Chapter 2.3
Invariant objects

The main problem we must deal with now is how to generalize the theorems proved in the
previous chapter. An analysis of the proofs (and a glance at the first part of this book)
shows that the main tools used were the tautness of B and Schwarz’s lemma. So our first
concern should be how to get a sort of Schwarz’s lemma on taut manifolds.

The right solution is suggested by the study of hyperbolic Riemann surfaces. There,
we defined a distance, the Poincaré distance, contracted by holomorphic functions, and this
allowed us to make use of Schwarz’s lemma type arguments, with the results you surely
know by heart. Therefore if we find a way to define on every taut manifold a distance
contracted by holomorphic maps then we shall (hopefully) be able to work out the same
arguments in new settings.

Well; in 1967 Kobayashi [1967a, b] introduced a pseudodistance on every complex
manifold which is exactly what we need: it is contracted by holomorphic maps, it coin-
cides with the Poincaré distance on hyperbolic Riemann surfaces (and with the Bergmann
distance on B™), and it is a true distance on taut manifolds. The impatient reader may
now jump to the next chapter to see how to apply this wonderful new tool, but the far-
sighted reader will better choose to study carefully this chapter, where we develop all the
basic properties of the Kobayashi pseudodistance we shall need later on.

To be more specific, in this chapter we shall mainly do two things. First of all,
we shall introduce and study the Kobayashi pseudodistance, its cousin the Carathéodory
pseudodistance, and their relatives, the invariant metrics and volume forms. A special
attention will be payed to manifolds where the Kobayashi pseudodistance is a true distance,
showing in particular that this is the case for taut manifolds.

Our second concern will be the study of the boundary behavior of the Kobayashi
distance and metric in strongly pseudoconvex domains. In fact, a lot of future work will
be devoted to study the boundary behavior of several objects defined using the Kobayashi
distance (remember Lemma 1.3.19, for instance), and thus we shall need very precise
estimates. To give an idea of the strength of these tools, we shall prove a version of
Fefferman’s theorem: every biholomorphism of strongly pseudoconvex domains extends
continuously to the boundary.

It should be noticed that this is a very utilitarian chapter: we shall not make any effort
to present a complete exposition of the theory, limiting ourselves to the facts we shall need
later on; for instance, the Carathéodory distance is somehow neglected, and we do not
discuss extension theorems. A more comprehensive exposition (though not containing all
the results presented here) can be found in Kobayashi [1970, 1976] or in Lang [1987].

2.3.1 Invariant distances

In this section we shall define the Kobayashi and the Carathéodory pseudodistances on
complex manifolds, and we shall describe their main general properties. In particular, we
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shall devote a lot of (time and) space to the study of the so-called hyperbolic manifolds,
where the Kobayashi pseudodistance is a true distance. By the way, we probably had
better to specify what we mean by pseudodistance. A pseudodistance on a set X is a
function d: X x X — R such that
(i) d(z,y) = d(y, z) for every x, y € X;

(ii) d(z,2) < d(z,y) + d(y, z) for every z, y, z € X;
(iii) d(z,x) = 0 for every x € X.
Clearly, if we replace (iii) by “d(x,y) = 0 iff z = y for every z, y € X” we get the usual
notion of distance on a set.

So let X be a complex manifold. The Carathéodory (pseudo)distance cx on X is
defined by

Vz,we X ex(z,w) =sup{w(h(z),h(w)) | h € Hol(X,A)}, (2.3.1)

where w is the Poincaré distance on A. We shall see in a while that cx (z, w) is always finite;

granted this, it is obvious that cx is a pseudodistance on X. We shall denote by B.(z,r)

the open Carathéodory ball, that is the open ball of center z € X and radius r» > 0 for cx.
The dual concept is the function dx: X x X — [0, +00] defined by

ox (z,w) = inf{w(¢,n) | Ip € Hol(A, X):¢(¢) = 2, ¢(n) = w} (2.3.2)

for all z, w € X. Unfortunately, in general dx does not satisfy the triangular inequality;
therefore to get a pseudodistance on X we need a more complicate definition.

An analytic chain o = {Co,---,Cm;M0s -« - s Dm; 05 - - - » Pm } connecting two points zg
and wy in a complex manifold X is a sequence of points (o,...,(m,M0s---,Mm € A and
holomorphic maps o, ..., ¢m € Hol(A, X) such that ¢o(Co) = 20, ¢;(1;) = ©j+1(j+1)
for j =0,...,m—1 and ¢, () = wp. The length w(a) of the chain « is

m
wi@) = 3 WG m).

j=0
Then we can define the Kobayashi (pseudo)distance kx on X by
Vz,we X kx(z,w) = inf{w(a)}, (2.3.3)

where the infimum is taken with respect to all the analytic chains connecting 2z to w. Since
X is connected, kx (z,w) is always finite, and it is clear that kx is a pseudodistance on X.
We shall denote by By(z,r) the open Kobayashi ball, that is the open ball of center z € X
and radius » > 0 for kx.

Since A is homogeneous, it is not necessary to consider all the analytic chains con-
necting z to w in (2.3.3). For instance, we can limit to linked analytic chains, that is to
analytic chains such that n; = (j41 for j =0,...,m—1, or to fixed analytic chains, that is
to analytic chains such that (; = 0 for j =0, ..., m. Furthermore, note that, by definition,
for all z, w € X we have

kx(z,w) =inf{ ¥ 0x(2j,2j+1) | 20 = 2, Zm1 =W, 21,...,2m € X, m € N}.  (2.3.4)
j=0

The main property of Carathéodory and Kobayashi distances is:
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Proposition 2.3.1: Let f: X — Y be a holomorphic map between two complex manifolds.
Then for all z, w € X

ey (f(2), f(w)) < ex(z,w)

and

ky (f(Z), f(w)) < kX(Za ’UJ)
Proof: This clearly follows from the definitions, q.e.d.

Corollary 2.3.2: Let X be a complex manifold. Then
(i) If v € Aut(X) then for every z, w € X

ex (1)) = ex(zw)  and  kx (7(2).7(w)) = x (2, w);
(ii) IfY is a submanifold of X then for every z, w € Y’

cx(z,w) < cy(z,w) and kx(z,w) < ky(z,w).

