
Chapter 2.5
Common fixed points

In this chapter we shall deal with the second main theme of this book, discussing several
topics concerning fixed point sets. We begin with the characterization, due to Wong and
Rosay, of Bn by means of its automorphism group; using it, we shall be able to prove that
in a strongly convex domain D ⊂⊂ Cn not biholomorphic to Bn there exists a common
fixed point of Aut(D).

The next argument is the study of the fixed point set of a holomorphic map sending
a convex domain into itself. We shall show that in convex domains fixed point sets and
holomorphic retracts are one and the same thing; furthermore, using iteration theory, we
shall generalize Shields’ theorem, proving that a commuting family of holomorphic maps
sending a strongly convex domain into itself (and continuous up to the boundary) has a
fixed point.

Finally, we shall study one-parameter semigroups of holomorphic maps. The present
state of the theory is far away from the completeness and elegance we saw in chapter 1.4;
however, we have a fairly complete description of the asymptotic behavior, obtained by
applying in an interesting way the theory of fixed point sets in convex domains.

2.5.1 Compact groups of automorphisms

This section is devoted to prove that Bn is the only strongly pseudoconvex domain with
non-compact automorphism group, and that a compact group of automorphisms of a con-
vex domain always has a fixed point.

To prove the former theorem, we shall apply the characterization of Bn given in Theo-
rem 2.3.43. To be more specific, let D ⊂⊂ Cn be a strongly pseudoconvex domain, and as-
sume that Aut(D) is non-compact; then we can find z0 ∈ D and a sequence {∞∫} ⊂ Aut(D)
such that ∞∫(z0) → @D. Using localization theorems, we shall prove that {∞∗∫ ∑̃D(z0)} and
{∞∗∫ ∞̃D(z0)} tend to the same limit as ∫ → +1, where ∑̃D and ∞̃D are the Kobayashi and
Carathéodory volume forms; hence ∑̃D(z0) = ∞̃D(z0), and D is biholomorphic to Bn by
Theorem 2.3.43.

To made precise the previous argument, we need localization theorems. Let D be a
domain in Cn; then the Carathéodory volume element CD:D → R+ and the Kobayashi
volume element KD:D → R+ are defined by

∀z ∈ D ∞̃D(z) = CD(z)Θ and ∑̃D(z) = KD(z)Θ,

where Θ is the standard volume form given by (2.3.11). We have already proved a localiza-
tion theorem for the Kobayashi volume element, Theorem 2.3.61; our first aim is a similar
result for the Carathéodory volume element. We need
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Lemma 2.5.1: Let D be a bounded domain of Cn, and let {D∫} be a sequence of domains
relatively compact in D such that D =

S
∫ D∫ and D∫ ⊂⊂ D∫+1 for all ∫ ∈ N. Then

∀z ∈ D lim
∫→1

CD∫ (z) = CD(z).

Proof: Fix z0 ∈ D. The sequence {CD∫ (z0)} is not increasing; therefore the limit exists
and

lim
∫→1

CD∫ (z0) ≥ CD(z0).

Conversely, since Bn is taut, for all ∫ ∈ N there exists f∫ ∈ Hol(D∫ , Bn) such that
f∫(z0) = 0 and |det d(f∫)z0 |2 = CD∫ (z0); up to a subsequence, we can assume that
f∫ → f ∈ Hol(D,Bn). Clearly, f(z0) = 0; then

CD(z0) ≥ |det dfz0 |2 = lim
∫→1

|det d(f∫)z0 |2 = lim
∫→1

CD∫ (z0),

and we are done, q.e.d.

Then

Proposition 2.5.2: Let D be a bounded domain of Cn, x ∈ @D a local peak point for D
and U a neighbourhood of x in Cn such that U ∩D is connected. Assume there are z0 ∈ D
and a sequence {∞∫} ⊂ Aut(D) such that z∫ = ∞∫(z0) → x. Then

lim
∫→1

CD(z∫)
CD∩U (z∫)

= 1.

Proof: Clearly,

lim sup
∫→1

CD(z∫)
CD∩U (z∫)

≤ 1.

Fix a sequence {D∫} of subdomains of D such that z0 ∈ D0, D∫ ⊂⊂ D∫+1 and D =
S

∫ D∫ .
Choose ε > 0; by Lemma 2.5.1, there is ∫0 ∈ N such that

CD(z0) ≤ CD∫ (z0) ≤ (1 + ε)CD(z0)

for all ∫ ≥ ∫0. Now, Corollary 2.3.60 implies that ∞∫(D∫0) ⊂ D ∩ U for all ∫ sufficiently
large. Therefore we eventually have

CD(z∫)
CD∩U (z∫)

≥
CD

°
∞∫(z0)

¢

C∞∫(D∫0 )

°
∞∫(z0)

¢ =
CD(z0)

CD∫0
(z0)

≥ 1
1 + ε

,

and the assertion follows, q.e.d.

The idea now is to select a particular local peak point such that the hypotheses of
Proposition 2.5.2 are fulfilled, to apply Theorem 2.3.61 and Proposition 2.5.2 obtaining
the equalities of CD and KD somewhere, and to invoke Theorem 2.3.43 to infer that D is
biholomophic to Bn. In other words, our aim is:
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Theorem 2.5.3: Let D be a bounded domain of Cn and x0 ∈ @D a strongly pseudoconvex
point. Assume there are z0 ∈ D and a sequence {∞∫} ⊂ Aut(D) such that ∞∫(z0) → x0.
Then D is biholomorphic to Bn.

Proof: Let U be a neighbourhood of x0 such that there exists a strictly plurisubharmonic
defining function ρ for D ∩ U belonging to C2(U). For every x ∈ @D ∩ U let pρ,x be the
Levi polynomial and Lρ,x the Levi form of ρ at x. Then, by (2.3.23),

D ∩ U =
©
z ∈ U

ØØ 2Re pρ,x(z) + Lρ,x(z − x, z − x) + o(kz − xk2) < 0
™
.

