = mP MP ;

hence P ∗(u) = MP and P (x) = mP , q.e.d.
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For the sake of clarity, we describe now the Banach spaces where we shall apply these
techniques; for all the unproved assertions we refer to Duren [1970] and Hoffman [1962].
We shall denote by M(@∆) the space of complex Radon measures on @∆; it is the dual
of the space C0(@∆) endowed with the supremum norm. As usual, there is an isometric
immersion of L1(@∆) into M(@∆): a function h ∈ L1(@∆) is identified with the Radon
measure hdθ/2π on @∆, that is with the linear functional given by

∀f ∈ C0(@∆) h(f) =
1
2π

2πZ

0

h(eiθ)f(eiθ) dθ, (2.6.5)

where dθ is the Lebesgue measure on @∆.
We shall denote by H1(∆) the space of functions f ∈ Hol(∆,C) such that

kfk1 = sup
r∈(0,1)

1
2π

2πZ

0

|f(reiθ)| dθ < 1, (2.6.6)

and by H1(∆) the space of bounded holomorphic functions on ∆. H1(∆) is a Banach
space with the norm defined by (2.6.6), and H1(∆) is a Banach space with the supremum
norm; clearly, H1(∆) is contained in H1(∆).

Let A0(∆) ⊂ H1(∆) be the subset of holomorphic functions on ∆ which extend
continuously to ∆. Every element of A0(∆) is completely determined by its restriction
to @∆; hence we can identify A0(∆) with a closed subspace of C0(@∆). The classical
theorem by F. and M. Riesz tells that this can be done for H1(∆) too, as described in the
following theorem, summarizing what we shall need to know about H1(∆):

Theorem 2.6.12: (i) For any h ∈ H1(∆) the limit

h∗(eiθ) = lim
r→1

h(reiθ) (2.6.7)

exists for almost all θ ∈ R, and h 7→ h∗ is an isometric immersion of H1(∆) into L1(@∆),
and thus onto a closed subspace of M(@∆);
(ii) If h ∈ H1(∆) then h is the Poisson integral of h∗; in particular,

h(0) =
1
2π

2πZ

0

h∗(eiθ) dθ;

(iii) If h ∈ H1(∆) is not identically zero, then h∗ 6= 0 almost everywhere on @∆;
(iv) The annihilator of A0(∆) ⊂ C0(@∆) is ≥H1(∆) = {≥f | f ∈ H1(∆)};
(v) h ∈ H1(∆) iff h∗ ∈ L1(@∆).

Later on we shall identify an element h of H1(∆) with its boundary trace h∗ given by
(2.6.7); this is possible by Theorem 2.6.12.(i) and (ii). Finally, we shall denote product of
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n copies of one of the aforementioned spaces by a subscript n (like H1
n(∆), A0

n(∆), and so
on); these are spaces of functions on ∆ with range in Cn. The properties already described
remain true; the only difference is that (2.6.5) becomes

∀f ∈ C0
n(@∆) h(f) =

1
2π

2πZ

0

hh(eiθ), f(eiθ)i dθ, (2.6.8)

where h ∈ L1
n(@∆) and hz, wi =

nP
j=1

zjwj for all z, w ∈ Cn.

2.6.3 Convex domains

The aim of this section is to prove that every pair of distinct points in a bounded convex
domain D is contained in a geodesic disk. The idea is that every K-extremal map is a
solution of an extremal problem in H1

n (∆); using this fact we shall be able to prove that
every K-extremal map is a complex geodesic, exactly as happened for C-extremal maps
and complex C-geodesics (Proposition 2.6.3).

We begin officially stating, for sake of completeness, the following

Lemma 2.6.13: Let D ⊂⊂ Cn be a convex domain. Then:
(i) for every pair of distinct points z1, z2 ∈ D there exists a K-extremal map with respect

to z1 and z2;
(ii) for every point z0 ∈ D and non-zero vector v ∈ Cn there exists an infinitesimal
K-extremal map with respect to z0 and v.

Proof: It suffices to notice that in D the Kobayashi distance kD coincides with the one-disk
function δD (Proposition 2.3.44), and to recall that D is taut, q.e.d.

Now we define a Minkowski functional on H1
n (∆). Let D be a bounded convex domain

of Cn; we can assume without loss of generality that 0 ∈ D. The Minkowski functional
pD:Cn → R+ of D is given by

∀z ∈ Cn pD(z) = inf{r | z ∈ rD, r > 0}.

For every r > 0, set
Dr = {z ∈ Cn | pD(z) < r} = rD;

clearly, D1 = D, and pD(z) = 0 iff z = 0. It is easy to check that pD is a Minkowski
functional on Cn according to the definition given in the previous section. If D is the
unit ball of Cn, then pD is the euclidean norm; in general, pD is a norm on Cn iff D is
balanced, i.e., iff ∏D ⊂ D for all ∏ ∈ ∆.

Now define PD:H1
n (∆) → R+ by

PD(f) = sup
≥∈∆

pD

°
f(≥)

¢
. (2.6.9)
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If D is the unit ball of Cn, PD is the supremum norm of H1
n (∆); in general, it is a

Minkowski functional on H1
n (∆). We notice that PD(f) < 1 iff f(∆) is relatively compact

in D.
Analogously, on C0

n(@∆) we can define a Minkowski functional by

∀f ∈ C0
n(@∆) PD(f) = sup

τ∈@∆
pD

°
f(τ)

¢
. (2.6.10)

Now, since A0
n(∆) is both a subspace of H1

n (∆) and a subspace of C0
n(@∆), it seems that

we have defined two Minkowski functionals on A0
n(∆). Fortunately, this is not the case:

Lemma 2.6.14: Let D ⊂⊂ Cn be a convex domain containing the origin. Then for
every f ∈ A0

n(∆) we have

sup
≥∈∆

pD

°
f(≥)

¢
= sup

τ∈@∆
pD

°
f(τ)

¢
. (2.6.11)

Proof: Call r1 the left-hand side of (2.6.11), and r2 its right-hand side. Clearly r1 ≥ r2;
to prove the equality, it suffices to show that f(∆) ⊂ Dr2 . Suppose it is not true; then we
can find ≥0 ∈ ∆ such that f(≥0) /∈ Dr2 . Then there are a point x0 ∈ @Dr2 — for instance,
the point of @Dr2 closest to f(≥0) — and a linear functional ∏:Cn → C such that

∀z ∈ Dr2 Re∏(z) ≤ Re∏(x0) < Re∏
°
f(≥0)

¢
.

Define g ∈ Hol(Cn,C) by g(z) = exp[∏(z−x0)]; then |g ◦f | ≤ 1 on @∆ and |g ◦f(≥0)| > 1,
and this is impossible by the maximum principle, q.e.d.

So (2.6.9) and (2.6.10) define the same Minkowski functional on A0
n(∆), as claimed.

Let Mn(@∆) be the space of complex vector valued Radon measures on @∆, the dual
space of C0

n(@∆). The dual Minkowski functional P ∗
D on Mn(@∆) is given by

P ∗
D(µ) = sup

Ω
1

PD(f)
Re

Z

@∆

hf, dµi
ØØØØ f ∈ C0

n(@∆), f 6= 0
æ

,

for every µ ∈ C0
n(@∆), where

Z

@∆

hf, dµi =
nX

j=1

Z

@∆

fj dµj .

Therefore if we imbed H1
n(∆) in Mn(@∆) as usual, for every h ∈ H1

n(∆) we have

P ∗
D(h) = sup

Ω
1

2πPD(f)
Re

2πZ

0

hh(eiθ), f(eiθ)i dθ

ØØØØ f ∈ C0
n(@∆), f 6= 0

æ
.
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Now define the dual Minkowski functional p∗D:Cn → R+ of D by

∀z ∈ Cn p∗D(z) = sup
w 6=0

Rehz, wi
pD(w)

; (2.6.12)

p∗D is the Minkowski functional dual to pD if we identify (Cn)∗ with Cn by means of the
bilinear form h·, ·i. Then it is not difficult to check that

∀h ∈ H1
n(∆) P ∗

D(h) =
1
2π

2πZ

0

p∗D
°
h(eiθ)

¢
dθ. (2.6.13)

Now we can introduce the affine subspaces of H1
n (∆) we shall work with.

A divisor D of total degree degD on ∆ is a set of points ≥1, . . . , ≥k ∈ ∆ and integers
d1, . . . , dk ∈ Z such that d1 + · · ·+ dk = degD. We shall write

D = [≥1]d1 · · · [≥k]dk ,

and dj is called the degree of ≥j . Later on we shall need only positive divisors, that is
divisors with only positive degrees; therefore from now on a divisor will always be positive.

We associate to any divisor D = [≥1]d1 · · · [≥k]dk the function ∞D ∈ A0(∆) given by

∞D(≥) =
kY

j=1

µ
≥ − ≥j

1− ≥j≥

∂dj

.

The zeroes of ∞D are exactly ≥1, . . . , ≥k with multiplicity d1, . . . , dk respectively.
A set of data D associated to a divisor D = [≥1]d1 · · · [≥k]dk is a subset of Cn composed

by degD elements:
D =

©
aµ,∫µ ∈ Cn

ØØ 1 ≤ µ ≤ k, 0 ≤ ∫µ ≤ dµ − 1
™
.

We shall be interested in the following spaces of holomorphic maps:
L(D,D) =

©
f ∈ H1

n (∆)
ØØ f (∫µ)(≥µ) = aµ,∫µ for 1 ≤ µ ≤ k, 0 ≤ ∫µ ≤ dµ − 1

™
.

In other words, L(D,D) contains the bounded holomorphic maps with prescripted values
and derivatives at the points of D. Note that if we denote by 0 the set of data containing
just the origin repeated degD times, then

L(D,0) = ∞DH1
n (∆) = {∞Df | f ∈ H1

n (∆)}. (2.6.14)
In particular, L(D,0) is a closed linear subspace of H1

n (∆) and, if D is a set of data
associated to D, then L(D,D) is a closed affine subspace of H1

n (∆), for
L(D,D) = f0 + L(D,0),

where f0 is any element of L(D,D).
Now fix a bounded convex domain D of Cn containing the origin, a positive divisor D

on ∆, a set of data D associated to D, and set
mD(D,D) = inf

©
PD(f)

ØØ f ∈ L(D,D)
™
.

Then the extremal problem associated to L(D,D) is to find f ∈ L(D,D) such that
PD(f) = mD(D,D);

a solution of the extremal problem will be called an extremal map of L(D,D).
As announced, the K-extremal maps are solutions of an extremal problem of this kind.

This is a corollary of the following
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Theorem 2.6.15: Let D ⊂⊂ Cn be a convex domain containing the origin. Choose two
distinct points z1, z2 ∈ D with pD(z1) ≥ pD(z2), a non-zero vector v ∈ Cn, and two
distinct points ≥1, ≥2 ∈ ∆. Set D1 = [≥1][≥2], D1 = {z1, z2}, D2 = [≥1]2 and D2 = {z1, v}.
Then
(i) for r ∈

°
pD(z1),+1

¢
the functions r 7→ kDr(z1, z2) and r 7→ ∑Dr(z1; v) are strictly

decreasing;
(ii) mD(D1,D1) is the unique r > pD(z1) such that kDr(z1, z2) = ω(≥1, ≥2); in particular,
kD(z1, z2) = ω(≥1, ≥2) iff mD(D1,D1) = 1;
(iii) mD(D2,D2) is the unique r > pD(z1) such that ∑Dr(z1; v) = ∑∆(≥1; 1); in particular,
∑D(z1; v) = ∑∆(≥1; 1) iff mD(D2,D2) = 1.