Now the scrupulous reader may ask why we singled out these two particular pseu-
dodistances. The answer is that they are extremal in a very precise sense:

Proposition 2.3.3: Let X be a complex manifold, and d: X x X — R™ a pseudodistance
on X. Then
(i) if
d(¢(¢1),¢(¢2)) < w(C1,¢2)
for all (1, (3 € A and ¢ € Hol(A, X), then d < kx;
(ii) if
d(z1,22) > w(f(z1), f(22))
for all z1, zo € X and f € Hol(X,A), then d > cx.

Proof: (1) If a« ={Co,---,Cm:iM0s- -+ Mm; P0s - - -, Pm } 1S any analytic chain connecting two
points z, w € X we have

m m
Z ©;(C5)s 5(n5)) ZW Giry) = wla),
7=0 7=0

and so d < kx.
(ii) Obvious, q.e.d.

We already have a distance satisfying Proposition 2.3.1, namely the Poincaré distance
on A. This is not casual:
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Proposition 2.3.4: (i) ka = w = ca.
(ii) For any complex manifold X we have cx < kx. In particular, cx is always finite.

Proof: 1t is clear that ka < w; on the other hand, Proposition 2.3.3.(i) and the Schwarz-
Pick lemma yield w < ka, and the first equality in (i) is proved. In particular, we have

w(h(z), h(w)) < kx(z,w)
for all z, w € X and h € Hol(X, A), and (ii) follows. Finally, (ii) implies
w<ca <ka=w,
and we are done, q.e.d.

So kx and cx are generalizations of the Poincaré distance, and Proposition 2.3.1 is
the ultimate generalization of Schwarz’s lemma, as promised.

The Carathéodory and Kobayashi pseudodistances are wonderful theoretical tools, but
they are very hard to compute explicitely in given examples (and indeed we shall spend a
whole section to estimate them using euclidean objects). An important exception is the
following case:

Proposition 2.3.5: Let || - ||: C" — R* be a norm on C", and B the unit ball for this
norm. Then for all z € B

cp(0,2) = kp(0,2) = w(0, ||z]))-

Proof: Take z € B, z # 0, and define ¢: A — B by ¢(() = (z/||z|- Then Propositions 2.3.1
and 2.3.4 yield
cp(0,2) < kp(0,2) <w(0, [|z])-

On the other hand, for every z € C” there exists a linear form \,: C" — C such that
A(2) = ||z|| and A\ (w) < |Jw| for all w € C™. Therefore A.|p sends B into A and,
if z € B,

w(0, [lz]l) < ¢B(0, 2),

q.e.d.
In particular, as already reflected by the notations, in B™ we find nothing new:

Corollary 2.3.6: On B", the Bergmann, Carathéodory and Kobayashi distances coincide.

Proof: By Proposition 2.3.5 and (2.2.19) they coincide at the origin. Since B™ is homoge-
neous, they coincide everywhere, q.e.d.

The unit polydisk A™ of C™ is the unit ball for the norm
Izl = max{|z],. .., [znl]};

as a set, A" = A x---x A n times. Using Proposition 2.3.5 we can compute ka» and can:
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Corollary 2.3.7: For any z, w € A"

kan(z,w) = ean(z,w) = w (0, :(w)ll) = max {w(zj,w))},

where

w, — 21 Wn — Zn
o (2 )

1— Z1Ww1 ’ 1— ZnWhp,
Proof: ~y, is an automorphism of A™ such that v,(z) = 0. The assertion then follows from

Proposition 2.3.5, q.e.d.

In general, the relationship between the Carathéodory and Kobayashi distances of two
manifolds and the respective distances on the cartesian product is described in

Proposition 2.3.8: Let X and Y be two complex manifolds, z1, zo € X and wy, we € Y.
Then

cx (21, 22) + ey (w1, w2) > exxy ((21,w1), (22, w2)) > max{ex (21, 22), ¢y (w1, w2) },

and

kx (21, 22) + ky (w1, w2) > kxxy ((21,w1), (22, w2)) > max{kx (21, 22), ky (w1, w2) }.

Proof: The inequalities on the right follow applying Proposition 2.3.1 to the canonical
projections (z,w) — z and (z,w) — w. On the other hand, Proposition 2.3.1 applied to
the maps z — (z,w1) and w — (22, w) yields

cx (21, 22) + cy (wy, wa) > CXxY((Zhwl), (227101)) +CX><Y((Z2aw1)7 (227102)),

kx (21, 22) + ky (w1, w2) > kxxy ((21,w1), (22,w1)) + kx xy ((22, w1), (22, w2)),

and the inequalities on the left follow from the triangular inequality, q.e.d.

A natural question is whether the distance topology induced by kx or cx coincides
with the manifold topology of X. One direction is settled by

Proposition 2.3.9: Let X be a complex manifold; then cx and kx are continuous. In
particular, the manifold topology is finer than the distance topology induced either by kx
or by cx.

Proof: Since for all zg, wg, 2z, w € X
’CX(Z(),U)()) - CX(va)| < CX(ZOVZ) + CX(’U)(),U)),

and analogously for kx, it suffices to show that for any zg € X the functions z — cx (20, 2)
and z — kx (2o, z) are continuous at zg.

Let U C X be a coordinate neighbourhood of z; biholomorphic to some B™. By
Proposition 2.3.5, ¢y (20, 2) and ky (20, 2) are continuous. Therefore, by Corollary 2.3.2.(ii),
cx (20, 2) and kx (29, z) are continuous at zg, and we are done, q.e.d.
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In general, however, kx and cx do not induce the manifold topology. In fact, it is
evident that if X is compact then ¢x = 0, or that ccn = kc» = 0, whereas to induce the
manifold topology kx or cx should be at least true distances.

Now, cx is a distance iff for every pair of distinct points z, w € X there is a bounded
holomorphic function h: X — C such that h(z) # h(w), which is quite a restrictive as-
sumption (it is almost equivalent to requiring X to be a relatively compact domain of a
Stein manifold, if you know what that means). Therefore, from now on we shall focus on
the Kobayashi distance, and we are led to the following definition: a complex manifold X
is hyperbolic iff kx is a true distance (the reason for this name will become apparent after
Corollary 2.3.12). Then

Proposition 2.3.10: Let X be a complex manifold. Then X is hyperbolic iff kx induces
the manifold topology on X.

Proof: One direction is clear. Conversely assume that X is hyperbolic; we have to show
that for every z € X and every neighbourhood U of z in X there is a Kobayashi ball By (z, )
contained in U. Clearly, we can assume U relatively compact in X.