Looking at the proof of Proposition 2.1.13 we see that, shrinking U if necessary, for ev-
ery x ∈ @D ∩ U we can find a biholomorphic map Φx:U → Φx(U) ⊂ Cn such that

D0
x = Φx(D ∩ U) =

©
w ∈ Φx(U)

ØØ −2Rew1 + kwk2 + o(kwk2) < 0
™
.

Furthermore, for every ∫ large enough we can find x∫ ∈ @D∩U such that, if for every ∫ ∈ N
we set z∫ = ∞∫(z0),

Φx∫ (z∫) = (a∫ , 0, . . . , 0)

for a suitable a∫ > 0, with a∫ → 0 as ∫ → +1.
Now Theorem 2.3.61 and Proposition 2.5.2 imply

1 ≤ KD(z0)
CD(z0)

=
KD

°
∞∫(z0)

¢

CD

°
∞∫(z0)

¢ = lim sup
∫→1

KD∩U (z∫)
CD∩U (z∫)

; (2.5.1)

we claim that the right-hand term in (2.5.1) is 1. Choose ε > 0, and set

B±
ε =

©
w ∈ Cn

ØØ −2Rew1 + (1 ± ε)kwk2 < 0
™
;

the B±
ε are euclidean balls of radius (1 ± ε)−1/2 such that 0 ∈ @B±

ε . In particular,
by (2.3.12) we have

KB±ε
(w) = CB±ε

(w) =
1

(1 ± ε)n+1
ØØ(1 ± ε)kwk2 − 2Rew1

ØØn+1 .

If ε is small enough we have

∀x ∈ @D ∩ U B−ε ∩ Φx(U) ⊂ D0
x ⊂ B+

ε ∩ Φx(U),

and Φx∫ (z∫) ∈ B−ε ∩ Φx∫ (U) for ∫ large enough. Hence

lim sup
∫→1

KD∩U (z∫)
CD∩U (z∫)

≤ lim sup
∫→1

KB−ε ∩Φx∫ (U)

°
Φx∫ (z∫)

¢

CB+
ε

°
Φx∫ (z∫)

¢

= lim sup
∫→1

KB−ε

°
Φx∫ (z∫)

¢

CB+
ε

°
Φx∫ (z∫)

¢ =
µ

1 + ε

1− ε

∂n+1

,

(2.5.2)

where we have used Theorem 2.3.61 once again. Now ε > 0 is arbitrary; hence (2.5.1)
and (2.5.2) imply

KD(z0) = CD(z0)

and, by Theorem 2.3.43, D is biholomorphic to Bn, q.e.d.
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The corollaries of this result are probably more expressive than the theorem itself:

Corollary 2.5.4: Let D ⊂⊂ Cn be a strongly pseudoconvex domain such that Aut(D) is
non-compact. Then D is biholomorphic to Bn.

Proof: If Aut(D) is non-compact, by Theorem 2.1.26 and Corollary 2.1.14 there is a se-
quence {∞∫} ⊂ Aut(D) converging to a point x0 ∈ @D, and the assertion follows from
Theorem 2.5.3, q.e.d.

Corollary 2.5.5: Let D ⊂⊂ Cn be a C2 domain such that Aut(D) is transitive. Then
D is biholomorphic to Bn.

Proof: Assume, for simplicity, that 0 /∈ D. Let x0 ∈ @D be a point of @D farthest from 0,
and let R = kx0k. Then near x0 the boundary of D is defined by a C2 function ρ such
that ρ(z) − (kzk2 − R2) ≥ 0, with equality possibly only on @D. Therefore x0 is a local
minimum for ρ(z) − (kzk2 − R2), and so the real Hessian of ρ at x0 is strictly positive
definite. In particular, x0 is a strongly convex point of @D.

Now choose z0 ∈ D; since Aut(D) is transitive, we can find a sequence {∞∫} ⊂ Aut(D)
such that ∞∫(z0) → x0; by Theorem 2.5.3, D is biholomorphic to Bn, q.e.d.

So Bn is really a very special domain: it is the unique homogeneous C2 domain, and
even the unique strongly pseudoconvex domain with non-compact automorphism group.
Now, let D ⊂⊂ Cn be a strongly pseudoconvex domain not biholomorphic to the ball; we
know, by Proposition 2.1.24, that the isotropy group of a point of D is compact; so it would
be nice if the whole automorphism group were contained in the isotropy group of a point,
that is if Aut(D) had a fixed point. Unfortunately, without extra topological hypotheses
this is a vain hope: a trivial variation of the map (2.4.6) yields an automorphism without
fixed points. So, as by now usual, we restrict our attention to strongly convex domains,
where at least we know that every automorphism has a fixed point in the closure of the
domain (by Brouwer’s theorem and Theorem 2.3.58). Actually, the fixed point is in the
domain itself:

Corollary 2.5.6: Let D ⊂⊂ Cn be a strongly convex domain not biholomorphic to Bn,
and ∞ ∈ Aut(D). Then ∞ has a fixed point in D.

Proof: Since D is not biholomorphic to Bn, Aut(D) is compact, by Corollary 2.5.4. In
particular, the sequence of iterates {∞k} cannot be compactly divergent, and the assertion
follows from Theorem 2.4.20, q.e.d.

So we can hope in the existence of a fixed point for the automorphism group of
a strongly convex domain. Actually, a much stronger result holds, generalizing Theo-
rem 2.2.36:

Theorem 2.5.7: Let D ⊂⊂ Cn be a convex domain, and Γ a subgroup of Aut(D). Then
Γ is relatively compact in Aut(D) iff it has a fixed point in D.
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Proof: If Γ has a fixed point, then it is relatively compact in Aut(D) by Proposition 2.1.24.
To prove the converse, we can directly assume Γ compact, of course. Take z0 ∈ D, and set

τ1 = inf
n
r > 0

ØØØ
\

∞∈Γ

Bk

°
∞(z0), r

¢
6= /∞

o
> 0.