Proof: (i) It is clear that the two functions are not increasing. Now take r1 > r2 > pD(z1),
and choose √ ∈ Hol(∆,Dr2) and η > 0 so that √(0) = z1, √(η) = z2 and

ω(0, η) = kDr2
(z1, z2);

√ exists by Lemma 2.6.13.
Clearly, √(∆) is relatively compact in Dr1 . For every s < 1 define √s:∆1/s → Dr1 by

√s(≥) = √(s≥). We have √s(0) = z1 and z2 − √s(η) → 0 as s → 1. Let φs:∆1/s → Cn be
given by

φs(≥) = √s(≥) +
z2 − √s(η)

η
≥.

Then φs(0) = z1, φs(η) = z2 and we can choose s0 so close to 1 that φs0(∆1/s0) ⊂⊂ Dr1 .
Finally, define φ ∈ Hol(∆,Dr1) by

φ(≥) = φs0(≥/s0).

Then φ(0) = z1, φ(s0η) = z2, and so

kDr1
(z1, z2) ≤ ω(0, s0η) < kDr2

(z1, z2),

as claimed.
Analogously, take √ ∈ Hol(∆,Dr2) and ξ ∈ C such that √(0) = z1, d√0(ξ) = v and

|ξ| = ∑Dr2
(z1; v). Clearly, √(∆) is again relatively compact in Dr1 . For every s < 1 define

as before √s:∆1/s → Dr1 by √s(≥) = √(s≥). We have √s(0) = z1 and d(√s)0(ξ) = sv. Let
φs:∆1/s → Cn be given by

φs(≥) = √s(≥) + ≥
1− s

ξ
v.

Then φs(0) = z1, d(φs)0(ξ) = v and we can choose s0 so close to 1 that φs0(∆1/s0) ⊂⊂ Dr1 .
Finally, define φ ∈ Hol(∆,D) by

φ(≥) = φs0(≥/s0).

Then φ(0) = z1, dφ0(s0ξ) = v and so

∑Dr1
(z1; v) ≤ s0|ξ| < ∑Dr2

(z1; v),
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and (i) is proved.
(ii) We can assume, without loss of generality, ≥1 = 0 and ≥2 = η > 0. Take

f ∈ L(D1,D1), and set rf = PD(f). Clearly, f(∆) ⊂ Drf+ε for all ε > 0; in particu-
lar, kDrf +ε(z1, z2) ≤ ω(0, η). Since this holds for every ε > 0 and f ∈ L(D1,D1), it follows
that kDr0

(z1, z2) ≤ ω(0, η), where r0 = mD(D1,D1).
Assume, by contradiction, kDr0

(z1, z2) < ω(0, η); then we can find ϕ ∈ Hol(∆,Dr0)
such that ϕ(0) = z1 and ϕ(η̃) = z2 for some 0 < η̃ < η. In particular, the map
√:∆ → Dr0 given by √(≥) = ϕ(η̃≥/η) belongs to L(D1,D1). But √(∆) ⊂⊂ Dr0 , and
so PD(√) < r0 = mD(D1,D1), contradiction.

Thus kDr0
(z1, z2) = ω(0, η), and the uniqueness follows from part (i).

(iii) Exactly as in part (ii), q.e.d.

Corollary 2.6.16: Let D be a bounded convex domain in Cn containing the origin, and
choose two distinct points ≥1, ≥2 ∈ ∆ and ξ ∈ C∗. Let ϕ ∈ Hol(∆,D), and set z1 = ϕ(≥1),
z2 = ϕ(≥2) and v = dϕ≥1(ξ) ∈ Cn. Then:
(i) ϕ is K-extremal with respect to z1 and z2 iff PD(ϕ) = 1 and ϕ is an extremal map

of L(D,D), where D = [≥1][≥2] and D = {z1, z2};
(ii) ϕ is infinitesimal K-extremal with respect to z1 and v iff PD(ϕ) = 1 and ϕ is an
extremal map of L(D,D), where D = [≥1]2 and D = {z1, v/ξ}.

Proof: (i) Clearly ϕ ∈ L(D,D) and mD(D,D) ≤ PD(ϕ) ≤ 1. Furthermore, ϕ is K-
extremal with respect to z1 and z2 iff kD(z1, z2) = ω(≥1, ≥2) iff mD(D,D) = 1 (by Theo-
rem 2.6.15), and the assertion follows.

(ii) Exactly as in part (i), q.e.d.

In the previous section we saw that an extremal problem is strictly correlated to its
dual extremal problem, and we proved a duality principle. To apply those general facts,
we need still another notation. If D is a (positive, as usual) divisor on ∆ the space

YD = ∞D A0
n(∆) (2.6.15)

is a closed subspace of C0
n(@∆). By Theorem 2.6.12.(iv), the annihilator of YD is

Y ◦
D = ∞[0](∞D)−1 H1

n(∆), (2.6.16)

where (∞D)−1 should be considered as an element of C0(@∆) ⊂ L1(@∆) ⊂M(@∆).
We are now able to prove a very useful characterization of extremal maps:

Theorem 2.6.17: Let D be a bounded convex domain in Cn containing the origin, D a
divisor on ∆ and D a set of data associated to D. Then for any f ∈ L(D,D) the following
facts are equivalent:
(i) f is an extremal map of L(D,D);
(ii) there exists h ∈ Y ◦

D such that for almost all θ ∈ R we have pD

°
f(eiθ)

¢
= mD(D,D)

and
Re

≠
h(eiθ), f(eiθ)

Æ
= pD

°
f(eiθ)

¢
p∗D

°
h(eiθ)

¢
; (2.6.17)
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(iii) there exists h ∈ Y ◦
D such that

Re
1
2π

2πZ

0

≠
h(eiθ), f(eiθ)

Æ
dθ = PD(f)P ∗

D(h). (2.6.18)

Proof: We shall apply the duality principle to the Banach space X = C0
n(@∆), equipped

with the Minkowski functional (2.6.10). Fix f0 ∈ L(D,D) ∩A0
n(∆); then

L(D,D) ∩A0
n(∆) = f0 + YD.

Set mD = mD(D,D), emD = inf{PD(f0 + f) | f ∈ YD} and

fMD = inf{P ∗
D(h) | h ∈ Y ◦

D and Reh(f0) = 1};

clearly, mD ≤ emD, by Lemma 2.6.14, and fMD = em−1
D , by Theorem 2.6.11.(i).

Now, the duality principle provides us with h ∈ Y ◦
D such that Reh(f0) = 1 and

P ∗
D(h) = fMD. Take f ∈ L(D,D) ⊂ H1

n (∆) ⊂ H1
n(∆). Since for any ϕ ∈ H1(∆)

and √ ∈ H1(∆) the product ϕ√ is contained in H1(∆), and since moreover we have
f0 − f ∈ ∞DH1

n (∆), (2.6.16) implies that hh, f0 − fi ∈ ∞[0]H
1(∆). Therefore, by Theo-

rem 2.6.12.(ii), we have h(f0 − f) = 0; in particular, Reh(f) = 1. But then (2.6.12) and
(2.6.13) yield

1 =
1
2π

2πZ

0

Re
≠
h(eiθ), f(eiθ)

Æ
dθ ≤ 1

2π

2πZ

0

pD

°
f(eiθ)

¢
p∗D

°
h(eiθ)

¢
dθ

≤ PD(f)P ∗
D(h) ≤ PD(f)m−1

D .

(2.6.19)

If f is an extremal map, then PD(f) = mD and all the inequalities in (2.6.19) are actually
equalities; in particular (i) implies (ii).

It is clear that (ii) implies (iii), by (2.6.13); finally, assume (iii) holds. Then, up
to replacing h by

°
PD(f)P ∗

D(h)
¢−1

h, we have Reh(f) = PD(f)P ∗
D(h) = 1; furthermore,

h ∈ L(D,D)◦, thanks to (2.6.16), (2.6.14) and Theorem 2.6.12.(ii), and thus (i) follows
from Theorem 2.6.11.(iii), q.e.d.

Using this characterization, we can show that the property of being an extremal map
is preserved passing to larger divisors:

Corollary 2.6.18: Let D be a bounded convex domain in Cn containing the origin,
D, D0 two divisors on ∆ with degD0 ≥ degD, D a set of data associated to D, D0 a set of
data associated to D0, and take f ∈ L(D,D) ∩ L(D0,D0). Then if f is an extremal map
of L(D,D), it is an extremal map of L(D0,D0) too.

Proof: We claim that, since degD0 ≥ degD, there is a meromorphic function χ on C with
the same zeroes and poles as ∞D(∞D0)−1 in ∆, and positive on @∆. Indeed, using Aut(∆),
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it is enough to prove the claim when ∞D(∞D0)−1 has just a simple pole at the origin, and
when ∞D(∞D0)−1 has a simple pole at 0 and a simple zero at t > 0. In the first case
χ(≥) = 3 + ≥ + ≥−1 will do; in the second case χ(≥) = t + t−1 − ≥ − ≥−1 will do.

Now let h ∈ Y ◦
D be given by Theorem 2.6.17, and set h1 = χh. Then h1 ∈ Y ◦

D0 and for
almost all θ ∈ R we have

Re
≠
h1(eiθ), f(eiθ)

Æ
= χ(eiθ)Re

≠
h(eiθ), f(eiθ)

Æ
= χ(eiθ)pD

°
f(eiθ)

¢
p∗D

°
h(eiθ)

¢

= pD

°
f(eiθ)

¢
p∗D

°
h1(eiθ)

¢
.

Since pD

°
f(eiθ)

¢
= mD(D,D) = PD(f) almost everywhere, this yields

Re
1
2π

2πZ

0

≠
h1(eiθ), f(eiθ)

Æ
dθ = PD(f)P ∗

D(h1),

and the assertion follows from Theorem 2.6.17, q.e.d.

And finally we are able to prove the existence of complex geodesics in convex domains:

Theorem 2.6.19: Let D be a bounded convex domain of Cn, and choose two distinct
points z1, z2 ∈ D and a non-zero vector v ∈ Cn. Let ϕ ∈ Hol(∆,D) be a K-extremal map
with respect to z1 and z2 (an infinitesimal K-extremal map with respect to z1 and v). Then
ϕ is a complex geodesic. In particular, there always exists a geodesic disk containing z1

and z2, as well as a geodesic disk containing z1 and tangent to v.

Proof: Without loss of generality we can assume 0 ∈ D. Let ≥1, ≥2 ∈ ∆ be such that
ϕ(≥j) = zj for j = 1, 2. Choose two distinct points η1, η2 ∈ ∆, and set D = [≥1][≥2],
D0 = [η1][η2], D = {z1, z2} and D0 = {ϕ(η1), ϕ(η2)}. Then clearly degD0 ≥ degD and
ϕ ∈ L(D,D) ∩ L(D0,D0). By Corollary 2.6.16, PD(ϕ) = 1 and ϕ is an extremal map of
L(D,D). Hence, by Corollary 2.6.18, ϕ is an extremal map of L(D0,D0) and then, again
by Corollary 2.6.16, ϕ is K-extremal with respect to ϕ(η1) and ϕ(η2). Since η1 and η2 are
arbitrary, ϕ is a complex geodesic. The same argument works for infinitesimal K-extremal
maps, and the latter assertion follows from Lemma 2.6.13, q.e.d.