Assume, by contradiction, that this is not the case. Then there is a sequence {z,} C X
such that z, ¢ U for all v and kx(z,2,) < 1/v. This means that there is a linked analytic
chain {Co, .-+, Cm,+1; 0, - - - Pm, } such that

my

Zw(cj,CjH) < 1/1/.

J=0

Let o7 be the geodesic arc for the Poincaré metric on A joining (; and (j41. Then the arcs
@jooy in X connect to form a continuous curve o from z to 2, such that kx (2, w) < 1/v
for every w in the range of ¢”. Now, since z € U and z, ¢ U, there is w, € OU in the
range of ¢”; in particular,

lim kx(z,y,) =0.

V—00
But 0U is compact, and kx (z, ) is continuous and never zero on OU (for X is hyperbolic);
hence

Jnf kx(z,y) >0,

contradiction, q.e.d.

At this point, an anxious reader may begin to tremble, thinking at a hypothetic
confusion between hyperbolic Riemann surfaces and, well, hyperbolic Riemann surfaces.
But don’t be frightened: the names were chosen with a bit of foreseeing. Indeed, if A and
B are subsets of a complex manifold X, define the Kobayashi distance from A to B by

kx(A,B) =inf{kx(z,w) | z € A, w € B},

as usual; then
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Proposition 2.3.11: Let X — X be a covering map of complex manifolds. Take
20, wo € X; then

kX(z07 U)()) = k)’\(/ (207 ﬂ-_l(w()))a
where Z is any element of 7 1(zg).

Proof: It is clear that
]{Ix(Zo,wo) < k)"c’(,go,ﬂ'_l(wo)).

Assume, by contradiction, that there is € > 0 such that
kX (207 ’U)()) +e< k;{/ (507 71—_I(UJO))J

and choose a linked analytic chain o = {(o,..., nt1;%0,---,Pm} connecting zy to wo
such that

Zw G G+1) < kx (20, wo) + €.
7=0

We can lift a to a linked analytic chain & = {(o,...,{m+1;Pos---,Pm} connecting the
given point Zy to a point wy € 7! (wp) so that o @; = ¢; for j =0,...,m. Then

m
Zoawo ZW CJvCJ—I—l
7=0

contradiction, q.e.d.

Corollary 2.3.12: Let X be a Riemann surface. Then
(i) if X is hyperbolic, then the Poincaré and the Kobayashi distances coincide;
(ii) if X is not hyperbolic, then kx = 0.

Proof: (i) follows from Propositions 2.3.4, 2.3.11 and (1.1.27). To prove (ii), by Proposi-
tion 2.3.11 it suffices to show that k¢ = ka = 0. It is easy to check that kc = 0; therefore
k:a|c><c = 0 and, by Proposition 2.3.9, k5 =0, q.e.d.

This is the reason of the name “hyperbolic”. Note that, in particular, there are
compact hyperbolic manifolds (the compact hyperbolic Riemann surfaces, for instance),
whereas on compact manifolds the Carathéodory distance is identically zero.

It is now time to give examples of hyperbolic manifolds. Besides the hyperbolic
Riemann surfaces, a first set of examples is provided by the homogeneous unit balls of
norms in C”, thanks to Proposition 2.3.5. Other examples can be constructed using the
following
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Proposition 2.3.13: (i) A submanifold of a hyperbolic manifold is hyperbolic;

(ii) the product of two hyperbolic manifolds is hyperbolic;

(iii) if X > Xisa covering map of complex manifolds, then X is hyperbolic iff X is
hyperbolic.

Proof: (i) This follows from Corollary 2.3.2.(ii).

(ii) This follows from Proposition 2.3.8.

(iii) Assume X is hyperbolic. If kx(zg,wo) = 0 for two points zg, wy € X, then for
any %o € 7 !(zo) there is a sequence {1, } C 7~ !(w) such that k (2o, wy) — 0asv — 400
(by Proposition 2.3.11). Then w, — %o (Proposition 2.3.10) and so Zp € m *(wy), that
is 2o = wo.

Conversely, assume X hyperbolic. Suppose Zy, wg € X are so that k:)?(éo,u?()) = 0;
then kx (7‘(’(20),7‘((’(2)0)) = 0 and so 7w(Zp) = w(wy) = zp. Let U be a neighbourhood
of Zy such that 7| is a biholomorphism between U and By(zp,¢), for £ > 0 small
enough; in particular, wy ¢ U. Since k:g(éo,uio) = 0, there is a linked analytic chain
{Coy--+sCmt15%0s - - -, Pm } connecting Zy to Wy such that

ZW(CJ,CJ'H) <e.

Jj=0

Let o; be the geodesic arc for the Poincaré metric on A joining ¢; to (j4i. Then the
arcs @ o 0 in X connect to form a continuous curve ¢ from Zp to wg. Now the maps
mop; € Hol(A, X) are distance-decreasing; therefore every point of the curve 7o ¢ should
belong to By (zp,€). But then o is contained in U, and so 3y = 1y, q.e.d.

But the main source of examples is

Theorem 2.3.14: Every relatively taut manifold is hyperbolic.

Proof: Assume that the complex manifold X is not hyperbolic, and take zy, wg two dis-
tinct points of X such that kx (z0,wp) = 0. Choose a coordinate neighbourhood U of zj
relatively compact in X, and biholomorphic to B™ for some n, such that wy ¢ U, and
choose also another neighbourhood V- CC U of zj.

We claim that for any v € N there is ¢, € Hol(A, X) such that ¢,(0) € V but
¢u(A1y,) ¢ U. In fact, assume by contradiction that ¥ € N is such that ¢(0) € V
implies ¢(Aq/,) C U for any ¢ € Hol(A,X). Choose a constant ¢ > 0 such that
w(0,¢) > cka,,,(0,¢) for all ¢ € Ay/(2,), and let ¢ = cky(20,0V) > 0. Since we have
kx(z0,wp) = 0, we can find a fixed analytic chain {(1,...,(n; @1, -+, ©m} connecting zg

to wg such that
m

ZM(O,C]‘) < €.

Jj=1

Let mo < m be the first integer such that {pm,,(t¢(m,) |t € (0,1)} ¢ V. Adding enough
points of the form t¢; with ¢ € (0,1) and j = 1,...,mo we can assume (; € Aj/2,),
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i) eViorj=1,....,mo—1, Gy € A1/(2) and Py (Cmy) € OV Then

mo

ZW(Oij)EZ w(0,¢;) >CZkA1/ (0,¢5) >CZkU ©;(0 ‘PJ(CJ))
j=1 J j=1 j=1

=1
> cku (20, ©mo (Cmo)) > €

contradiction.