Then K1 =
T

∞∈Γ
Bk

°
∞(z0), τ1

¢
is a compact, convex, non-empty and Γ-invariant subset of D

(by Proposition 2.3.46). Furthermore, the interior of K1 is empty, for τ1 is minimal. Hence
the real dimension of the affine hull H1 of K1 (i.e., of the smallest affine subspace of Cn

containing K1) is strictly less than 2n.
If K1 is not reduced to a point, we repeat the argument. Take z1 ∈ K1, and set

τ2 = inf
n
r > 0

ØØØ K1 ∩
h \

∞∈Γ

Bk

°
∞(z1), r

¢i
6= /∞

o
> 0

and
K2 = K1 ∩

h \

∞∈Γ

Bk

°
∞(z1), τ2

¢i
.

Again, K2 is compact, convex, non-empty and Γ-invariant. Furthermore, the interior part
of K2 relative to H1 is empty, again by the minimality of τ2 (note that ∞(z1) ∈ K1 for
every ∞ ∈ Γ, and that Bk

°
∞(z1), τ2

¢
∩ K1 is a convex set whose affine hull is still H1).

Hence the real dimension of the affine hull H2 of K2 is strictly less than the dimension
of H1.

Iterating this construction, we obtain a decreasing sequence of compact convex non-
empty Γ-invariant subsets of D with strictly decreasing affine hulls. This sequence must
stop, and the last subset should consist of one point, which is clearly Γ-invariant, q.e.d.

Corollary 2.5.8: Let D ⊂⊂ Cn be a strongly convex domain not biholomorphic to Bn.
Then Aut(D) has a fixed point.

Proof: Theorem 2.5.7 and Corollary 2.5.4, q.e.d.

2.5.2 Fixed point sets

Now we would like to say something about the shape of a fixed point set. If X is a
complex manifold and f ∈ Hol(X,X), then the fixed point set Fix(f) of f in X is clearly a
complex analytic subspace of X. Is it smooth? Is it connected? In other words, is Fix(f) a
closed submanifold of X? In this section we shall prove that, if X is taut, Fix(f) is
a not necessarily connected closed submanifold of X. Furthermore, if D ⊂⊂ Cn is a
convex domain and f ∈ Hol(D,D), then Fix(f) is always a holomorphic retract of D, thus
connected, reproducing the situation we saw in Bn. As an application, we shall generalize
Shields’ theorem to strongly convex domains.

We begin our investigations with the following observation:
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Proposition 2.5.9: Let X be a taut manifold and z0 ∈ X. Then there exists a local
chart ϕ about z0 such that

∀∞ ∈ Autz0(X) ϕ ◦ ∞ = d∞z0 ◦ ϕ, (2.5.3)

where we are identifying Tz0X and Cn by means of the local coordinates induced by ϕ.

Proof: By Proposition 2.1.24, Γ = Autz0(X) is a compact group; let µ be the Haar measure
of Γ (i.e., a right-invariant measure of total mass 1; a proof of the existence of the Haar
measure is in Rudin [1973]). Up to replace X by a small enough Kobayashi ball of center z0,
we can assume X is a domain in Cn. Then define ϕ:X → Cn by

∀z ∈ X ϕ(z) =
Z

Γ

(d∞z0)
−1

°
∞(z)

¢
dµ(∞).

Since dϕz0 = id, ϕ is a local chart about z0. Furthermore, for every ∞̃ ∈ Autz0(X) we have

ϕ ◦ ∞̃(z) =
Z

Γ

(d∞z0)
−1

°
∞ ◦ ∞̃(z)

¢
dµ(∞) = d∞̃z0

Z

Γ

°
d(∞ ◦ ∞̃)z0

¢−1°
∞ ◦ ∞̃(z)

¢
dµ(∞)

= d∞̃z0

°
ϕ(z)

¢
,

because of the right-invariance of µ, and we are done, q.e.d.

Then we can show that fixed point sets are always (not necessarily connected) sub-
manifolds:

Corollary 2.5.10: Let X be a taut manifold, and f ∈ Hol(X,X). Then Fix(f) is either
empty or a (not necessarily connected) closed submanifold of X.

Proof: If Fix(f) 6= /∞, we can replace X by the limit manifold of f , and then (Corol-
lary 2.1.31) assume f ∈ Aut(X). Take z0 ∈ Fix(f); then, by Proposition 2.5.9, we can
linearize f in a neighbourhood of z0, and the assertion follows, q.e.d.

In particular, we can easily identify the tangent space to a fixed point set:

Corollary 2.5.11: Let X be a taut manifold, and f ∈ Hol(X,X) such that Fix(f) 6= /∞.
Let z0 ∈ Fix(f) = F ; then Tz0F = ker(dfz0 − id).

Proof: This immediately follows from (2.5.3) and Corollary 2.5.10, q.e.d.

In general, the fixed point set is disconnected. For instance, let

D =
©
(z, w) ∈ C2

ØØ |z|2 + |w|2 + |w|−2 < 3
™
,

and let f ∈ Hol(D,D) be given by f(z, w) = (z, w−1). Then

Fix(f) = ∆× {1} ∪∆× {−1}.

On the other hand, every fixed point set in a convex domain is connected. Actually, we
shall prove even more:
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Theorem 2.5.12: Let D ⊂⊂ Cn be a convex domain, and let f ∈ Hol(D,D) be such
that Fix(f) 6= /∞. Then Fix(f) is a holomorphic retract of D. In particular, Fix(f) is
connected.

Proof: For every z ∈ D and t ∈ (0, 1) define ft,z ∈ Hol(D,D) by

ft,z(w) = (1− t)z + tf(w).

Clearly, ft,z(D) ⊂⊂ D for every z ∈ D and t ∈ (0, 1); therefore ft,z has a unique
fixed point ht(z) ∈ D, and (ft,z)k → ht(z) as k → +1 (Corollary 2.1.32). Note that
ht ∈ Hol(D,D) for every t ∈ (0, 1), for ht is the limit of the sequence of holomorphic
maps {(ft,·)k(z0)}, where z0 is a fixed point of f .