In particular,

Corollary 2.6.20: Let D be a bounded convex domain of Cn; then every infinitesimal
complex geodesic is a complex geodesic, and vice versa.

Proof: By Corollary 2.6.18 and Theorem 2.6.19, q.e.d.

Now we wish to discuss a bit the geometric significance of Theorem 2.6.17. Let D be
a bounded convex domain of Cn containing the origin, and ϕ ∈ Hol(∆,D) a complex
geodesic. By Corollaries 2.6.16 and 2.6.20, if we set D = [0]2 and D = {ϕ(0), ϕ0(0)}, then
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ϕ is an extremal element of L(D,D), and PD(ϕ) = 1. Let h ∈ (∞[0])−1H1
n(∆) be a map

provided by Theorem 2.6.17. Then (2.6.17) shows that

Rehh(τ), ϕ(τ)i = p∗D
°
h(τ)

¢

for almost all τ ∈ @∆; in particular,
∀z ∈ D Rehh(τ), ϕ(τ)− zi > 0 (2.6.20)

for almost all τ ∈ @∆. In other words, h(τ) defines a supporting hyperplane to D at ϕ(τ)
for almost all τ ∈ @∆.

We can push this argument even farther. Let ϕ∗ = ∞[0]h ∈ H1
n(∆); ϕ∗ is called a dual

map of the complex geodesic ϕ. We need

Lemma 2.6.21: Let D ⊂⊂ Cn be a convex domain, ϕ ∈ Hol(∆,D) a complex geodesic
and ϕ∗ ∈ H1

n(∆) a dual map of ϕ. Then ϕ∗ is never vanishing in ∆ and

Rehϕ0(0), ϕ∗(0)i > 0. (2.6.21)

Proof: Since ϕ(0) ∈ D, (2.6.20) yields

Re
≠°

ϕ(τ)− ϕ(0)
¢
/τ, ϕ∗(τ)

Æ
> 0

for almost all τ ∈ @∆. The left-hand side is the real part of a function in H1(∆); hence
Theorem 2.6.12.(ii) yields (2.6.21), and, in particular, ϕ∗(0) 6= 0. Finally, since it is easy
to check that ϕ∗ ◦∞ is a dual map of ϕ◦∞ for every ∞ ∈ Aut(∆), it follows that ϕ∗ is never
vanishing in ∆, q.e.d.

Now, consider the complex supporting hyperplane H≥ to D at ϕ(≥) defined by

H≥ = {z ∈ Cn | hz − ϕ(≥), h(≥)i = 0}
for almost all ≥ ∈ @∆. Clearly, H≥ is also defined by the equation

hz − ϕ(≥), ϕ∗(≥)i = 0 (2.6.22)

for almost all ≥ ∈ @∆. But now (2.6.22) makes sense for all ≥ ∈ ∆; thus the family of
hyperplanes H≥ , defined initially only for almost all ≥ ∈ @∆, extends to a holomorphic
family of complex hyperplanes H≥ defined for all ≥ ∈ ∆ (because ϕ∗ is never zero on ∆).
In this way, we have obtained a nice fibration of D:

Proposition 2.6.22: Let D ⊂⊂ Cn be a convex domain, and let ϕ ∈ Hol(∆,D) be a
complex geodesic. Then there is p̃ ∈ Hol(D,∆) such that p̃ ◦ ϕ = id∆.

Proof: Fix z ∈ D and consider (2.6.22) as an equation for the unknown ≥ ∈ ∆. We claim
that (2.6.22) has exactly one solution in ∆ for every z ∈ D. Indeed, the number of solutions
is given by wind g, the winding number of the function g(≥) = hz − ϕ(≥), ϕ∗(≥)i. Now

Rehz − ϕ(≥), h(≥)i < 0

for almost every ≥ ∈ @∆, by (2.6.20); hence

wind g = wind ≥ + wind hz − ϕ(≥), h(≥)i = 1.

So for every z ∈ D the equation (2.6.22) has exactly one solution p̃(z) ∈ ∆. By the implicit
function theorem p̃ is holomorphic, and clearly p̃ ◦ ϕ = id∆, q.e.d.
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The function p̃ is called a left inverse of the complex geodesic ϕ. Note that p = ϕ◦p̃ is a
holomorphic retraction of D onto ϕ(∆), called the holomorphic retraction associated to ϕ.
In particular, then, every geodesic disk is a one-dimensional holomorphic retract of D.
Conversely, every one-dimensional holomorphic retract is a geodesic disk; more precisely,
we have

Corollary 2.6.23: Let D ⊂⊂ Cn be a convex domain; take f ∈ Hol(D,D) and let
z1, z2 be two distinct fixed points of f . Then there exists a geodesic disk passing through z1

and z2 contained in Fix(f).

Proof: Let ρ:D → Fix(f) be the holomorphic retraction provided by Theorem 2.5.12,
and take a complex geodesic ϕ ∈ Hol(∆,D) passing through z1 and z2. Then, by Theo-
rem 2.6.19, ρ◦ϕ is a complex geodesic passing through z1 and z2 whose image is contained
in Fix(f), q.e.d.

Corollary 2.6.24: Let D ⊂⊂ Cn be a convex domain, and M a one-dimensional sub-
manifold of D. Then M is the fixed point set of a map f ∈ Hol(D,D) iff M is a geodesic
disk.

Proof: If M = Fix(f), then M is a geodesic disk by Corollary 2.6.23. The converse follows
from Proposition 2.6.22, q.e.d.

Another important consequence of Proposition 2.6.22 is

Proposition 2.6.25: Let D ⊂⊂ Cn be a bounded convex domain. Then we have cD = kD

and ∞D = ∑D.

Proof: Choose two distinct points z1, z2 ∈ D, and let ϕ ∈ Hol(∆,D) be a complex geodesic
passing through z1 and z2. Let p̃ ∈ Hol(D,∆) be a left inverse of ϕ; in particular, if
≥1, ≥2 ∈ ∆ are such that ϕ(≥j) = zj , we have p̃(zj) = ≥j (for j = 1, 2). Then

kD(z1, z2) = ω(≥1, ≥2) = ω
°
p̃(z1), p̃(z2)

¢
≤ cD(z1, z2) ≤ kD(z1, z2),

and the assertion is proved for the invariant distances; a completely analogous argument
works for the invariant metrics, q.e.d.

2.6.4 Strongly convex domains

Now we focus on strongly convex domains, where we shall prove that every complex
geodesic extends continuously to @∆, and that every pair of distinct points is contained in
a unique geodesic disk. We shall also study in detail the dual map of a complex geodesic.

Our first goal is to prove that every complex geodesic in a strongly convex do-
main belongs to the Hölder space C0,1/2(∆). As a matter of notations, we shall write
A0,α(∆) = A0(∆) ∩ C0,α(∆) for every α ∈ (0, 1). We need the following elegant criterion,
due to Hardy and Littlewood:
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Theorem 2.6.26: Let f :∆ → C be holomorphic, and fix α ∈ (0, 1). Then the following
statements are equivalent:
(i) f ∈ A0,α(∆);
(ii) f ∈ H1(∆) and there is c1 > 0 such that

|f(eiθ2)− f(eiθ1)| ≤ c1|θ2 − θ1|α,

for almost all θ1, θ2 ∈ R;
(iii) f ∈ H1(∆) and there is c2 > 0 such that

|Re f(eiθ2)−Re f(eiθ1)| ≤ c2|θ2 − θ1|α,

for almost all θ1, θ2 ∈ R;
(iv) there is c3 > 0 such that

∀≥ ∈ ∆ |f 0(≥)| ≤ c3(1− |≥|)α−1. (2.6.23)

Proof: (i)=⇒(ii)=⇒(iii): it suffices to notice that for every θ1, θ2 ∈ R we have

|eiθ2 − eiθ1 | ≤ |θ2 − θ1|.

(iii)=⇒(iv): Let u = Re f ; then f is given by

f(≥) =
1
2π

2πZ

0

eiθ + ≥

eiθ − ≥
u(eiθ) dθ.

In particular, for every ≥0 = r0eiθ0 ∈ ∆ we have

f 0(≥0) =
1
π

2πZ

0

u(eiθ)− u(eiθ0)
(eiθ − ≥0)2

eiθ dθ,

and thus, integrating over [θ0 − π, θ0 + π] instead of [0, 2π],

|f 0(≥0)| ≤
c2

π

πZ

−π

|θ|α
1− 2r0 cos θ + r2

0

dθ.

Now,

1− 2r0 cos θ + r2
0 = (1− r0)2 + 4r0 sin2 θ

2
≥ (1− r0)2 +

4r0θ2

π2
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for all θ ∈ [−π, π]. Hence

|f 0(≥0)| ≤
c2

π

πZ

−π

|θ|α
(1− r0)2 + 4r0(θ/π)2

dθ ≤ c3

(1− |≥0|)1−α
,

because the integral
1Z

0

tα

1 + t2
dt,

obtained after the substitution t = θ/(1− r0), is convergent.
(iv)=⇒(i): By (2.6.23), the radial limit

f(eiθ) = f(0) + lim
r0→1

r0Z

0

f 0(reiθ) dr

exists bounded for every θ ∈ R; in particular, f ∈ H1(∆), by Theorem 2.6.12.(v). To
show that f ∈ A0,α(∆) it suffices to find a constant c0 > 0 such that

|f(eiθ2)− f(eiθ1)| ≤ c0|θ2 − θ1|α, (2.6.24)

|f(reiθ2)− f(reiθ1)| ≤ c0r|θ2 − θ1|α, (2.6.25)

for all θ1, θ2 ∈ R with 0 < θ2 − θ1 < 1 and r ∈ (0, 1), and

|f(r2e
iθ0)− f(r1e

iθ0)| ≤ c0|r2 − r1|α, (2.6.26)

for all 0 ≤ r1 ≤ r2 < 1 and θ0 ∈ R.
We start with (2.6.24). Let ρ = 1− (θ2−θ1) > 0, and denote by Σ the path consisting

of the radial segment from eiθ1 to ρeiθ1 , the arc of circle |≥| = ρ from ρeiθ1 to ρeiθ2 , and
the radial segment from ρeiθ2 to eiθ2 (see Figure 2.3). Then

f(eiθ2)− f(eiθ1) =
Z

Σ

f 0(≥) d≥.

Breaking up the integral, we find

|f(eiθ2)− f(eiθ1)| ≤
1Z

ρ

|f 0(reiθ1)| dr +
1Z

ρ

|f 0(reiθ2)| dr +
θ2Z

θ1

|f 0(ρeiθ)| dθ

≤ 2c3

1Z

ρ

dr

(1− r)1−α
+ c3

θ2 − θ1

(1− ρ)1−α

≤ c3

µ
1 +

2
α

∂
|θ2 − θ1|α = c0|θ2 − θ1|α,
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Figure 2.3

and (2.6.24) is proved. In particular, f ∈ A0(∆), by the Cauchy formula.
For (2.6.25), consider the function ≥ 7→

°
f(≥eiθ2)− f(≥eiθ1)

¢±
≥, which is holomorphic

in ∆. Then the maximum principle yields

|f(reiθ2)− f(reiθ1)|
r

≤ sup
|τ |=1

|f(τeiθ2)− f(τeiθ1)| ≤ c0|θ2 − θ1|α,

and (2.6.25) is proved. Finally,

|f(r2e
iθ0)− f(r1e

iθ0)| ≤
r2Z

r1

|f 0(reiθ0)| dr ≤ c3

r2Z

r1

dr

(1− r)1−α
.