So we have a sequence {¢,} C Hol(A, X) such that ¢, (0) € V but ¢, (Ay,,) ¢ U;
take ¢, € Ay, such that ¢, (¢,) € U. Then if X were relatively taut in X, {¢,} would
have a subsequence {y,, } converging to ¢ € Hol(X, X); in particular, {¢,, ((,, )} would
converge to ¢(0) € V, impossible, q.e.d.

So taut manifolds are hyperbolic, as anticipated, but hyperbolic manifolds are much
more common: for instance, every submanifold of a bounded domain of C™, or every
manifold covered by a bounded domain, or covering a bounded domain, is hyperbolic.

However, this way of producing examples of hyperbolic manifolds is slightly differ-
ent from what we did for hyperbolic Riemann surfaces. There, we first proved that the
Kobayashi (formerly Poincaré) distance is complete, and then we showed that a hyperbolic
Riemann surface is taut (Montel’s theorem). Our next aim is to repeat this argument in
general, thus proving that every hyperbolic manifold with complete Kobayashi distance is
taut.

We say that a hyperbolic manifold X is complete hyperbolic if kx is a complete
distance. First of all, we want to show that kx is complete iff every closed Kobayashi ball
is compact (cf. Proposition 1.1.39). We need a notation: if A is a subset of X and r > 0,

set
r) = U By(z,7r).

z€EA

Lemma 2.3.15: Let X be a complex manifold, and choose zy € X and ry, ro > 0. Then
By (Bi(20,71),72) = Bi(z0,71 + 12).

Proof: The inclusion By, (Bk,(zo, r1), 7’2) C By(z0,71+72) follows immediately from the tri-
angular inequality. For the converse, let z € By(zg,r1+72), and set 3¢ = r1+ro—kx (20, 2).
Then there is a linked analytic chain {(o, ..., (mn+1; @0, ---,%m} connecting zo to z such
that

m
Zw CJ7C]+1 <ry+rg— 2e.
7=0

Let © < m be the largest integer such that

1
w((j, CGy1) <11 —e.

m

<.
Il
=



166 2.3 Invariant objects

Let 7, be the point on the geodesic arc for the Poincaré distance connecting ¢, to ( 41
such that

|
—

o
w(CJ"Cj-i-l) +W(Cua77u) =7y —¢&.

<.
I
o

If we set w = ¢, (n,), then kx (20, w) < r; and kx(w, z) < r2, so that
z € Bi(w,r2) C By (Bk(zo,rl),rg),

q.e.d.

Lemma 2.3.16: Let X be a hyperbolic manifold, zg € X and r > 0. Then By(zo,r) is
compact if there exists p > 0 such that By(z, p) is compact for all z € By(zo,r).

Proof: Since X is locally compact and hyperbolic, there is 0 < s < r such that Bj(zo, )
is compact. So it suffices to show that if By (zo,s) is compact then also By (zo,s + p/2)
is compact. Let {z,} be a sequence in By(zo,s + p/2), and {w,} a sequence in By(zo, s)
such that kx(z,,w,) < 3p/4 for all v € N (by Lemma 2.3.15). Up to a subsequence, we
can assume that {w,} converges to wg € B (20,5). Then z, € By(wp, p) for all large v;
hence, by assumption, {z,} admits a converging subsequence, q.e.d.

Then:

Proposition 2.3.17: Let X be a hyperbolic manifold. Then kx is complete iff every
closed Kobayashi ball is compact.

Proof: One direction is obvious. Conversely, assume kx complete; by Lemma 2.3.16, it
suffices to show that there is p > 0 such that By(zo,p) is compact for every zy € X.
Assume the contrary. Then there exists z; € X such that By(z1,1/2) is noncompact. By
Lemma 2.3.16, there is 23 € Bi(21,1/2) such that By (22, (1/2)?) is noncompact. In this
way we obtain a Cauchy sequence {2, } such that z, € By(z,_1,1/2""1) and By(z,,1/2¥)
is noncompact. Let wg be the limit of {z,}; since X is locally compact, there is ¢ > 0
such that By(wg,¢e) is compact. But for v sufficiently large By (z,,1/2") is contained in
By.(wop, €), and hence is compact, contradiction, q.e.d.

And so we can prove:

Theorem 2.3.18: Every complete hyperbolic manifold is taut.

Proof: Let X be a complete hyperbolic manifold, and let {¢, } be a sequence in Hol(A, X)
which is not compactly divergent; we should extract a subsequence converging uniformly
on compact subsets.

Up to a subsequence, there are a compact set Ko C A and a compact set K1 C X
such that ¢, (Ko) N K; # @ for all v € N. Let K be another compact subset of A; we
claim that there is a Kobayashi ball B in X such that ¢, (K) C B for all v € N. Without
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loss of generality, we can assume that K is connected and contains Ky. Choose € > 0, and
cover K by a finite number of Poincaré disks of radius €/2 and centers in (1,...,(, € K.
It is clear that the diameter of ¢, (K) for the Kobayashi distance of X cannot exceed me
for all v € N. Now fix a point w € K7, and let p be the diameter of K; for kx. Then, being
o (K)NKy # @, ¢, (K) is contained in the Kobayashi ball of center wq and radius p+me,
which is independent of v, as claimed.

So {¢,} is an equicontinuous family such that J, ¢, (K) is bounded and hence com-
pact (by Proposition 2.3.17) for every compact subset K of A; by the Ascoli-Arzela theo-
rem, {p,} admits a subsequence converging uniformly on compact subsets, q.e.d.

This is the source of examples of taut manifolds we often mentioned in chapter 2.1.
The following propositions will give a large list of complete hyperbolic (and hence taut)
manifolds; moreover, later on we shall prove that convex and strongly pseudoconvex do-
mains of C™ are complete hyperbolic.

Proposition 2.3.19: Every homogeneous hyperbolic manifold is complete hyperbolic. In
particular, every bounded homogeneous domain of C™ is complete hyperbolic.

Proof: Let X be a homogeneous hyperbolic manifold, and take zyp € X and p > 0 such
that By(zo, p) is compact. But then, by homogeneity, By(z, p) is compact for every z € X,
and so, by Lemma 2.3.16, X is complete hyperbolic, q.e.d.