Now we have

∀z ∈ D sup
t∈(0,1)

kD

°
ht(z), z

¢
≤ 2kD(z, z0) < +1,

because ft,z0(z0) = z0 for every t ∈ (0, 1). In particular, no sequence of ht’s can be
compactly divergent; then there exists a sequence {t∫} ⊂ (0, 1) converging to 1 such that
ht∫ → ρ ∈ Hol(D,D).

We claim that ρ is a holomorphic retraction of D onto Fix(f). Indeed, by definition

∀z ∈ D ∀t ∈ (0, 1) ft,z

°
ht(z)

¢
= ht(z);

therefore f ◦ρ = ρ, and ρ(D) ⊂ Fix(f). But if z0 ∈ Fix(f) then ht(z0) = z0 for all t ∈ (0, 1);
thus ρ(D) = Fix(f) and ρ|Fix(f) = idFix(f), q.e.d.

It should be noticed that if f ∈ Hol(D,D)∩C0(D), in general the fixed point set of f
in D is not connected (and thus it is not the closure of the fixed point set of f in D): take
for instance D = B2 and f(z, w) = (z3, w).

So in convex domains holomorphic retracts and fixed point sets are one and the same
thing. Together with iteration theory, this yields a neat generalization of Shields’ theorem
(and of Theorem 2.2.34) to strongly convex domains. We begin with

Lemma 2.5.13: Let D ⊂⊂ Cn be a convex domain, ρ:D → M a holomorphic retraction
of D, and f ∈ Hol(D,D) such that f(M) ⊂ M . If Fix(f) 6= /∞, then Fix(f) ∩ M is a
non-empty holomorphic retract of D.

Proof: Set g = ρ◦f . For every z ∈ M and k ∈ N we have gk(z) = fk(z); hence {gk} cannot
be compactly divergent and, by Theorem 2.4.20, Fix(g) 6= /∞. Since Fix(g) = Fix(f) ∩M ,
the assertion follows from Theorem 2.5.12, q.e.d.

In particular we have
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Proposition 2.5.14: Let D ⊂⊂ Cn be a convex domain, and F ⊂ Hol(D,D) a commut-
ing family of holomorphic maps such that Fix(f) 6= /∞ for every f ∈ F . Then F has a
fixed point in D.

Proof: First of all note that if f , g ∈ F then g
°
Fix(f)

¢
⊂ Fix(f), for f and g commute.

Then using Lemma 2.5.13, Theorem 2.5.12, Lemma 2.1.28 and an induction argument it is
easy to show that Fix(f1)∩ · · ·∩Fix(fr) is a non-empty closed complex submanifold of D
for every r ∈ N and f1, . . . , fr ∈ F . Set

d = min
©
dim

£
Fix(f1) ∩ · · · ∩ Fix(fr)

§ ØØ r ∈ N, f1, . . . , fr ∈ F
™
≥ 0,

and choose f1, . . . , fr0 ∈ F so that the dimension of F = Fix(f1)∩· · ·∩Fix(fr0) is exactly d.
This implies that F ∩Fix(f) = F for every f ∈ F , and so every point in F is a fixed point
of F , q.e.d.

Then

Theorem 2.5.15: Let D ⊂⊂ Cn be a strongly convex domain, and F a family of con-
tinuous self-maps of D which are holomorphic in D and commute with each other under
composition. Then F has a fixed point in D.

Proof: If there is f ∈ F such that f(D) ∩ @D 6= /∞, then f ≡ x0 ∈ @D (for D has
simple boundary), and x0 is clearly a fixed point of F . So we can suppose, without loss of
generality, that F ⊂ Hol(D,D).

Assume there is f ∈ F without fixed points in D. Then, by Theorem 2.4.23, the
sequence of iterates of f converges to a point x0 ∈ @D. It follows that for any g ∈ F we
have

g(x0) = lim
k→1

g ◦ fk = lim
k→1

fk ◦ g = x0,

and x0 is a fixed point of F .
Assume finally that Fix(f) 6= /∞ for every f ∈ F ; then the assertion follows from

Proposition 2.5.14, q.e.d.

We can even generalize Shields’ theorem to product domains:

Theorem 2.5.16: Let D1 ⊂⊂ Cn1 , . . . , Dr ⊂⊂ Cnr be strongly convex domains, and F a
family of continuous self-maps of D1× · · ·×Dr which are holomorphic in D1× · · ·×Dr and
commute with each other under composition. Then F has a fixed point in D1 × · · ·×Dr.

Proof: If every map f ∈ F sends D1× · · ·×Dr into itself and has a fixed point there, then
we can apply Proposition 2.5.14. If this is not the case, we proceed by induction on r.
For r = 1, apply Theorem 2.5.15; for r > 1 we have two cases.

Case (a): there is f0 ∈ F such that f0(D1 × · · ·×Dr) 6⊂ D1 × · · ·×Dr. Then, using
weak peak functions (cf. Corollary 2.1.11), this implies f0(D1×· · ·×Dr) ⊂ @(D1×· · ·×Dr).
Without loss of generality, we may assume

f0(D1 × · · ·×Dr) ⊂ {a1}× · · ·× {ap}×Dp+1 × · · ·×Dr, (2.5.4)
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for suitable 1 ≤ p ≤ r and a1 ∈ @D1, . . . , ap ∈ @Dp, because every Dj is strongly convex.
If p = r, f0 is constant, and thus it is a fixed point of F ; so assume p < r.