If r2 − r1 ≤ 1− r2 we have

|f(r2e
iθ0)− f(r1e

iθ0)| ≤ c3
r2 − r1

(1− r2)1−α
≤ c3|r2 − r1|α ≤ c0|r2 − r1|α.

On the other hand, if r2 − r1 > 1− r2 we get

|f(r2e
iθ0)− f(r1e

iθ0)| ≤ c3
(1− r)α

α

ØØØØ
r2

r1

≤ c3

α
|r2 − r1|α ≤ c0|r2 − r1|α,

and we are done, q.e.d.

There is a corollary concerning harmonic functions. A conjugate function of a har-
monic function u:∆ → R is a harmonic function v:∆ → R such that u+iv is holomorphic;
it is well known that v is unique up to an additive constant. Then

Corollary 2.6.27: Take r ∈ N and α ∈ (0, 1); let u ∈ Cr,α(∆) be harmonic in ∆, and
choose a conjugate function v:∆ → R. Then v ∈ Cr,α(∆).

Proof: Indeed, by Theorem 2.6.26, f = u+ iv ∈ Cr,α(∆), and the assertion follows, q.e.d.
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We are almost ready to deal with complex geodesics. We need a last estimate:

Lemma 2.6.28: Take R > 0, z0 ∈ Cn and f ∈ Hol
°
∆, B(z0, R)

¢
. Then

kf 0(0)k ≤
°
R2 − kf(0)− z0k2)1/2. (2.6.27)

Proof: We can assume z0 = 0. Let g = R−1f ∈ Hol(∆, Bn). Then g is a contraction for
the Poincaré metric on ∆ and the Bergmann metric on Bn; hence

1
(1− kg(0)k2)2

£
(1− kg(0)k2)kg0(0)k2 +

ØØ°g(0), g0(0)
¢ØØ2§ ≤ 1,

that is

kg0(0)k2 ≤ 1− kg(0)k2 −
ØØ°g(0), g0(0)

¢ØØ2

1− kg(0)k2 ≤ 1− kg(0)k2,

and (2.6.27) follows, q.e.d.

Then

Theorem 2.6.29: Let D ⊂⊂ Cn be a strongly convex domain, and ϕ ∈ Hol(∆,D) a

complex geodesic. Then ϕ ∈ A0,1/2
n (∆).

Proof: By Theorem 2.3.51 there is a constant c1 ∈ R such that for all ≥ ∈ ∆

1
2 log

1
1− |≥| ≤ ω(0, ≥) = kD

°
ϕ(0), ϕ(≥)

¢
≤ c1 − 1

2 log d
°
ϕ(≥), @D

¢
,

and so
d
°
ϕ(≥), @D) ≤ e2c1(1− |≥|). (2.6.28)

Let R > 0 be so large that for every x ∈ @D the euclidean ball Bx of radius R tangent to @D
in x contains D. Fix ≥0 ∈ ∆, and let x ∈ @D be such that kx − ϕ(≥0)k = d

°
ϕ(≥0), @D

¢
.

Let w0 be the center of Bx. If we set

√(≥) = ϕ

µ
≥ + ≥0

1 + ≥0≥

∂
,

then √ ∈ Hol(∆, Bx) and √(0) = ϕ(≥0). By (2.6.27), then

k√0(0)k ≤ (R2 − kϕ(≥0)− w0k2)1/2 ≤ c2 d
°
ϕ(≥0), @D

¢1/2
,

where c2 =
√

2R > 0. Therefore (2.6.28) yields

kϕ0(≥0)k ≤
1

1− |≥0|2
k√0(0)k ≤ c2e

c1(1− |≥0|)−1/2,

and the assertion follows from Theorem 2.6.26, q.e.d.
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A first consequence of this theorem is the uniqueness of the geodesic disk containing
two given points:

Corollary 2.6.30: Let D ⊂⊂ Cn be a strongly convex domain. Take two distinct
points z0, z1 ∈ D and a non-zero vector v ∈ Cn. Then:
(i) there exists a unique geodesic disk containing z0 and z1;
(ii) there exists a unique geodesic disk containing z0 and tangent to v.

Proof: Since the proof of (ii) is almost identical to the proof of (i), we describe in detail the
latter only. Assume that ϕ0, ϕ1 ∈ Hol(∆,D) are two complex geodesics passing through z0

and z1; up to parametrization we can assume ϕ0(0) = ϕ1(0) = z0 and ϕ0(≥0) = ϕ1(≥0) = z1

for some ≥0 ∈ ∆. Set

∀∏ ∈ [0, 1] ϕ∏ = (1− ∏)ϕ0 + ∏ϕ1.

Clearly, every ϕ∏ is a holomorphic map of ∆ into D; moreover, ϕ∏(0) = z0 and ϕ∏(≥0) = z1

for all ∏ ∈ [0, 1]. By Theorem 2.6.19, this implies that every ϕ∏ is a complex geodesic; in
particular, every ϕ∏ extends continuously to @D and ϕ∏(@∆) ⊂ @D for every ∏ ∈ [0, 1].
But D is strongly convex; hence ϕ∏|@∆ does not depend on ∏. In particular, ϕ0|@∆ = ϕ1|@∆,
and then ϕ0 = ϕ1, q.e.d.

Now we shall examine in detail the dual map of a complex geodesic. First of all, in
strongly convex domains it is (almost) uniquely determined:

Lemma 2.6.31: Let D ⊂⊂ Cn be a strongly convex domain, and ϕ ∈ Hol(∆,D) a
complex geodesic. Then the dual map of ϕ is unique up to a positive multiple.

Proof: By definition, it suffices to prove that there is a unique h ∈ (∞[0])−1H1
n(∆) such

that P ∗
D(h) = 1 and (2.6.17) holds. Assume, by contradiction, that h1 ∈ (∞[0])−1H1

n(∆)
is another map satisfying the same requisites. In particular, both h(τ) and h1(τ) define a
supporting hyperplane to D at ϕ(τ) for almost all τ ∈ @∆; being D strongly convex, this
implies that h1 = µh for some measurable function µ: @∆ → R+.

Now P ∗
D(h) = P ∗

D(h1) implies

2πZ

0

[1− µ(eiθ)] sup
w 6=0

Rehh(eiθ), wi
pD(w)

dθ = 0. (2.6.29)

Since ∞[0]h ∈ H1
n(∆), h 6= 0 almost everywhere on @∆, by Theorem 2.6.12.(iii). Assume,

by contradiction, that µ > 1 on a set A ⊂ @∆ of positive measure, and define a measurable
map w: @∆ → Cn by setting w(τ) = −h(τ) if τ ∈ A, and choosing w(τ) tangent to @D
in ϕ(τ) if τ /∈ A. Then (2.6.29) yields

0 ≥
Z

A

[µ(τ)− 1]
kh(τ)k2

pD

°
h(τ)

¢ dτ > 0,

impossible. For the same reason, µ cannot be less than 1 on a subset of @∆ of positive
measure; so µ = 1 almost everywhere, and h = h1, q.e.d.



2.6.4 Strongly convex domains 273

So if ϕ ∈ Hol(∆,D) is a complex geodesic, its dual map restricted to @∆ is of the
form

ϕ∗(τ) = τµ(τ)nϕ(τ),

where nx is, as usual, the outer unit normal vector to @D in x, and µ ∈ L1(@∆) is unique
up to a positive multiple.

Our next goal is to prove that even the dual map belongs to A0,1/2(∆). We need the
following facts, complementing Lemma 2.6.21:

Lemma 2.6.32: Let D ⊂⊂ Cn be a strongly convex domain, ϕ ∈ Hol(∆,D) a complex
geodesic, and set v(τ) =

ØØ°ϕ0(τ),nϕ(τ)

¢ØØ for almost all τ ∈ @∆. Then v, 1/v ∈ L1(@∆).

Proof: Theorem 2.3.70 yields

v(τ) = 2 lim
t→1

∑D

°
ϕ(tτ);ϕ0(tτ)

¢
d
°
ϕ(tτ), @D

¢
= 2 lim

t→1

d
°
ϕ(tτ), @D

¢

1− t2
,

for almost all τ ∈ @∆, where the last step follows from Corollary 2.6.20. But Theo-
rems 2.3.51 and 2.3.52 provide us with constants K1, K2 > 0 such that

∀≥ ∈ ∆ K1 ≤
d
°
ϕ(≥), @D

¢

1− |≥|2 ≤ K2,

because kD

°
ϕ(0), ϕ(≥)

¢
= ω(0, ≥), and the assertion follows, q.e.d.

Lemma 2.6.33: Let D ⊂⊂ Cn be a strongly convex domain, ϕ ∈ Hol(∆,D) a complex
geodesic, and ϕ∗ ∈ H1

n(∆) a dual map of ϕ. Then the function hϕ0, ϕ∗i:∆ → C is a
positive real constant.

Proof: The curve θ 7→ ϕ(eiθ) is almost everywhere differentiable, by Theorem 2.6.29, and
lies entirely in @D; hence its tangent in a point ϕ(eiθ) is orthogonal to nϕ(eiθ). It follows
that

0 = Rehiϕ0(eiθ), ϕ∗(eiθ)i = − Imhϕ0(eiθ), ϕ∗(eiθ)i

for almost all θ ∈ R. Now, hϕ0, ϕ∗i ∈ H1(∆), by Lemma 2.6.32; therefore Imhϕ0, ϕ∗i ≡ 0
on ∆, and then hϕ0, ϕ∗i is a (positive by Lemma 2.6.21) real constant, q.e.d.

In particular, we can normalize the dual map of a complex geodesic ϕ requiring

hϕ0, ϕ∗i ≡ 1. (2.6.30)

Therefore from now on we shall talk of the dual map of ϕ, and consequently of the left
inverse and holomorphic retraction associated to ϕ.

And now
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Theorem 2.6.34: Let D ⊂⊂ Cn be a strongly convex domain, ϕ ∈ Hol(∆,D) a complex

geodesic, and ϕ∗ ∈ H1
n(∆) its dual map. Then ϕ∗ ∈ A0,1/2

n (∆).

Proof: Define µ ∈ L1(@∆) by µ(τ) = kϕ∗(τ)k; we first of all claim that µ ∈ L1(@∆).
Let v ∈ L1(@∆) be given by v(τ) = |(ϕ0(τ),nϕ(τ))|; by Lemma 2.6.33 and (2.6.30),
µ(τ)v(τ) = 1 almost everywhere on @∆. But Lemma 2.6.32 yields 1/v ∈ L1(@∆); thus
µ ∈ L1(@∆), as claimed. In particular, then, ϕ∗ ∈ H1

n (∆).
Now to prove that ϕ∗ ∈ A0,1/2(∆), by Theorem 2.6.26, it suffices to show that there

exist δ, c > 0 such that
|µ(τ1)− µ(τ2)| ≤ c|τ1 − τ2|1/2

for almost all τ1, τ2 ∈ @∆ with |τ1 − τ2| ≤ δ, because τ 7→ nϕ(τ) is already in C0,1/2(@∆).
Fix τ1 ∈ @∆; we can assume (nϕ(τ1))1 = 1, where (nx)1 denotes the first compo-

nent of nx. Let δ ∈ (0, 1/4) be such that |(nϕ(τ))1 − 1| < 1/2 if |τ − τ1| ≤ 2δ, and
choose χ ∈ C0,1/2(@∆) such that

(a) χ(τ) = (nϕ(τ))1 if |τ − τ1| ≤ 2δ;
(b) |χ(τ)− 1| < 1/2 for all τ ∈ @∆;
(c) kχk1/2 = kn ◦ ϕk1/2.