Proposition 2.3.20: (i) A closed submanifold of a complete hyperbolic manifold is com-
plete hyperbolic;

(ii) the product of two complete hyperbolic manifolds is complete hyperbolic;

(iii) if 7 X - Xisa covering map of complex manifolds, then X is complete hyperbolic
iff X is complete hyperbolic.

Proof: (i) This follows from Corollary 2.3.2.(ii).
(ii) This follows from Proposition 2.3.8.

(ili) Assume first X complete hyperbolic. Take zp € X and choose Zp € 7 1(zp).
Then, by Proposition 2.3.11, for every r» > 0 there is 6 > 0 such that

Br(z0,7) C W(Bk(go,r ¥ 5)),

and so X is complete hyperbolic. N

Conversely, assume X complete hyperbolic, and let {Z,} be a Cauchy sequence in X.
Since 7 is distance decreasing, {m(Z,)} is a Cauchy sequence in X, and thus converges
to zg € X. Choose ¢ > 0 so small that U = Bg(20, 2¢) is an admissible neighbourhood of zy,
i.e., T induces a homeomorphism of each connected component of 7= (U) onto U. Clearly,
there is vy € N such that 7(Z,) € U for v > vy. Let fj,, be the connected component
of #~1(U) containing Z,; we claim that By(Z,,c) C U, for all v > 1. Indeed, take
W € Byi(Z,,¢), and choose a linked analytic chain {(o, ..., nt1; %0, - - - ©m } connecting z,,
to w such that

Zw(@-,gﬂ) <e.

Jj=0
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If o; is the geodesic arc for the Poincaré metric joining (; to ¢j4+1, the curves ¢;00; connect
forming a continuous curve ¢ from z, to w; set o0 = mog. It is clear that the image of o
is contained in U; therefore the image of & must be contained in U,,, and so w € Uy, as
claimed.

In particular then, U, does not depend on v for v large enough, for {Z,} is a Cauchy
sequence; let U denote this unlquely determined connected component of 7=!(U), and

let Zp € U be the unique point of U such that 7m(Zo) = zo. Then it is clear that z, — Zo,
q.e.d.

Finally, it should be mentioned that not every taut manifold is complete hyperbolic;
an example is in Rosay [1982].

2.3.2 Invariant metrics

Both the Poincaré and the Bergmann distances were the integrated form of a Riemannian
metric; in this section we shall see that something similar is true for the Kobayashi distance.

Let X be a complex manifold, and T'X its tangent bundle; then the Kobayashi pseu-
dometric kx:TX — R is defined by

rx(z;v) = inf{[¢] | Jp € Hol(A, X) : (0) = 2, dpo(€) = v}

for every z € X and v € T, X; note that if £ € C then |£| is the length in the Poincaré
metric of ¢ considered as tangent vector to A at 0.

Analogously, the Carathéodory pseudometric vx:TX — R™ is defined by

vx (z;v) = sup{|df.(v)] ‘ f e Hol(X,A), f(z) =0},

for every z € X and v € T, X; as we shall see in a moment, vx is always finite.

Roughly speaking, a metric is something to measure length of curves with. Then
the suspicious reader may suspect that kx and vx deserved the name of (pseudo)metrics
because they enjoy the following property:

vx (23 0) = [\ vx(2;0) and kx(z; ) = |\ kx(z;0) (2.3.5)

for every z € X, v € T, X and )\ € C, which is the least requirement for a metric. A large
part of this section will be devoted to prove that it is actually possible measure length of
curves using the Kobayashi metric; but before that we need a few general facts.

The Kobayashi and Carathéodory pseudometrics enjoy properties very similar to the
one enjoyed by the corresponding distances, with very similar proofs. We list the state-
ments, leaving the details to the willing reader:
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Proposition 2.3.21: (i) Let f: X — Y be a holomorphic map between two complex
manifolds. Then for all z € X andv € T, X

’yy(f(z);dfz(v)) <vx(z;v) and Ky (f(z);dfz(v)) < kx(z;v).

(ii) If~ is an automorphism of a complex manifold X then for every z € X andv € T, X
1x (1(2);dvs(v) = yx(zv)  and  kx (7(2);dvs(v)) = Kx(250);

(iii) IfY is a submanifold of X then for every z € Y and v € T.Y

vx (z;0) < vy (z;v) and kx(z;v) < Ky (z;0).

Proposition 2.3.22: (i) ka and ya coincide with the Poincaré metric;
(ii) For every complex manifold X we have vx < kx. In particular, yx is always finite.

Proposition 2.3.23: Let X be a complex manifold, and n:TX — R™ a function such
that n(z; \v) = |AIn(z;v) for all z € X, v € T, X and A € C. Then:

(i) ifn(p(Q);dpc(€)) < ka(;€) for all p € Hol(A, X), ¢ € A and & € C, then n < kx;
(ii) if n(z;v) = ka(f(2);df-(v)) for all f € Hol(X,A), z € X andv € T.X, thenn > vx.

Proposition 2.3.24: Let || - |: C™ — R be a norm on C", and B the unit ball for this
norm. Then for all v € Ty B = C" we have

18(0;v) = £5(0;0) = [|vf|.
Corollary 2.3.25: On B", the Bergmann, Carathéodory and Kobayashi metrics coincide.
Corollary 2.3.26: For every v € C™ we have

kan(0;v) = j_Irllaxn{\vj|}.

=1,...

However, there is a new statement:

Proposition 2.3.27: Let X and Y be two complex manifolds. Then we have
kxxy ((2,w); (u,v)) = max{rx (z;u), Ky (w;v)}
for every (z,w) € X xY and (u,v) € T(;,,)(X xY) =T. X © T,,Y.
Proof: 1t is easy to see, using the canonical projections, that
rxxy ((z,w); (u,0)) > max{rx (z;u), ky (w;v)}. (2.3.6)

Assume, by contradiction, that (2.3.6) is not an equality. Then we can find ¢ € Hol(A, X),
Y € Hol(A,Y) and £, n € C such that ¢(0) = z, ¥(0) = w, dpo(§) = u, diyo(n) = v and

/iXXy((z,w); (u,v)) > max{[{],|n|} > max{rx(z;u), ky (w;v)}.