Take f ∈ F , and for j = 1, . . . , p let πj :D1×· · ·×Dr → Dj be the canonical projection.
By (2.5.4) we have

f
°
f0(D1 × · · ·×Dr)

¢
⊂ {a1}× · · ·× {ap}×Dp+1 × · · ·×Dr;

therefore for every j = 1, . . . , p the holomorphic map hj :Dp+1 × · · ·×Dr → Cnj given by

hj(zp+1, . . . , zr) = πj ◦ f(a1, . . . , ap, zp+1, . . . , zr)

is such that hj(Dp+1× · · ·×Dr) ⊂ Dj and aj ∈ hj(Dp+1× · · ·×Dr). Since Dj is strongly
convex, this implies hj ≡ aj ; so for every f ∈ F we have

f({a1}× · · ·× {ap}×Dp+1 × · · ·×Dr) ⊂ {a1}× · · ·× {ap}×Dp+1 × · · ·×Dr,

and, by the induction hypothesis, F has a fixed point.
Case (b): f(D1 × · · · × Dr) ⊂ D1 × · · · × Dr for every f ∈ F , and there is f0 ∈ F

with Fix(f0) = /∞. By Theorem 2.4.20, the sequence {fk
0 } is compactly divergent; hence

there is a subsequence {fk∫
0 } converging to a holomorphic map g such that

g(D1 × · · ·×Dr) ⊂ @(D1 × · · ·×Dr).

But g ◦ f = f ◦ g or every f ∈ F , and the assertion follows from the argument used in
Case (a), q.e.d.

So we have a Shields’ theorem for certain convex domains, like ∆n. At present, it
is not known if such a theorem holds for every convex domain; the best results in this
direction are Proposition 2.5.14 and Theorem 2.5.16, of course.

2.5.3 One-parameter semigroups

We end this chapter with an account of the theory of one-parameter semigroups of holo-
morphic maps. We shall be mainly concerned with the description of the asymptotic be-
havior, both on taut manifolds and on strongly convex domains, but we shall also present
a characterization of the infinitesimal generators of one-parameter semigroups on Bn.

We shall need a general fact about linear semigroups, which is well-known in the
general setting of linear norm-continuous semigroups in Banach spaces (or in the setting
of linear Lie groups). We shall prove it here in the finite-dimensional case:

Proposition 2.5.17: Let T :R+ → GL(n,C) be a continuous semigroup homomorphism.
Then Tt = exp(tA) for some n× n complex matrix A.

Proof: Since Tt tends to I, the identity operator, as t → 0, we have

1
t

tZ

0

Ts ds −→ I
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as t → 0. In particular, there is δ > 0 such that
tR

0
Ts ds is invertible for t ∈ (0, δ).

Fix t0 ∈ (0, δ); then

1
h

(Th − I)
t0Z

0

Ts ds− (Tt0 − I) =
1
h

∑ t0+hZ

h

Ts ds−
t0Z

0

Ts ds

∏
− (Tt0 − I)

=
1
h

∑ t0+hZ

t0

(Ts − Tt0) ds−
hZ

0

(Ts − I) ds

∏

= (Tt0 − I)
∑

1
h

hZ

0

Ts ds− I

∏
−→ 0

as h → 0; hence

lim
h→0

1
h

(Th − I) = (Tt0 − I)
µ t0Z

0

Ts ds

∂−1

. (2.5.5)

Set A = (Tt0−I)
≥ t0R

0
Ts ds

¥−1
; by (2.5.5) A does not depend on t0. Moreover, (2.5.5) implies

that for every z ∈ Cn the map t 7→ Tt(z) is C1, and satisfies





@Tt

@t
(z) = ATt(z),

T0(z) = z.

Since (t, z) 7→ exp(tA)z is another solution of the same Cauchy problem, it follows that
Tt = exp(tA), q.e.d.

We recall that a one-parameter semigroup on a complex manifold X is a continuous
semigroup homomorphism Φ:R+ → Hol(X,X). If the image of Φ is contained in Aut(X),
then Φ extends to a continuous group homomorphism of R into Aut(X), and we shall
say that Φ is a one-parameter group. The following two propositions are straightforward
generalizations of their one-variable counterparts:

Proposition 2.5.18: Let Φ:R+ → Hol(X,X) be a one-parameter semigroup on a com-
plex manifold X. Then Φt is one-to-one for all t ≥ 0.

Proof: Copy the proof of Proposition 1.4.6, q.e.d.

Proposition 2.5.19: Let Φ:R+ → Hol(X,X) be a one-parameter semigroup on a taut
manifold X. Assume Φt0 ∈ Aut(X) for some t0 > 0; then Φ is a one-parameter group.

Proof: Copy the proof of Proposition 1.4.7, clearly replacing Corollary 1.1.47 by Proposi-
tion 2.1.24, q.e.d.
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We get immediately rid of the compact case:

Proposition 2.5.20: Let Φ:R+ → Hol(X,X) be a one-parameter semigroup on a com-
pact hyperbolic manifold X. Then Φt = idX for all t ≥ 0.

Proof: By Proposition 2.5.18, every Φt is injective, and hence open; since X is compact,
every Φt is an automorphism of X. But Aut(X) is finite (Corollary 2.4.7), and the assertion
follows, q.e.d.

Now we shall study the asymptotic behavior of one-parameter semigroups on taut
manifolds and, in particular, of one-parameter semigroups with a fixed point.

Let Φ:R+ → Hol(X,X) be a one-parameter semigroup on a complex manifold X. A
point z0 ∈ X is a fixed point of Φ if Φt(z0) = z0 for all t ≥ 0. If z0 is a fixed point of Φ,
then t 7→ Tt = d(Φt)z0 is a linear semigroup on Tz0X; by Proposition 2.5.17, there exists a
linear operator AΦ acting on Tz0X such that Tt = exp(tAΦ). AΦ is the spectral generator
of Φ at z0, and the eigenvalues of AΦ are the spectral values of Φ at z0. Note that, by the
Cartan-Carathéodory Theorem 2.1.21, if X is taut then the spectral values of Φ at z0 are
contained in the closed left half-plane of C. Then we can prove

Theorem 2.5.21: Let Φ:R+ → Hol(X,X) be a one-parameter semigroup on a taut
manifold X. Then Φt converges as t → +1 to a map ρ ∈ Hol(X,X) iff Φ has a fixed
point z0 ∈ X and its spectral values at z0 are contained in

{≥ ∈ C | Re ≥ < 0} ∪ {0} = iH+ ∪ {0}.