We can extend χ to a complex-valued function (still denoted by χ) continuous in ∆ and
harmonic in ∆ such that |χ(≥)− 1| < 1/2 for all ≥ ∈ ∆; furthermore, by Theorem 2.6.26,
χ ∈ C0,1/2(∆). Let ξ = Im log χ ∈ C0,1/2(∆). ξ is a (real-valued) harmonic function; then,
by Corollary 2.6.27, the conjugate function η:∆ → R of ξ belongs to C0,1/2(∆) too. In
conclusion, ρ = −η −Re log χ ∈ C0,1/2(∆) and h = ρ + log χ ∈ A0,1/2(∆).

Set g = (ϕ∗)1 exp(−h) and G(≥) = g(≥)/≥. Clearly, g is holomorphic in ∆ and G is
holomorphic in ∆∗; furthermore, g ∈ H1(∆), for ϕ∗ ∈ H1

n (∆), and so G is bounded on
the set ∆ ∩D(τ1, 2δ). Now,

G(τ) = µ(τ) exp
°
−ρ(τ)

¢
∈ R

for almost all τ ∈ @∆∩D(τ1, 2δ). Therefore, by the Schwarz reflection principle, G extends
holomorphically to D(τ1, 2δ)\@∆, and it is bounded there; hence it extends holomorphically
to all D(τ1, 2δ). In particular, G is Lipschitz in D(τ1, δ); being µ = G(exph)/n ◦ ϕ, it
follows that µ is Hölder of exponent 1/2 in D(τ1, δ), and we are done, q.e.d.

Corollary 2.6.35: Let D ⊂⊂ Cn be a strongly convex domain, ϕ ∈ Hol(∆,D) a complex
geodesic, p̃ its left inverse and p = ϕ ◦ p̃. Then p̃ ∈ C1(D) and p ∈ C0,1/2(D).

Proof: Looking at the definition of p̃ it is clear that p̃ and p extend continuously to @D;
furthermore

p̃
°
D \ ϕ(@∆)

¢
⊂ ∆. (2.6.31)

Moreover, the regularity of dp̃ is the same as the regularity of the family (2.6.22) of hyper-
planes; therefore Theorems 2.6.29 and 2.6.34 yields p̃ ∈ C1(∆) and p = ϕ ◦ p̃ ∈ C0,1/2(∆),
q.e.d.
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In particular, we have the following characterization of complex geodesics in strongly
convex domains:

Corollary 2.6.36: Let D ⊂⊂ Cn be a strongly convex domain. A map ϕ ∈ Hol(∆,D)
is a complex geodesics iff ϕ ∈ A0,1/2

n (∆), ϕ(@∆) ⊂ @D and there is a positive func-

tion µ ∈ C0,1/2(@∆) such that τ 7→ µ(τ)τnϕ(τ) extends to a map ϕ∗ ∈ A0,1/2
n (∆).

Proof: We already saw that a complex geodesic satisfies the given conditions. Conversely,
take ϕ ∈ A0,1/2

n (∆) and µ ∈ C0,1/2(@∆) such that ϕ(∆) ⊂ D, ϕ(@∆) ⊂ @D, µ > 0 and
the map τ 7→ µ(τ)τnϕ(τ) extends to a map ϕ∗ ∈ A0,1/2

n (∆). Choose ≥0 ∈ (0, 1) and set
z0 = ϕ(0) and z1 = ϕ(≥0); by Theorem 2.6.19, it suffices to show that kD(z0, z1) = ω(0, ≥0).
If this is not the case, there would exist √ ∈ Hol(∆,D) with √(0) = z0 and √(≥1) = z1 for
some 0 ≤ ≥1 < ≥0. Define φ:∆ → D by φ(≥) = √(≥1≥/≥0); then ϕ(0) = z0, ϕ(≥0) = z1 and
ϕ(∆) ⊂⊂ D. Then

∀τ ∈ @∆ Rehϕ(τ)− φ(τ),nϕ(τ)i > 0

and hence

∀τ ∈ @∆ Re
≠°

ϕ(τ)− φ(τ)
¢
τ−1, ϕ∗(τ)

Æ
> 0,

but, by the minimum principle for harmonic functions, this is impossible, because the
harmonic function on the left vanishes at ≥0, q.e.d.

The usefulness of this characterization is that to see if a given map ϕ is a complex
geodesic, it suffices to check certain properties of the map ϕ alone, instead of comparing
it with all the other maps from ∆ into the domain.

2.6.5 Boundary smoothness

In chapter 2.7 we shall need more precise information regarding the boundary smoothness
of complex geodesics; so this section is devoted to prove that in a strongly convex domains
with Cr boundary (r ≥ 3) the complex geodesics belongs to Cr−2(∆). As an application,
we shall study the existence and uniqueness of geodesic disks passing through boundary
points.

We begin with (the statement of) Whitney’s extension theorem. We shall call multi-
index an element of NN . If α = (α1, . . . , αN ) ∈ NN is a multi-index, we define, as
customary, the order |α| of α by |α| = α1 + · · · + αN , and we set α! = (α1!) · · · (αN !),
xα = xα1

1 · · ·xαN
N for any x ∈ RN and

Dα =
@|α|

@xα1
1 · · · @xαN

N

.

Let K be a compact subset of RN , and r ∈ N. A r-jet F on K is a subset
F = {Fα}|α|≤r of C0(K). We associate to every function g ∈ Cr(RN ) a jet Jr(g) set-
ting Jr(g)α = Dαg|K for every multi-index α with |α| ≤ r.
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If F is a r-jet on K and a ∈ K, let

∀x ∈ RN T r
a F (x) =

X

|α|≤r

(x− a)α

α!
Fα(a).

Clearly, T r
a F ∈ C1(RN ); put eT r

a F = Jr(T r
a F ).

The Whitney extension theorem then says:

Theorem 2.6.37: Let K be a compact subset of RN , and F a r-jet on K. Then there
is g ∈ Cr(RN ) such that Jr(g) = F iff for every multi-index α with |α| ≤ r we have

kFα(y)− (eT r
xF )α(y)k = o(kx− ykr−|α|) (2.6.32)

as kx− yk → 0 with x, y ∈ K.

For a proof see Malgrange [1966].
We shall apply this theorem in the proof of the next lemma. A real submanifold M

of a complex manifold X is totally real in z ∈ M if TzM ∩ iTzM = {0}; it is totally real
if it is so at each point. Clearly, the real dimension of M is at most equal to the complex
dimension of X.

Lemma 2.6.38: Let M be a closed Cr (1 ≤ r ≤ 1) totally real submanifold of a do-
main U ⊂⊂ Cn, and take a complex-valued function f ∈ Cr(M). Then for every open
set V ⊂⊂ U there exists a function F ∈ Ck(Cn) such that F |M∩V = f |M∩V and

Dα @F

@z̄
(z) = 0 (2.6.33)

for every z ∈ M ∩ V and every multi-index α with |α| ≤ r − 1.

Proof: Fix z0 ∈ M , choose a basis {u1, . . . , uk} of Tz0M , and let J :Tz0Cn → Tz0Cn

be the almost complex structure on Tz0Cn induced by the complex structure of Cn.
Since M is totally real, the set {u1, . . . , uk, Ju1, . . . , Juk} is linearly independent over R;
choose v1, . . . , v2(n−k) ∈ Tz0Cn so that {u1, . . . , uk, Ju1, . . . , Juk, v1, . . . , v2(n−k)} is a
R-basis of Tz0Cn.

Clearly, uj(f) is defined for j = 1, . . . , k; set (Juj)(f) = iuj(f) for j = 1, . . . , k
and vj(f) = 0 for j = 1, . . . , 2(n − k). Denote by zj = xj + iyj the natural coordinates
of Cn; we have

@

@xj
(z0) =

kX

µ=1

£
αjµuµ + βjµJuµ

§
+

2(n−k)X

µ=1

∞1
jµvµ

@

@yj
(z0) = J

@

@xj
(z0) =

kX

µ=1

£
−βjµuµ + αjµJuµ

§
+

2(n−k)X

µ=1

∞2
jµvµ
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for suitable αjµ, βjµ, ∞1
jµ, ∞2

jµ ∈ R. In this way we can define

fxj (z0) =
kX

µ=1

(αjµ + iβjµ)uµ(f)

fyj (z0) =
kX

µ=1

(−βjµ + iαjµ)uµ(f).

Clearly, fxj , fyj ∈ Cr−1(M), and fz̄j = 1
2 (fxj + ifyj ) = 0 for every j = 1, . . . , n.

Iterating this argument, we can define the formal derivatives of f on M up to order r.
It is easy to see that this set of continuous functions is a r-jet on the compact set M ∩ V
satisfying (2.6.32) — after all, f is a Cr function on M —; then by Whitney’s extension
theorem f |M∩V is the restriction of a function F ∈ Ck(Cn). Moreover, it follows from the
previous construction that F satisfies (2.6.33), and we are done, q.e.d.

Next we recall some facts about the @-equation in C. Let D be an open subset of C,
and take f , g ∈ L1

loc(D). We shall say that @f/@z̄ = g in the weak sense in D if for every
ϕ ∈ C1(C) with compact support contained in D we have

Z
f(≥)

@ϕ

@≥̄
(≥) d≥ ∧ d≥̄ = −

Z
g(≥)ϕ(≥) d≥ ∧ d≥̄.

By the way, we shall denote by C1
c (D) the space of smooth functions with compact support

contained in D.
The first fact we shall need is

Lemma 2.6.39: Let D be an open subset of D, and f ∈ L1
loc(D). Then f is holomorphic

in D iff @f/@z̄ = 0 in the weak sense in D.

Proof: If f is holomorphic, integrating by parts we immediately get @f/@z̄ = 0 in the weak
sense.

Conversely, assume @f/@z̄ = 0 in the weak sense in D; it suffices to show that f is
holomorphic in a neighbourhood of a point of D, which we can assume to be the origin.
Choose δ > 0 such that ∆2δ ⊂⊂ D, take ρ ∈ C1

c (∆2δ) such that ρ ≡ 1 in a neighbour-
hood U of ∆δ, and set g = ρf .