On the other hand, applying Proposition 2.3.21.(i) to the map f € Hol(A% X x Y)) given
by f(¢1,¢2) = (#(Cr), ¥(C2)) we find

kxxy ((z,w); (u,v)) < raz((0,0); (§,m) = max{|¢], [n]},
by Corollary 2.3.26, contradiction, q.e.d.
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Now, the distance associated to a Riemannian metric is obtained as infimum of length
of curves. Therefore if we want a similar relation between the Kobayashi pseudodistance
and the Kobayashi pseudometric we must first of all give a meaning to the writing

b

/ kx (o (1) 6(0)) dt, (2.3.7)

a

where o [a,b] — X is a piecewise C'! curve in X.
To do so, we need a technical lemma.

Lemma 2.3.28: Let X be a complex manifold of dimension n, and ¢ € Hol(A, X) such
that ©'(0) # 0. Then for every r < 1 there exist a neighbourhood U, of A, x {0} in A"
and a map f, € Hol(U,, X) such that fT‘A_Tx{O} = ¢|xz— and f. is a biholomorphism in a
neighbourhood of 0.

Proof: The proof of this lemma for a generic manifold is quite complicated, and requires
techniques out of the scope of this book (see Royden [1974] or Siu [1976]). Fortunately,
we shall need the results of this section only for domains of C™, where an easy proof is
available.

So let D be a domain in C", set vy = ¢’(0) and let V' denote the orthogonal comple-
ment of vy in C™. Define g: A x V — C™ by

V(e AVw eV g9(C,w) = ¢(C) + w.

Clearly, g is holomorphic and g|ax {0} = ; moreover, since dg(o,0)(§, w) = {vo +w, g is

a biholomorphism in a neighbourhood of the origin. Now, since A, x {0} is compact and
g(A, x {0}) CC D, there is a neighbourhood U, of A, x {0} in A™ such that ¢g(U,) C D,
and f, = g|y, is as we need, q.e.d.

We are now able to prove a regularity theorem for the Kobayashi pseudometric:

Theorem 2.3.29: Let X be a complex manifold. Then kx is upper semicontinuous.

Proof: Choose zy € X, vg € T,,X and € > 0; we must show that there is a neighbour-
hood V' of (zg;v9) in TX such that

V(z;v) eV kx(z;v) < kx(z0;v0) + €.

By definition, there are ¢ € Hol(A, X) and £ € C such that ¢(0) = zg, dpo(§) = vo and
€] < kx(20;v0) +€/2. Choose rg < 1 such that [£|/r¢ is still less than kx(z0;v0) + £/2,
and let U C A™ and f € Hol(U, X) be given by Lemma 2.3.28 applied to ¢ and ry; we can
clearly take U = A, X Ag_l for a suitable p > 0.

Now, f is a biholomorphism in a neighbourhood of 0, f(0) = zo and dfy(&e1) = vo,
where e; = (1,0,...,0) as usual. Therefore we can find a neighbourhood U of (0;&eq)
in TU = U x C" such that (f;df) is a biholomorphism between U and a neighbourhood 1%
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of (z0;v9) in TX. Moreover, since by Proposition 2.3.24 sy is continuous, we can also
assume that

V(¢v) e U ku(Gv) < ky(0s€er) +€/2.
So take (z;0) € V and (¢;v) € U so that z = f(¢) and v = df¢(v). Then
kx(z;0) < ky(Gv) < kp(0;€er) +¢/2 = |€]/ro +¢/2 < kKx(20;v0) + &,
q.e.d.

So (2.3.7) is well-defined; at least, rkx is integrable. We can also show that (2.3.7) is
always finite:

Lemma 2.3.30: Let X be a complex manifold, fix any hermitian metric h on T X, and

let || - ||n: TX — R™ denote the associated norm. Then for every compact subset K of X
there is a constant cx > 0 such that
Vze KVveT,X kx(z;v) < ckl|v||n-

Proof: Fix zy € X, and choose a coordinate neighbourhood U of zy biholomorphic to B”
for some n. Clearly it suffices to show that cx exists for K CC U. Then the assertion
follows from (2.2.16), Propositions 2.3.25, 2.3.21 and remarking that two hermitian metrics
on a compact subset of a complex manifold are always equivalent, q.e.d.

Later on we shall need an analogous fact for the Kobayashi distance:

Lemma 2.3.31: Let X be a complex manifold, and fix a point zy € X, a coordinate
neighbourhood U of zy and a biholomorphism :U — B"™, where n is the (complex)
dimension of X. Then for every compact subset K of U there is a constant ¢ > 0 such
that

Vz,we K kX(z7w) < CIK”w(Z) - ¢(w)|’

Proof: Indeed, kx (z,w) < kpn (¢(2), 1% (w)) for every z, w € U, and the assertion follows
from the explicit form of the Kobayashi distance on B", q.e.d.

Now, let o:[a,b] — X be a piecewise C! curve in a complex manifold X. Then the
Kobayashi length (o) of o is given by
b

li(o) = /KZX (o(t);6(t)) dt.
By Theorem 2.3.29, ¢; (o) is well-defined and, by Lemma 2.3.30, it is always finite. Fur-
thermore it does not depend on the parametrization of o, thanks to (2.3.5). So we can
define a pseudodistance k%: X x X — R™ on X, the integrated form of kx, by

Vz, we X ks (z,w) = inf{lx(0)},
where the infimum is taken with respect to the set of all piecewise C! curves connecting z
to w.

k% is constructed starting from rx exactly as the distance associated to a Riemannian
metric; therefore the often announced main result of this section is
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Theorem 2.3.32: Let X be a complex manifold. Then kx is the integrated form of kx.

Proof: First of all, we show that k% < kx. Since k% is a pseudodistance, it suffices to
show that k% < dx. Take zg, wo € X. If §x (20, wp) = +00, there is nothing to prove;
otherwise, fix ¢ > 0 and choose ¢ € Hol(A, X) with ¢(0) = z9 and ¢(tg) = wp for a
suitable to € [0, 1) such that w(0,ty) < dx (20, wo) + €. Let o(t) = p(t). Then

to to
k% (20, wo) < /ﬁx(a(t);d(t))dtg /M(t;l)dt:w(o,to) < 0x(z0,wp) + &,
0 0

and k:ZX < kx, for ¢ is arbitrary.