Proof: Assume Φt → ρ ∈ Hol(X,X) as t → +1. Then for all t0 > 0 the map ρ is
necessarily the limit retraction of Φt0 , and Φkt0 = (Φt0)k → ρ. In particular, every Φt0

fixes the points of the image of ρ, and thus every point of M = ρ(X) is a fixed point
of Φ. Now choose z0 ∈ M ; since Φk → ρ as k → +1, we know (by Theorem 2.4.1) that
sp

°
d(Φ1)z0

¢
⊂ ∆ ∪ {1}. Since

sp
°
d(Φ1)z0

¢
= exp

°
sp(AΦ)

¢
,

where AΦ is the spectral generator of Φ at z0, it follows that sp(AΦ) ⊂ iH+ ∪ {0}, and
one direction is proved.

Conversely, assume that Φ has a fixed point z0 ∈ X such that the spectral values of Φ
at z0 are contained in iH+ ∪ {0}. Then for every t0 > 0 the spectrum of the differential
d(Φt0)z0 is contained in ∆ ∪ {1}; therefore, by Theorem 2.4.1, the sequence {Φkt0} con-
verges. In particular, for every given p ∈ N the sequence {Φk/2p} converges, and the limit
does not depend on p — for if p < q then {Φk/2p} is a subsequence of {Φk/2q}. Since
{k/2p | k, p ∈ N} is dense in R+, this implies that the whole semigroup converges, as we
wanted to show, q.e.d.

As we did for the iterates, to study the compactly divergent case we shall limit our-
selves to convex domains. Again, we have a few general facts:
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Proposition 2.5.22: Let Φ:R+ → Hol(D,D) be a one-parameter semigroup on a do-
main D ⊂ Cn. Then there is a holomorphic map F :D → Cn such that

@Φ
@t

= F ◦ Φ. (2.5.6)

In particular, Φ is analytic in t.

Proof: Copy the proof of Theorem 1.4.11, replacing derivatives by differentials, q.e.d.

The map F verifying (2.5.6) is the infinitesimal generator of the one-parameter semi-
group Φ. There is a relation between infinitesimal and spectral generators, of course:

Proposition 2.5.23: Let Φ:R+ → Hol(D,D) be a one-parameter semigroup on a do-
main D ⊂ Cn, and let F ∈ Hol(D,Cn) be its infinitesimal generator. Then:
(i) z0 ∈ D is a fixed point of Φ iff F (z0) = 0;
(ii) if Φ has a fixed point z0, then its spectral generator at z0 is dFz0 .

Proof: (i) is proved exactly as in Proposition 1.4.13. Regarding (ii), if A is the spectral
generator of Φ at z0 then

dFz0 ◦ d(Φt)z0 = d(F ◦ Φt)z0 = d

µ
@Φt

@t

∂
(z0) =

@

@t

°
dΦt)z0 = A ◦ d(Φt)z0 ,

and hence dFz0 = A, because d(Φt)z0 is invertible, by Proposition 2.5.18, q.e.d.

Let D ⊂⊂ Cn be a strongly convex domain, and Φ:R+ → Hol(D,D) a one-parameter
semigroup on D. We shall say that Φ is fixed point free if Fix(Φt) = /∞ for all t > 0. We
shall see in a moment that this is equivalent to saying that Φ has no fixed points.

The first step in the investigation of the asymptotic behavior is:

Theorem 2.5.24: Let Φ:R+ → Hol(D,D) be a one-parameter semigroup on a strongly
convex domain D ⊂⊂ Cn. Assume Fix(Φt0) = /∞ for some t0 > 0. Then Φt tends to a
point x ∈ @D as t → +1.

Proof: By Theorem 2.4.23, the sequence {Φkt0} = {(Φt0)k} converges, uniformly on com-
pact sets, to a point x ∈ @D.

Fix z0 ∈ D, and let K = {Φs(z0) | 0 ≤ s ≤ t0}. By continuity, K is a compact subset
of D; therefore, for all ε > 0 there is kε ∈ N such that

k ≥ kε =⇒ sup
z∈K

kΦkt0(z)− xk < ε =⇒ sup
0≤s≤t0

kΦkt0+s(z0)− xk < ε,

that is kΦt(z0) − xk < ε for all t ≥ kεt0. In other words, Φt(z0) converges to x for
all z0 ∈ D; by Corollary 2.1.17, Φt → x, q.e.d.

In particular we have:
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Corollary 2.5.25: Let Φ:R+ → Hol(D,D) be a one-parameter semigroup on a strongly
convex domain D ⊂⊂ Cn. Then Φ is fixed point free iff Fix(Φt0) = /∞ for some t0 > 0.

Proof: One direction is trivial. Conversely, if Fix(Φt0) = /∞ for some t0 > 0, then by
Theorem 2.5.24 the semigroup converges to a point in the boundary of D; hence no Φt

with t > 0 can have a fixed point, q.e.d.

The next step is crucial:

Proposition 2.5.26: Let Φ:R+ → Hol(D,D) be a one-parameter semigroup on a strongly
convex domain D ⊂⊂ Cn. Assume Fix(Φt0) 6= /∞ for some t0 > 0. Then there is a non-
empty closed connected submanifold F of D contained in Fix(Φt) for every t ∈ R+. In
particular, Φ has fixed points.

Proof: Put fk = Φt0/2k ; then f0 = Φt0 and (fk+1)2 = fk. Let Fk = Fix(fk); by Theo-
rem 2.5.12 every Fk is a closed connected submanifold of D, and Fk ⊃ Fk+1. Moreover,
F0 6= /∞; then, by Corollary 2.5.25 every Fk is not empty.

So we have constructed a decreasing sequence of non-empty closed connected sub-
manifolds of D; therefore dimFk should eventually become constant. But Fk+1 is a closed
submanifold of Fk, which is connected; hence dimFk+1 = dimFk implies Fk+1 = Fk, and
the sequence {Fk} itself is eventually constant. Let F be its limit.