Choose a sequence of non-negative functions {χ∫} ⊂ C1
c (C) such that χ∫ ∈ C1

c (∆1/∫)
and

R
χ∫(≥) d≥ ∧ d≥̄ = 1, and set

g∫(z) = χ∫ ? g(z) =
Z

χ∫(≥)g(z − ≥) d≥ ∧ d≥̄;

clearly, g∫ ∈ C1
c (∆2δ) for all ∫ large enough. Now, if ϕ ∈ C1

c (∆δ) we have
Z

g∫(z)
@ϕ

@z̄
(z) dz ∧ dz̄ =

Z
χ∫(≥)

∑Z
g(z − ≥)

@ϕ

@z̄
(z) dz ∧ dz̄

∏
d≥ ∧ d≥̄

=
Z

∆1/∫

χ∫(≥)
∑Z

g(z)
@ϕ

@z̄
(z + ≥) dz ∧ dz̄

∏
d≥ ∧ d≥̄;

(2.6.34)
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hence if ∫ is so large that ∆δ+1/∫ ⊂ U , then the latter integral in (2.6.34) is zero, and so
@g∫/@z̄ = 0 in the weak sense in ∆δ. Since g∫ ∈ C1

c (∆2δ), it follows, integrating by parts,
that g∫ is holomorphic in ∆δ for ∫ large enough.

Now, it is easy to check that g∫ → g in L1(∆δ); since, by the Cauchy formula,
Hol(∆δ,C) ∩ L1(∆δ) is closed in L1(∆δ), it follows that g is holomorphic in ∆δ, and we
are done, q.e.d.

The second fact is an accurate description of the regularity of solutions of the @-
equation in C:

Proposition 2.6.40: Take g ∈ L1(C) with compact support K and define

∀z ∈ C f(z) =
1

2πi

Z

C

g(≥)
≥ − z

d≥ ∧ d≥̄.

Then:
(i) @f/@z̄ = g in the weak sense in C;
(ii) f ∈ C1(C \K);
(iii) f ∈ C0,α(D) for every α ∈ (0, 1) and every bounded domain D ⊂⊂ C;
(iv) if g ∈ Cr,α(C) for some r ∈ N and α ∈ (0, 1) then f ∈ Cr+1,α(C).

Proof: (i) Take ϕ ∈ C1
c (C); then

Z
f(≥)

@ϕ

@≥̄
(≥) d≥ ∧ d≥̄ =

−1
2πi

Z
g(z)

∑Z
@ϕ/@≥̄(≥)

≥ − z
d≥ ∧ d≥̄

∏
dz ∧ dz̄

= −
Z

g(z)ϕ(z) dz ∧ dz̄,

by the Cauchy formula for C1 functions.
(ii) Obvious.
(iii) Choose z1, z2 ∈ D, and set δ = |z2 − z1| and z0 = (z1 + z2)/2. Then

f(z2)− f(z1) =
1

2πi
(I1 + I2 + I3)

where
I1 =

Z

D(z0,δ)

g(≥)
≥ − z2

d≥ ∧ d≥̄,

I2 =
Z

D(z0,δ)

g(≥)
z1 − ≥

d≥ ∧ d≥̄,

I3 =
Z

C\D(z0,δ)

g(≥)
∑

1
≥ − z2

− 1
≥ − z1

∏
d≥ ∧ d≥̄.
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Now, D(z0, δ) ⊂ D(zj , 3δ/2) for j = 1, 2, and so

|I1|+ |I2| ≤ 6πkgk1|z2 − z1|.

Furthermore, for every ≥ ∈ C \D(z0, δ) we have |≥ − zj | ≥ |≥ − z0|/2 for j = 1, 2; hence

|I3| ≤ 8πkgk1|z2 − z1| log
M

|z2 − z1|
,

where M = sup
©
|≥ − z0|

ØØ ≥ ∈ K, z1, z2 ∈ D
™
, and (iii) follows.

(iv) After a change of variable we can write

f(z) =
−1
2πi

Z
g(z − ≥)

≥
d≥ ∧ d≥̄;

so if g ∈ Cr(C) we have

Dαf(z) =
−1
2πi

Z
Dαg(z − ≥)

≥
d≥ ∧ d≥̄

for every multi-index α of order at most r, and thus f ∈ Cr(C). Hence it remains to show
that g ∈ C0,α(C) implies f ∈ C1,α(C).

Choose a function η ∈ C1(R) such that 0 ≤ η ≤ 1, 0 ≤ η0 ≤ 2, η(t) = 0 for all t ≤ 1
and η(t) = 1 for all t ≥ 2. For every ε > 0 set ηε(z, ≥) = η(|≥ − z|/ε) and

fε(z) =
1

2πi

Z
g(≥)
≥ − z

ηε(z, ≥) d≥ ∧ d≥̄.

Clearly, fε ∈ C1(C) for every ε > 0; furthermore,

|f(z)− fε(z)| ≤ kgk1
2εZ

0

[1− η(r/ε)] dr ≤ 2εkgk1,

and fε → f uniformly on C.
Now we have

@fε

@z̄
(z) =

1
2πi

Z
g(≥)− g(z)

≥ − z

@ηε

@z̄
(z, ≥) d≥ ∧ d≥̄ + g(z),

because
Z

1
≥ − z

@ηε

@z̄
(z, ≥) d≥ ∧ d≥̄ = −

Z
1

≥ − z

@ηε

@≥̄
(z, ≥) d≥ ∧ d≥̄ =

Z

@D(z,3ε)

d≥

≥ − z
= 2πi.
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Furthermore,

ØØØØ

Z
g(≥)− g(z)

≥ − z

@ηε

@z̄
(z, ≥) d≥ ∧ d≥̄

ØØØØ ≤
πkgkα

ε

3εZ

0

rαη0(r/ε) dr ≤ 2π
3α+1

α + 1
kgkα εα; (2.6.35)

hence @fε/@z̄ → g uniformly on C.
Next,

@fε

@z
(z) =

1
2πi

Z
g(≥)− g(z)

≥ − z

@ηε

@z
(z, ≥) d≥∧d≥̄+

1
2πi

Z
g(≥)− g(z)

(≥ − z)2
ηε(z, ≥) d≥∧d≥̄, (2.6.36)

because, by Stokes’ formula
Z

@

@z

µ
ηε(z, ≥)
≥ − z

∂
d≥ ∧ d≥̄ = −

Z

@D(z,3ε)

d≥̄

≥ − z
= 0.

We already know, by (2.6.35), that the first summand in (2.6.36) goes uniformly to 0
as ε → 0. For the second summand, we have

ØØØØ

Z £
1− ηε(z, ≥)

§g(≥)− g(z)
(≥ − z)2

d≥ ∧ d≥̄

ØØØØ ≤ 2πkgkα

2εZ

0

dr

r1−α
=

2α+1π

α
kgkα εα;

hence
@fε

@z
(z) −→ h(z) =

1
2πi

Z
g(≥)− g(z)

(≥ − z)2
d≥ ∧ d≥̄

as ε → 0, uniformly on C, and, together with fε → f and @fε/@z̄ → g uniformly
on C, this yields f ∈ C1(C), @f/@z̄ = g and @f/@z = h. Therefore it remains to show
that h ∈ C0,α(C).

Choose z1, z2 ∈ D, and set again δ = |z2 − z1| and z0 = (z1 + z2)/2. Then

h(z2)− h(z1) =
1

2πi

£
I1 + I2 +

°
g(z1)− g(z2)

¢
I3 + I4

§
,

where
I1 =

Z

D(z0,δ)

g(≥)− g(z2)
(≥ − z2)2

d≥ ∧ d≥̄;

I2 =
Z

D(z0,δ)

g(z1)− g(≥)
(≥ − z1)2

d≥ ∧ d≥̄;

I3 =
Z

C\D(z0,δ)

d≥ ∧ d≥̄

(≥ − z1)2
;

I4 =
Z

C\D(z0,δ)

°
g(z2)− g(≥)

¢∑ 1
(≥ − z1)2

− 1
(≥ − z2)2

∏
d≥ ∧ d≥̄.
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Now, D(z0, δ) ⊂ D(zj , 3δ/2) for j = 1, 2, and so

|I1|+ |I2| ≤
4π
α
kgkα

µ
3
2

∂α

|z2 − z1|α.

Furthermore, using Stokes’ formula we find

I3 = −
Z

@D(z0,δ)

d≥̄

≥ − z1
= 0,

because |≥ − z1| ≥ δ/2 for every ≥ ∈ @D(z0, δ).
Finally, for every ≥ ∈ C \D(z0, δ) we have

3|≥ − z0|
2

≥ |≥ − zj | ≥
|≥ − z0|

2

for j = 1, 2; so

|I4| ≤
24π

1− α
kgkα|z2 − z1|α,

and we are done, q.e.d.

We shall use these results to cook up a sort of reflection principle with respect to
a totally real manifold, as shown in the following proposition, which is the core of our
argument:

Proposition 2.6.41: Let U ⊂ C be an open neighborhood of a point τ0 ∈ @∆ such that
U ∩∆ is connected, X a complex manifold, and M a totally real closed Cr submanifold
(r = 2, 3, . . . ,1, ω) of X with dimR M = dimC X. Take g ∈ Hol(U∩∆,X)∩C0,1/2(U∩∆)
such that g(U ∩ @∆) ⊂ M ; then g ∈ Cr−1,α(U ∩∆) for every α ∈ (0, 1).

Proof: Since the statement is local, we can made some reduction on the hypotheses. First
of all, we can replace ∆ by H+, assume that U is convex, symmetric with repect to
the real axis, and that g satisfies the hypotheses in a slightly larger neighbourhood of τ0

(so that g(U ∩ R) ⊂⊂ M). Furthermore, we can assume X = Cn and that there is a
Cr-diffeomorphism Φ of M with an open subset V of Rn. Finally, set A = U ∩R.

If r = ω, Φ is the restriction of a biholomorphic map eΦ of a neighbourhood of M with
a neighbourhood of V in Cn ⊃ Rn. Then eΦ◦g is holomorphic in U ∩H+, continuous on A
and eΦ ◦ g(A) ⊂ Rn; by the Schwarz reflection principle, eΦ ◦ g extends holomorphically
across A, and so g ∈ Cω(U ∩A).

Assume now r < ω. By Lemma 2.6.38, slightly shrinking M if necessary, we can
find eΦ ∈ Cr(Cn) such that eΦ|M = Φ and

Dα @eΦ
@z̄

ØØØØ
M

≡ 0
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for all multi-index α with |α| ≤ r − 1.
Set h = eΦ ◦ g:U ∩H+ → Cn and define H:U → Cn by

H(≥) =

(
h(≥) if Im ≥ ≥ 0;

h(≥̄) if Im ≥ ≤ 0.

Clearly, H ∈ C0(U) ∩ Cr(U \R). Now set

φ(≥) =






@H

@≥̄
(≥) if ≥ ∈ U \A;

0 if ≥ ∈ A;
we claim that φ is continuous in U . We have

∀≥ ∈ U ∩H+ @H

@≥̄
(≥) =

D@eΦ
@z̄

°
g(≥)

¢
, g0(≥)

E
. (2.6.37)

Take z ∈ Cn, and choose z0 ∈ M such that kz − z0k = d(z,M). Then
∞∞∞∞

@eΦ
@z̄

(z)
∞∞∞∞ =

∞∞∞∞
@eΦ
@z̄

(z)− @eΦ
@z̄

(z0)
∞∞∞∞

≤ kz − z0k
nX

j=1

1Z

0

"∞∞∞∞
@2eΦ

@zj@z̄

°
z0 + t(z − z0)

¢∞∞∞∞ +
∞∞∞∞

@2eΦ
@z̄j@z̄

°
z0 + t(z − z0)

¢∞∞∞∞

#

dt

≤ o(1) d(z,M)
as z → M . Thus, since if ≥ ∈ U \ A then Re ≥ ∈ A (for U is convex and symmetric with
respect to the real axis), we have

∞∞∞∞
@eΦ
@z̄

°
g(≥)

¢∞∞∞∞ ≤ o(1) d
°
g(≥),M

¢
≤ o(1)kg(≥)− g(Re ≥)k ≤ o(1)| Im ≥|1/2

as ≥ → A, for g ∈ C0,1/2(U ∩H+). Finally, kg0(≥)k ≤ O(1)| Im ≥|−1/2, by Theorem 2.6.26,
and hence φ is continuous in U , as claimed.