It remains to show that kx (zg,wo) < €x (o) for every piecewise C1 curve o: [a,b] — X
connecting zo to wo. Let f:[a,b] — RT be defined by f(t) = kx(20,0(t)). Using
Lemma 2.3.31 it is easy to see that f is locally Lipschitz, and so it is differentiable al-
most everywhere. In particular,

b
kx(z0,w0) = £(b) — f(a) < / ()] dts

hence it suffices to prove that if f is differentiable in ¢y € (a,b) then

|f'(to)] < rx (o(to); 6 (to))-

Fix ¢ > 0, and choose ¢ € Hol(A, X) and £ € C such that ¢(0) = o(to), deo(§) = o(to)
and [¢] < kx (0(to); 6(to)) +e. Then if h € R is small enough

|f(to +h) — fto)| < kx(o(to+ h),o(to)) < kx (o(to + h), p(hE)) + kx (p(hE), ©(0))
< kx (co(to + h), p(h€)) + w(0, hE).
Now, since ¢(0) = o(tg) and dpo(§) = 7(tp), Lemma 2.3.31 implies that
kx (o(to + h), p(h€)) = o(|h]).
Therefore

w(0, h§)
Id

[/ (to)] < lim = [¢] < rx(o(to); 6 (ko)) +e,

and we are done, q.e.d.

Therefore from now on to compute the Kobayashi distance we can measure length of
curves, a fact that will be quite crucial a couple of times in this chapter. For the moment,
we limit ourselves to some immediate applications. For instance, we can prove a sort of
converse of Lemma 2.3.30, showing how to characterize hyperbolic manifolds by means of
the Kobayashi metric:
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Proposition 2.3.33: Let X be a complex manifold, fix any hermitian metric h on T X
and let || - ||,: TX — R™ denote the associated norm. Then X is hyperbolic iff for every
compact subset K of X there is a constant ¢ > 0 such that

Vze KV eT. X kx (z;v) > cie||v]|n- (2.3.8)

Proof: Assume (2.3.8) holds, and take two distinct points zg, wg € X. Then there is a
compact neighbourhood K of zg such that wy ¢ K. In particular, every curve connecting z
to wo must leave K, and so, by Theorem 2.3.32,

kx(ZQ,wo) > C/I,( dh(Zo,gK) > 0,

where dj, is the distance induced by the hermitian metric h, and X is hyperbolic.
Conversely, assume X hyperbolic. Take zy € X, fix a coordinate neighbourhood U
of zg biholomorphic to B™ for some n, and choose € > 0 so that By(zg,2¢) CC U. In partic-
ular, for every ¢ € Hol(A, X) such that ¢(0) € Bi(z0,&) we have ¢(Aganne) C Bi(20, 2¢).
Take z € Bg(z0,¢), v € T, X, ¢ € Hol(A,X) and £ € C so that ¢(0) = 2z and
dpo(§) = v. Then, setting ¥(() = gp((tanhs)(), we have ¢ € Hol(A,U), ¥(0) = z and
dipo(€) = (tanhe)v. In other words, for every z € By(zg,¢) and v € T, X we have

(tanhe) ky(z;v) < kx(z;0).

But (2.3.8) is clearly true for B™ (and thus for U), and hence the assertion follows as in
Lemma 2.3.30, q.e.d.

In particular, then, if X is hyperbolic then kx (z;v) > 0 for every z € X and v € T, X
with v # 0; in this case we shall speak of Kobayashi metric, instead of pseudometric.
We end this section showing how tautness reflects on the Kobayashi metric:

Proposition 2.3.34: Let X be a taut manifold. Then kx is continuous.

Proof: By Theorem 2.3.29, it suffices to show that kx is lower semicontinuous.

First of all, we claim that for every z € X and v € T.X there are ¢ € Hol(A, X)
and £ € C such that ¢(0) = z, dpo(§) = v and || = kx(z;v). Indeed, take sequences
{p,} C Hol(A,X) and {£,} C C so that ¢,(0) = z, d(p,)o(§,) = v for all v € N,
and [, — kx(z;v). Up to a subsequence, we can assume ¢, — ¢ € Hol(A, X) and
&, — £ € C; ¢ and £ are clearly as desired.

Now assume, by contradiction, that xx is not lower semicontinuous. Then there
are z9 € X, vg € T, X, € > 0 and a sequence {(z,;v,)} C TX converging to (zo;vo)
such that kx(z,;v,) < kx(20;v9) — € for all v € N. Choose ¢, € Hol(A, X) and §, € C
such that ¢, (0) = z,, d(v,)o(€,) = v, and €| = kx(zy;v,). Then {£,} C C is bounded
and, up to a subsequence, we can assume ¢, — ¢ € Hol(A, X) and £, — £ € C. Hence
©(0) = 29, dpo(€) = vg and

€] < kx(z0;v0) — € < Kx(20;v0),

impossible, q.e.d.
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2.3.3 Invariant volume forms

There is still another construction related to the invariant distances: the invariant pseu-
dovolume forms. Using them we shall be able to construct invariant measures on complex
manifolds, an useful tool in studying holomorphic maps between compact hyperbolic man-
ifolds.

We begin recalling a few facts of linear algebra. Let V' be a complex vector space of
dimension n; we shall denote by V* its dual space, and by V* its antidual space, i.e., the
space of all anti-linear forms on V', that is of functions f:V — C such that

Vu,v e VAL €C  f(hu+p) = Af(u) +af(v).

A" V* will denote the n-th exterior power of V*, and A™" V* = (A" V*) A (A" V*) the
space of (n,n)-forms on V.

If V = {v1,...,v,} is a basis of V, we shall denote by V* = {vf,...,v}} the
dual basis of V*, and by V* = {v},...,0%} the antidual basis of V* (still defined by
0y (vg) = Ok, where 6y, is the Kronecker delta). If U = {uy,...,u,} is another basis of V/
and A € GL(n, C) is the transition matrix, that is the invertible matrix A = (apy) such
that

n
Vh=1,...,n up = E Ay Vp,s
n=1

then we shall write i/ = AV. It is easy to check that, using these notations, U* = tA=1V*,
and U* = tA~1Y*,

Now, A"™" V* has complex dimension 1; therefore if V is a basis of V then the (n,n)-
form v¥ A o5 A --- A vk AUk is a generator of A" V*. If U is another basis of V', and
A € GL(n,C) is the transition matrix, then

WENTE A AUt AT = | det 7208 ATEA - AvE ATE (2.3.9)

This equation has an important consequence. Set ny = 27" " vy AU] A--- Av) AUy — the
factor " makes 1y real, i.e., such that 77,, = ny; the factor 27" is due to (2.3.11) —; then
ny is a generator of the real one-dimensional vector space Ag" V* of real (n,n)-forms
on V. Now, stating that 7y is positive, we fix an ordering on Ag" V*; well, by (2.3.9) this
ordering is natural, i.e., does not depend on the chosen basis of V. In particular, we have
a well-defined notion of infimum and supremum of a family of real (n, n)-forms — allowing
the result to be o0, of course.