By construction, F ⊂ Fix(Φt0/2k) for all k ∈ N; hence F ⊂ Fix(Φpt0/2k) for all p
and k ∈ N. Since {pt0/2k | p, k ∈ N} is dense in R+, we finally get F ⊂ Fix(Φt) for
all t ∈ R+, q.e.d.

Corollary 2.5.25 and Proposition 2.5.26 show, as announced, that a one-parameter
semigroup in a strongly convex domain either has a fixed point or is fixed point free. In
particular, we can collect what we did and prove

Theorem 2.5.27: Let Φ:R+ → Hol(D,D) be a one-parameter semigroup on a strongly
convex domain D ⊂⊂ Cn. Then Φt converges as t → +1 to a map in Hol(D,Cn) iff
either
(i) Φ has a fixed point z0 ∈ D, and the spectral values of Φ at z0 belong to iH+ ∪ {0}, or
(ii) Φ is fixed point free.

Proof: This follows from Theorem 2.5.21, Proposition 2.5.26 and Theorem 2.5.24, q.e.d.

We end this chapter characterizing the infinitesimal generators of one-parameter semi-
groups on Bn. Let F ∈ Hol(Bn,Cn); since TBn = Bn × Cn, F can be thought of as a
holomorphic section of TBn, and thus it makes sense to consider ∑Bn ◦ F :Bn → R+.
Furthermore, ∑Bn is a smooth function out of the zero section of TBn; hence d(∑Bn ◦F ) is
defined out of the zero set of F . Now, using (2.2.16) we see that

@∑Bn

@zj
(z; v) =

1
2(1− kzk2)

∑
2z̄j∑Bn(z; v) +

(v, z)v̄j − kvk2z̄j

∑Bn(z; v)(1− kzk2)

∏
,
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and
@∑Bn

@vj
(z; v) =

1
2∑Bn(z; v)(1− kzk2)2

£
(z, v)z̄j + (1− kzk2)v̄j

§
;

therefore for every z ∈ Bn we have

d(∑Bn ◦ F ) · F

=
1

∑Bn(z;F )(1− kzk2)4 Re
h
(2kGk2 − |(G, z)|2)(G, z) + (1− kzk2)2(dF · F,G)

i
,

(2.5.7)
where

G(z) = (1− kzk2)F (z) +
°
F (z), z

¢
z.

Note that if F (z0) = 0 then

lim
z→z0

d(∑Bn ◦ F )(z) · F (z) = 0. (2.5.8)

Then the sought characterization of infinitesimal generators is

Theorem 2.5.28: A holomorphic map F :Bn → Cn is the infinitesimal generator of a
one-parameter semigroup on Bn iff for every z ∈ Bn we have

h
2kG(z)k2 −

ØØ°G(z), z
¢ØØ2

i
Re

°
G(z), z

¢
+ (1− kzk2)2 Re

°
dF · F (z), G(z)

¢
≤ 0, (2.5.9)

where G(z) = (1− kzk2)F (z) +
°
F (z), z

¢
z.

Proof: (2.5.9) is equivalent to

∀z ∈ Bn d(∑Bn ◦ F )(z) · F (z) ≤ 0, (2.5.10)

by (2.5.7) and (2.5.8), and we shall actually show that F is an infinitesimal generator iff
(2.5.10) holds.

Choose z0 ∈ Bn. Then for every t1 > t2 > 0 and every v ∈ Cn we have

∑Bn

°
Φt1(z0); d(Φt1)(z0) · v

¢
= ∑Bn

≥
Φt1−t2

°
Φt2(z0)

¢
; d(Φt1−t2)

°
Φt2(z0)

¢
·
°
dΦt2(z0) · v

¢¥

≤ ∑Bn

°
Φt2(z0); d(Φt2)(z0) · v

¢
.

Therefore for every v ∈ Cn and z0 ∈ Bn the function t 7→ ∑Bn

°
Φt(z0); dΦt(z0) · v

¢
is not

increasing. Thus if v 6= 0 we have

0 ≥ d

dt

h
∑Bn

°
Φt(z0); dΦt(z0) · v

¢iØØØØ
t=0

= 2Re
nX

j=1

∑
@∑Bn

@zj
(z0; v)Fj(z0) +

@∑Bn

@vj
(z0; v) dFj(z0) · v

∏
.

(2.5.11)
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In particular, we can take v = F (z0) obtaining

0 ≥ 2Re
nX

j=1

∑
@∑Bn

@zj

°
z0;F (z0)

¢
Fj(z0) +

@∑Bn

@vj

°
z0;F (z0)

¢
dFj(z0) · F (z0)

∏

= d(∑Bn ◦ F )(z0) · F (z0),
and (2.5.10) is proved.

Conversely, assume (2.5.10) holds. Fix z0 ∈ Bn, and let φz0 : [0, δz0) → Bn be the
unique maximal solution of the Cauchy problem






dφ

dt
= F ◦ φ,

φ(0) = z0.

To show that F is an infinitesimal generator, it suffices to prove that δz0 = +1 for
all z0 ∈ Bn.