Now fix U 0 ⊂⊂ U , and choose a non-negative function χ ∈ C1
c (U) such that χ ≡ 1

in a neighbourhood of U 0. Then applying Proposition 2.6.40 to χφ we find a function
√ ∈ C0(C) such that @√/@≥̄ = φ in the weak sense on U 0, and moreover √ ∈ C0,α(U 0) for
all α ∈ (0, 1). Then (by Lemma 2.6.39) H − √ is holomorphic in U 0 \ A, and continuous
in U 0; therefore H − √ is holomorphic in U 0, and then H ∈ C0,α(U 0). Being U 0 arbitrary,
it follows that h, g ∈ C0,α(U ∩H+).

Now, arguing as before, we find that
∞∞∞∞

@eΦ
@z̄

°
g(≥)

¢∞∞∞∞ ≤ o(1)| Im ≥|α

kg0(≥)k ≤ O(1)| Im ≥|α−1

as ≥ → A; therefore φ ∈ C0,2α−1(U 0), √ ∈ C1,2α−1(U 0) and finally h, g ∈ C1,2α−1(U ∩H+).
If r = 2 we have finished. If r > 2, we repeat the argument: we know that

g0 ∈ C0,2α−1(U ∩H+), and thus kg00(≥)k ≤ O(1)| Im ≥|2α−2 as ≥ → A. Differentiating
(2.6.37) we find φ ∈ C1,3α−2(U); thus √ ∈ C2,3α−2(U 0) and h, g ∈ C2,3α−2(U ∩H+), and
so on, q.e.d.
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To apply this bootstrap lemma, we need examples of totally real submanifolds. Denote
by Pn−1 the complex projective space of complex hyperplanes in Cn. Then:

Lemma 2.6.42: Let D ⊂⊂ Cn be a C2 domain, and define ™: @D → Cn ×Pn−1 by

∀x ∈ @D ™(x) =
°
x, TC

x @D
¢
, (2.6.38)

and set M = ™(@D). Then M is a totally real submanifold of Cn×Pn−1 iff the Levi form
of D is nondegenerate.

Proof: Let ρ ∈ C2(Cn) be a defining function for D. Fix x ∈ @D; we can assume

@ρ

@z
(x) = (0, . . . , 0, 1). (2.6.39)

Let z1, . . . , zn, p1, . . . , pn−1 be coordinates of Cn × Pn−1 in a neighbourhood of ™(x);
clearly, M is defined by

Ω
ρ(z) = 0
ρα(z)− ρn(z)pα = 0 for α = 1, . . . , n− 1,

where the subscript α in ρα denotes partial differentiation with respect to zα. Therefore
(v, a) ∈ Cn ×Cn−1 belongs to T™(x)M iff






Re
nP

µ=1
ρµ(x)v = 0,

Re
nP

µ=1
ρµ̄α(x)vµ − pα Re

nP
µ=1

ρµ̄n(x)vµ = aα for α = 1, . . . , n− 1.

Thus M is not totally real in x iff there is (v, a) ∈ Cn × Cn−1 such that we have
(v, a), (iv, ia) ∈ T™(x)M , and then iff Aρ(x)v = 0, where Aρ is the n× n matrix

Aρ =
µ

ρµ̄ 1
ρµ̄α − pαρµ̄n ρn̄α − pαρn̄n

∂
.

Recalling (2.6.39), we see that Aρ(x)v = 0 iff v ∈ TC
x @D is in the kernel of the Levi form

of D at x, and we are done, q.e.d.

And so we are finally ready to prove

Theorem 2.6.43: Let D ⊂⊂ Cn be a strongly convex Cr domain (r = 3, . . . ,1, ω), and
ϕ ∈ Hol(∆,D) a complex geodesic. Then we have ϕ, ϕ∗ ∈ Cr−2,α(∆), p̃ ∈ Cr−1,α(D) and
p ∈ Cr−2,α(D) for every α ∈ (0, 1), where, as usual, p̃ is the left inverse of ϕ and p = ϕ ◦ p̃.

Proof: By Lemmas 2.6.21, 2.6.32 and 2.6.33, ϕ∗ is never vanishing on ∆. Therefore the map
ϕ̃ = π ◦ ϕ∗:∆ → Pn−1 is well defined, where π:Cn → Pn−1 is the canonical projection
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and we are identifying Cn and (Cn)∗. Now, the map (ϕ, ϕ̃):∆ → Cn × Pn−1 is 1/2-
Hölder, holomorphic in ∆ and (ϕ, ϕ̃) ⊂ ™(@D), where ™: @D → Cn × Pn−1 is defined
in (2.6.38). Then Lemma 2.6.42 and Proposition 2.6.41 yield (ϕ, ϕ̃) ∈ Cr−2,α(∆); thus, in
particular, ϕ ∈ Cr−2,α(∆). Since this implies that n ◦ ϕ ∈ Cr−2,α(@∆) and the regularity
of p and p̃ immediately follows from the regularity of ϕ and ϕ∗, it remains to show that
µ = kϕ∗k ∈ Cr−2,α(@∆).

Fix τ0 ∈ @∆; we can assume (nϕ(τ0))1 6= 0. Choose χ ∈ Cr−2,α(@∆) such that

exp
°
χ(τ)

¢
= (nϕ(τ))1

in a neighbourhood V ∩ @∆ of τ0 in @∆. As usual, extend − Imχ to a harmonic function
in ∆, and let ρ:∆ → R be a conjugate function; by Corollary 2.6.27, ρ ∈ Cr−2,α(∆).

Now, the functions µ(τ)(nϕ(τ))1 and (nϕ(τ))1 exp{ρ(τ) − Reχ(τ)} extends to never
vanishing holomorphic functions in ∆∩V ; therefore µ(τ) exp{Reχ(τ)−ρ(τ)} extends too.
This latter function is real on @∆ ∩ V ; hence it extends holomorphically across @∆, and,
in consideration of the regularity of χ and ρ, it follows that µ ∈ Cr−2,α(V ∩ @∆). But
τ0 ∈ @∆ was an arbitrary point of @∆; therefore µ ∈ Cr−2,α(@∆), and we are done, q.e.d.

Now we can study in detail the existence and uniqueness of geodesic disks containing
(in their closure) points of the boundary of the domain. In particular, we are interested
in geodesic disks containing a point z0 ∈ D and a point x ∈ @D, or containing two
distinct points x1, x2 ∈ @D. As the quick reader can imagine, we have both existence and
uniqueness; by the way, the proofs rely in an interesting way on the theory developed in
chapter 1.2.

We need the following lemma:

Lemma 2.6.44: Let D ⊂⊂ Cn be a strongly convex C3 domain, ϕ ∈ Hol(∆,D) a complex
geodesic and p̃ ∈ Hol(D,∆) its left inverse. Then for every τ ∈ @∆ we have

∀v ∈ Cn dp̃ϕ(τ)(v) = hv, ϕ∗(τ)i =
(v,nϕ(τ))°

ϕ0(τ),nϕ(τ)

¢ .

Proof: Since for every ≥ ∈ ∆ we have dp̃ϕ(≥)

°
ϕ0(≥)

¢
= 1 and

ker dp̃ϕ(≥) = {v ∈ Cn | hv, ϕ∗(≥)i = 0},

(2.6.30) implies

∀v ∈ Cn dp̃ϕ(≥)(v) = hv, ϕ∗(≥)i,

and, letting ≥ → τ , the assertion follows, q.e.d.

Then
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Theorem 2.6.45: Let D ⊂⊂ Cn be a strongly convex C3 domain. Then:
(i) for every z0 ∈ D and x ∈ @D there exists a unique complex geodesic ϕ ∈ Hol(∆,D)

such that ϕ(0) = z0 and ϕ(1) = x;
(ii) for every pair of distinct points x1, x2 ∈ @D there exists a unique (up to parametriza-
tion) complex geodesic ϕ ∈ Hol(∆,D) such that ϕ(1) = x1 and ϕ(−1) = x2.

Proof: (i) We begin with the existence. Let {z∫} ⊂ D be a sequence converging to x, and let
ϕ∫ ∈ Hol(∆,D) be the complex geodesic such that ϕ∫(0) = z0 and z∫ ∈ ϕ∫

°
(0, 1)

¢
. Since

D is taut, up to a subsequence we can assume that {ϕ∫} converges to a map ϕ ∈ Hol(∆,D).
Clearly, ϕ(0) = z0; moreover, for all ≥ ∈ ∆ we have

kD

°
z0, ϕ(≥)

¢
= lim

∫→1
kD

°
z0, ϕ∫(≥)

¢
= ω(0, ≥),

and ϕ is a complex geodesic. Then ϕ ∈ C1(∆), and clearly ϕ(1) = x.
Assume now √ ∈ Hol(∆,D) is another complex geodesic with √(0) = z0 and √(1) = x;

denote by p̃ the left inverse of ϕ, and by q̃ the left inverse of √. We claim that

p̃ ◦ √ = id∆ . (2.6.40)

In fact, let f = p̃ ◦ √. Clearly, f ∈ Hol(∆,∆) ∩ C1(∆), f(0) = 0 and f(1) = 1; moreover,
by Lemma 2.6.44,

f 0(1) = dp̃x

°
√0(1)

¢
=

(√0(1),nx)
(ϕ0(1),nx)

.

Analogously, if we set g = q̃ ◦ ϕ, we have g(0) = 0, g(1) = 1 and

g0(1) =
(ϕ0(1),nx)
(√0(1),nx)

=
1

f 0(1)
.

Then Corollary 1.2.10 yields f 0(1) = g0(1) = 1 and f = id∆, as claimed.
Now, (2.6.40) implies that p̃

°
√(τ)

¢
= τ for every τ ∈ @∆; hence, by (2.6.31),

√|@∆ = ϕ|@∆, and thus √ ≡ ϕ.
(ii) We begin with the existence again. Let {z∫} ⊂ D be a sequence converging to x2,

and denote by ϕ∫ ∈ Hol(∆,D) a complex geodesic such that ϕ∫(1) = x1, z∫ ∈ ϕ∫

°
(−1, 1)

¢

and
kϕ∫(0)− x2k <

kx2 − x1k
2

. (2.6.41)

Since D is bounded, up to a subsequence we can assume that {ϕ∫} converges to a holo-
morphic map ϕ:∆ → Cn. Since D is strongly convex, either ϕ(∆) ⊂ D or ϕ is a constant
contained in @D. The latter possibility cannot occur, by (2.6.41); so ϕ ∈ Hol(∆,D), and
it is clear that ϕ is as desired.

Assume now that √ is another complex geodesic with √(1) = x1 and √(−1) = x2, and
denote again by p̃ (respectively, q̃) the left inverse of ϕ (respectively √). We claim that
this time

p̃ ◦ √ ∈ Aut(∆).
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Indeed, p̃ ◦ √(1) = 1, p̃ ◦ √(−1) = −1 and, by Lemma 2.6.44,

(p̃ ◦ √)0(1) · (p̃ ◦ √)0(−1) =
(√0(1),nx1)
(ϕ0(1),nx1)

· (√0(−1),nx2)
(ϕ0(−1),nx2)

.