If F (z0) = 0, then φz0 ≡ z0, and so there is nothing to prove. If F (z0) 6= 0, then φz0 is
a non-constant real analytic map; therefore it cannot be eventually constant, and thus
F

°
φz0(t)

¢
6= 0 for all t ∈ [0, δz0). So to prove that δz0 = +1 it suffices to show that if we

assume, by contradiction, δz0 < +1 then there is M > 0 such that kBn

°
z0,φz0(t)

¢
≤ M

for all t ∈ [0, δz0). Indeed, in this case φz0

°
[0, δz0)

¢
is contained in a compact subset of Bn,

and thus δz0 cannot be maximal.
Now we have (setting φ = φz0 , and dropping t in the computations)

d

dt
∑Bn(φ; φ̇) = 2Re

nX

j=1

∑
@∑Bn

@zj
(φ; φ̇) φ̇j +

@∑Bn

@vj
(φ; φ̇)φ̈j

∏

= 2Re
nX

j=1

∑
@∑Bn

@zj
(φ;F ◦ φ)Fj ◦ φ +

@∑Bn

@vj
(φ;F ◦ φ) dFj ◦ φ · (F ◦ φ)

∏

= d(∑Bn ◦ F ) ◦ φ · (F ◦ φ) ≤ 0,

by (2.5.10). Hence the function t 7→ ∑Bn

°
φz0(t); φ̇z0(t)

¢
is not increasing; therefore for

all t ∈ [0, δz0) we have

kBn

°
z0,φz0(t)

¢
≤

tZ

0

∑Bn

°
φz0(s); φ̇z0(s)

¢
ds ≤ δz0∑Bn

°
z0;F (z0)

¢
,

and we are done, q.e.d.

The scrupulous reader will check that (2.5.9) reduces to (1.4.9) if n = 1. Furthermore,
we remark (see Abate [1988g]) that the condition

d(∑D ◦ F )(z) · F (z) ≤ 0
characterizes the infinitesimal generators of one-parameter semigroups on any domain D
such that ∑D is a C1 function out of the zero section of TD; for instance (by Lem-
pert [1981, 1984]), in strongly convex C3 domains. However, since we have not studied the
regularity of ∑D, we preferred to state our results for Bn only.

We end with two standard corollaries of Theorem 2.5.28:
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Corollary 2.5.29: The set of infinitesimal generators of one-parameter semigroups on Bn

is a cone in Hol(Bn,Cn) with vertex at 0.

Proof: In the proof of Theorem 2.5.28 we saw that F ∈ Hol(Bn,Cn) is an infinitesimal
generator iff (2.5.11) holds for every z0 ∈ Bn and v ∈ Cn \{0}. The assertion is then clear,
q.e.d.

Corollary 2.5.30: A holomorphic map F :Bn → Cn is the infinitesimal generator of a
one-parameter group on Bn iff for every z ∈ Bn we have

h
2kG(z)k2 −

ØØ°G(z), z
¢ØØ2

i
Re

°
G(z), z

¢
+ (1− kzk2)2 Re

°
dF · F (z), G(z)

¢
= 0,

where G(z) = (1− kzk2)F (z) +
°
F (z), z

¢
z.

Proof: Copy the proof of Corollary 1.4.16, q.e.d.

Notes

As anticipated in the notes to chapter 2.3, Theorem 2.5.3 for strongly pseudoconvex
domains (as well as Corollary 2.5.4) is due to Wong [1977], while the complete state-
ment (as well as Corollary 2.5.5) was proved shortly later by Rosay [1979]. Greene and
Krantz [1985] have shown that any hyperbolic manifold X with a point z0 ∈ X so that
dimR X/Autz0(X) ≤ 1 is biholomorphic to Bn. Since Hsiang and Straume [1986] have
proved that a compact group K acting topologically on a contractible manifold X so that
dimR X/K ≤ 4 has a fixed point, we can infer, for instance, that every topologically
contractible strongly pseudoconvex domain D such that dimR D/Aut(D) ≤ 1 is biholo-
morphic to the ball. In Abate, Geatti and Hsiang [1987] there is a complete classification
of the bounded topologically contractible domains D of Cn where a compact group K acts
holomorphically in such a way that dimR D/K = 2. Bedford and Dadok [1987] have shown
that every compact Lie group is the automorphism group of a strongly pseudoconvex do-
main with analytic boundary (the automorphism group of a hyperbolic manifold is always
a Lie group: see Kobayashi [1970]). On the other hand, Greene and Krantz [1982a, b] have
proved a very precise statement showing that, roughly speaking, the automorphism group
of a generic strongly pseudoconvex smooth domain reduces to the identity.

Theorem 2.5.7 is due to Lempert (unpublished); the proof is very similar to a stan-
dard proof of the É. Cartan theorem about fixed points of a compact group acting on a
simply connected Riemannian manifold of negative curvature mentioned in the notes to
chapter 2.2.

Proposition 2.5.9 is due to H. Cartan [1931]; the proof, as well as Corollaries 2.5.10
and 2.5.11, is taken from Vigué [1986]. It should be noticed that the only property of
taut manifolds used to prove Proposition 2.5.9 is the compactness of the isotropy group
of a point. Since this holds in any hyperbolic manifold (Kobayashi [1970]), it is easy to
check that Proposition 2.5.9 and Corollaries 2.5.10 and 2.5.11 are still valid for hyperbolic
manifolds.

Theorem 2.5.12 for generic convex domains is in Vigué [1984a, 1985]; Heath and
Suffridge [1981] proved it for ∆n, and Kuczumow [1986] for balanced convex domains (a
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domain D ⊂⊂ Cn is balanced if ∏D ⊂ D for all ∏ ∈ ∆). The proof described here is due to
Kuczumow and Stachura [1989]; see also Kuczumow [1985], and the notes to chapter 2.2.

Theorem 2.5.15 has been originally proved in Abate [1988d], by means of an involved
argument making use of the notion of complex geodesic to be introduced in the next
chapter. The proof presented here, as well as Theorem 2.5.16, is in Kuczumow and
Stachura [1989]. Proposition 2.5.14 has been obtained independently by Vigué. Theo-
rem 2.5.16 for ∆2 is due to Eustice [1972]; for ∆n to Heath and Suffridge [1981]; consult
also the notes to chapter 2.2. The infinite dimensional situation is studied in Bruck [1973]
and Kuczumow [1984].

Proposition 2.5.17 is an ad hoc proof of the fact that for linear groups the exponential
map in the sense of Lie groups coincides with the usual exponential of matrices. See
Warner [1983] for another proof. The rest of section 2.5.3 is either a straightforward
generalization of chapter 1.4 or adapted from Abate [1988b, g]. Finally, Vesentini [1987]
has completely described the one-parameter semigroups of automorphisms of Bn.