Analogously, q̃ ◦ ϕ(1) = 1, q̃ ◦ ϕ(−1) = −1 and

(q̃ ◦ ϕ)0(1) · (q̃ ◦ ϕ)0(−1) =
1

(p̃ ◦ √)0(1) · (p̃ ◦ √)0(−1)
;

then Theorem 1.2.11 yields (p̃ ◦ √)0(1)(p̃ ◦ √)0(−1) = 1 and p̃ ◦ √ ∈ Aut(∆). Hence, up to
parametrization, we can assume p̃ ◦ √ = id∆, and then, exactly as before, it follows that
√ ≡ ϕ, q.e.d.

Fix z0 ∈ D, and for every z ∈ D \ {z0} denote by ϕz ∈ Hol(∆,D) the unique
complex geodesic such that ϕz(0) = z0 and z ∈ ϕz

°
(0, 1]

¢
. It is easy to check that, as a

consequence of the uniqueness of ϕz, the map z 7→ ϕz from D \ {z0} into Hol(∆,D) is
continuous. Lempert [1981] has shown that even more is true: if D is a strongly convex
Cr domain, with r ≥ 3, then ϕz is a Cr−2 function of z ∈ D \ {z0}. A corollary of this
result is that if we set Kz0(z) = tanh

°
kD(z0, z)

¢
for z ∈ D and Kz0(x) = 1 for x ∈ @D, so

that ϕz

°
Kz0(z)

¢
= z for all z ∈ D, then Kz0 ∈ Cr−2(D \ {z0}).

Unfortunately, the methods used in Lempert [1981] are out of the scope of this book;
so we decided to omit the proof of this fact (see also the notes). However, since we shall
need it once, to prove the last theorem of this chapter, we quote it officially:

Proposition 2.6.46: Let D ⊂⊂ Cn be a convex domain, and fix z0 ∈ D. Then:
(i) Kz0 is continuous in D and log Kz0 is plurisubharmonic in D;
(ii) if D is strongly convex with Cr boundary, r ≥ 3, then Kz0 ∈ Cr−2(D \ {z0}).

Proof: We prove only part (i). The continuity is obvious. Next, by Proposition 2.6.25,

∀z ∈ D log Kz0(z) = sup
©
log |f(z)|

ØØ f ∈ Hol(D,∆), f(z0) = 0
™
;

so Kz0 is the supremum of a family of plurisubharmonic functions, and hence it is plurisub-
harmonic, q.e.d.

Then we can prove:

Theorem 2.6.47: Let D ⊂⊂ Cn be a strongly convex C3 domain, and fix z0 ∈ D
and x ∈ @D. Then

lim
w→x

£
kD(z, w)− kD(z0, w)

§
= 1

2 log
∑
@Kz0

@nx
(x)

¡
@Kz

@nx
(x)

∏
.

Proof: The first observation is that

kD(z, w)− kD(z0, w) = 1
2 log

∑
1 + Kz(w)
1−Kz(w)

· 1−Kz0(w)
1 + Kz0(w)

∏
;
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therefore it suffices to study the quotient
°
1−Kz0(w)

¢±°
1−Kz(w)

¢
. Since D is strongly

convex, for any w ∈ D the real half-line issuing from w and parallel to nx meets @D in
exactly one point w̃, and w 7→ w̃ is a C1 function of w ∈ D. Then Lagrange’s theorem
applied to the real segment bounded by w and w̃ yields

1−Kz0(w)
1−Kz(w)

=
Kz0(w̃)−Kz0(w)

kw̃ − wk

¡
Kz(w̃)−Kz(w)

kw̃ − wk =
@Kz0

@nx
(w0)

¡
@Kz

@nx
(w00),

for suitable w0 and w00 contained in the segment [w, w̃]. Since, by Propositions 2.3.57
and 2.6.46, @Kz(x)/@nx exists and it is nonzero for all z ∈ D, we can take the limit
as w → x; then w0, w00 → x and

lim
w→x

1−Kz0(w)
1−Kz(w)

=
@Kz0

@nx
(x)

¡
@Kz

@nx
(x),

q.e.d.

It follows that in strongly convex C3 domains big and small horospheres coincide:

Corollary 2.6.48: Let D ⊂⊂ Cn be a strongly convex C3 domain. Then for any z0 ∈ D,
x ∈ @D and R > 0 we have

Ez0(x,R) = Fz0(x,R).

Proof: Indeed Theorem 2.6.47 implies the existence of the limit in the definition of horo-
spheres, q.e.d.

In particular, the horospheres are convex sets:

Corollary 2.6.49: Let D ⊂⊂ Cn be a strongly convex C3 domain. Then the horospheres
are convex subsets of D, strongly convex near their center.

Proof: This follows from Proposition 2.3.46 and Theorem 2.6.47, q.e.d.

Notes

The concept of complex geodesic was first introduced in Vesentini [1979] — to study the
automorphism group of the unit ball of L1(M,µ), where (M,µ) is a measure space — and
later developed in Vesentini [1981, 1982a, b]; the general facts described in section 2.6.1
come from those papers. Corollary 2.6.7 was originally proved in a more general setting
by Thorp and Whitley [1967]; our proof is due to Harris [1969].

There are just a few cases other than Bn where the complex geodesics are explicitely
described: for instance, the bounded symmetric domains (Abate [1985]) and the domains

{z ∈ Cn | |z1|α + · · ·+ |zn|α < 1},

see Poletskĭı [1983] for α > 1, and Gentili [1988] for α = 1.
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Theorem 2.6.12.(i) and (iii) goes back to Fatou [1906] and Plessner [1923]; Theo-
rem 2.6.12.(ii), (iv) and (v) is substantially due to F. and M. Riesz [1916].

At present, the most important works on complex geodesics are Lempert [1981] and
Royden and Wong [1983]; our exposition is largely inspired to these papers. The content
of Royden and Wong [1983] is substantially reproduced in sections 2.6.2 and 2.6.3: The-
orems 2.6.11, 2.6.17 and 2.6.19 as well as Corollaries 2.6.16, 2.6.18 and 2.6.20 come from
that source. The proof of Theorem 2.6.15 has been suggested by Vigué.

Concerning Corollary 2.6.20, every complex geodesic is always an infinitesimal complex
geodesic, but the converse in general is false; see Vigué [1984b] and Venturini [1988a]. On
the other hand, every complex C-geodesic is an infinitesimal complex C-geodesic, and
conversely; cf. Proposition 2.6.3 and Vesentini [1981].

An investigation of the non-unicity of complex geodesics in convex domains is Gen-
tili [1985, 1986].

The discussion at the end of section 2.6.3 culminating in the definition of holomor-
phic retraction associated to a complex geodesic is taken from Lempert [1982]; see also
Lempert [1984].

Corollaries 2.6.23 and 2.6.24 have been originally proved by Vigué [1984a, 1985].
Vesentini [1982a] proved Corollary 2.6.24 for ∆2. In generic convex domains it is not
true that every triple of points is contained in a 2-dimensional holomorphic retract; see
Lempert [1982].

Proposition 2.6.25 is in Lempert [1982]. A different proof of Proposition 2.6.25 is
described in Royden and Wong [1983]. It should be remarked that the equality of the
Carathéodory and Kobayashi distances entails the existence of complex geodesics; see
Vigué [1985]. In particular, the only hyperbolic Riemann surface X where cX = kX is
the disk. An interesting (and probably difficult) question is to characterize the hyperbolic
manifolds where the Kobayashi and Carathéodory distances coincide. A first partial result
follows from Barth [1983] and Vigué [1984b]: if D ⊂⊂ Cn is a balanced domain, then
cD = kD iff D is convex; see also Stanton [1980, 1983], and compare with Theorem 2.3.43.

Theorem 2.6.26 is due to Hardy and Littlewood [1932], while Corollary 2.6.27 goes
back to Privalov [1918].

The theory of complex geodesics in strongly convex domains has been developed by
Lempert [1981, 1984]: Theorems 2.6.29, 2.6.34 and 2.6.43 are his. Actually, Lempert used
an approach slightly different from ours: he studied the maps satisfying the conditions
decribed in Corollary 2.6.36, showing that they are complex geodesics, and an involved
continuity argument allowed him to prove Corollary 2.6.30 directly. We tried to merge
Royden’s and Wong’s ideas, leading to an easier proof of the existence of complex geodesics,
with Lempert’s techniques, quite more sensitive to boundary phenomena; unfortunately,
this approach forced us to leave out the proof of Proposition 2.6.46.

In Abate [1986] there is an extension of Theorem 2.6.29 to strongly pseudoconvex
domains.

Theorem 2.6.37 is due to Whitney [1934]. The proof of Lemma 2.6.38 comes from
Harvey and Wells [1972]; more direct (and longer) proofs can be found in Hörmander and
Wermer [1968] and in Niremberg and Wells [1969].

Proposition 2.6.41 is in Lempert [1981]. Theorem 2.6.45 is taken from Abate [1988d];



Notes 289

the proof is inspired by Lempert [1984].
The proof of Proposition 2.6.46.(ii) goes as follows (see Lempert [1981, 1984]): let

D ⊂⊂ Cn be a strongly convex Cr domain, with r ≥ 3, fix a base point z0 ∈ D, and
for each point z ∈ D \ {z0} denote by ϕz ∈ Hol(∆,D) the unique complex geodesic such
that ϕz(0) = z0 and ϕz

°
Kz0(z)

¢
= z. Then there are suitable Banach spaces X and Y ,

constructed starting from A0,1/2
n (∆), and a Cr−2 map ™:D \ {z0}×∆×X → Y such that

™(z,Kz0(z), ϕz) ≡ 0. Then, by the implicit function theorem (the hard part of the proof
is exactly to show that we can apply the implicit function theorem), the maps z 7→ ϕz

and Kz0 are in Cr−2(D \ {z0}). The smoothness at z0 is almost never achieved, not even
for (Kz0)2: see Patrizio [1986].

In Lempert [1981] there is an interesting application of Proposition 2.6.46.(ii). Define
a map Φz0 :D → Bn by setting Φz0(z0) = 0 and

Φz0(z) = Kz0(z)
ϕ0z(0)
kϕ0z(0)k .

It is easy to check that Φz0 is a homeomorphism of D with Bn; furthermore, the regularity
of ϕz and Kz0 implies that Φz0 ∈ Cr−2(D \ {z0}). Then log kΦz0k is a solution of the
complex Monge-Ampère equation on D \ {z0}

det
µ

@2u

@zj@ zk

∂
= 0 (2.6.42)

with a logarithmic singularity at z0. Later on, Lempert’s approach has been used by
Patrizio [1987] to study the complex geodesics in strongly pseudoconvex smooth circular
domains by means of the Monge-Ampère equation. For more information on (2.6.42)
consult Bedford and Taylor [1976] and Demailly [1987].

The proof of Theorem 2.6.47 is due to Venturini, and is taken from Abate [1988f].
In the terminology of Balmann, Gromov and Schroeder [1985] described in the notes to
chapter 2.4, Corollary 2.6.48 says that the ideal boundary of a strongly convex C3 domain D
coincides with the topological boundary of D.