There is another consequence of (2.3.9) worth mentioning. Let T:V — V* be a linear
operator. If we fix a basis V of V, and the antidual basis V* on V*, we can compute the
determinant dety, T of T" with respect to these two basis. If i/ = AV is another basis of V,
it is easy to check that

dety; T = | det A|* dety T

In particular, by (2.3.9), this implies that the (n,n)-form ©7 = (dety T")ny is well-defined,
being independent of the chosen basis of V. © is the volume form associated to T.
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Linear operators from V in V* arise naturally from hermitian products h: V xV — C,
setting T3, (v) = h(v,-); in this case the (n,n)-form ©7, = O; will be called the volume
form associated to h. Note that, by definition of hermitian product, T} (u)(v) = T (v)(u)
for all u, v € V; this implies that dety T, € R for every basis V of V, and so O} belongs
to A V*. Furthermore, if h is positive semidefinite it immediately follows that ©), is
non-negative.

This was the local picture; the next step is to globalize it. Let X be a complex
manifold, and h a hermitian metric on it. If we denote by T*X the cotangent bundle and
by T* X the anticotangent bundle of X, then h gives rise to a bundle map T,: TX — T*X.
By the previous arguments, then, h defines a volume form ©; on X, that is a positive
(n,n)-form on X or, in other words, a positive section of the bundle Ag" 7% X, which has
fiber Ag" (77 X) at the point z € X. If {21,..., 2, } is a local chart centered about zy € X,

z

then Oy (z) is given by
On(z0) = det(hij(zo)) (%) dzi Ndzy N -+ Ndzp NdZ,, (2.3.10)

where (h;;) is the positive definite hermitian matrix representing h in these local coordi-
nates.
For instance, if X is C™ and h is the euclidean metric we find

On(z0) =6 = (%) dzy Ndzy N+ Ndzp NdzZy, = dxy Ndyy A - Ndxy A dyy,, (2.3.11)

for every zp € C™, where we set z; = x; +iy, for j = 1,...,n (this formula is the rationale
under the factor 27" in the previous definition of ©y,).

Another example: if X is B™ and h is the Bergmann metric then for every z € B™ we
have

1 i\" 1
© =— — | =) dxy NdZy N --- Ndz, NdZ, = ©. 2.3.12
w#) = ToREe (2) ahda N = T O (2312)

Now we are almost ready to define the invariant pseudovolume forms. Let X be a com-
plex manifold of (complex) dimension n, zp € X, and take f € Hol(X, B™) with f(z9) = 0.
Then (f*©)(20) belongs to A" (T% X); moreover, if {z1,...,2,} is a local chart about z,
then

(f*O)(20) = | det df.,|? (%) dzy Ndzy A -+ Ndzy N dZ, (2.3.13)

where the determinant is computed with respect to the canonical basis of C™ = Ty B™ and
to the basis {dz1,...,dz,} of T} X.

Analogously, take f € Hol(B™, X) with f(0) = zp and df, invertible; then the (n,n)-
form ((f71)*©)(z0) is a well-defined element of AR" (17 X), given locally by

20

((f71)©)(z0) = | det dfp| > (%->nle Adz A Ndzp A dZzy,. (2.3.14)
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Since AR X has a natural ordering (which is essentially induced by the canonical
orientation of X '), we can finally define the Carathéodory pseudovolume form 4x by

Vzo € X Jx(20) = sup{(f*©)(20) | f € Hol(X, B"), f(z0) =0},

and the Kobayashi pseudovolume form kx by
fix(20) = inf{((f71)*©)(20) | f € Hol(B", X), f(0) = 20, dfy invertible}

for all zp € X. 4x and R x are (not necessarily continuous) non-negative (n, n)-forms on X,
thanks to (2.3.13) and (2.3.14), provided that ¥x is finite. But this is proved in the usual
way:

Proposition 2.3.35: Let f: X — Y be a holomorphic map between two complex mani-
folds of the same dimension. Then f*yy < vx and f*ry < kx.

Proposition 2.3.36: (i) 4p~» and Rpn coincide with the volume form of the Bergmann
metric;
(ii) For any complex manifold X we have yx < Kx. In particular, 7x is always finite.

Proof: Let h be the Bergmann metric on B™. Since both &g~ (by Proposition 2.3.35)
and ©j, (by Corollary 2.2.3) are invariant under Aut(B"), to show that Kp» = O it
suffices to prove that fp»(0) = 0,(0) = ©. Clearly, ip»(0) < ©. On the other hand,
if f € Hol(B™, B") is such that f(0) = 0 and det dfy # 0, we have |det dfy|=2 > 1 by
Theorem 2.1.21.(ii), and so Ap=(0) > ©, by (2.3.14).

In particular, if X is any complex manifold, for every zyp € X and f € Hol(X, B")
with f(z9) = 0 we have

(70)- < Fx (20),

and (ii) follows. Finally, (ii) implies
On < ypn < kpn = Op,
and we are done, q.e.d.

Having a non-negative (n,n)-form on a complex manifold X, the first thing we would
like to do is to integrate it so to get a measure on X. As usual, we need some regularity
information:

Proposition 2.3.37: Let X be a complex manifold. Then
(i) Ax Is upper semicontinuous;
(ii) if X is taut, kx is continuous.

Proof: (i) Take zp € X and fix a coordinate neighbourhood U of z, with local coordi-
nates {z1,...,2,} centered about 2y, and set

1

2) dzy Ndzy N -+ Ndzy N\ dZy,. (2.3.15)

VzelU n(z):(
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Clearly, there is a function K:U — R™* such that fx(z) = K(z)n(z) for all z € U; we
must show that for every € > 0 there is a neighbourhood V' C U of zy such that

VzeV K(z) < K(z0) +¢.

Fix ¢ > 0. By definition, there is a map f € Hol(B", X) with f(0) = 2o which is
a biholomorphism in a neighbourhood of 0 and such that |det dfy|™ 2 < K(z0) + £/2.
Then there is a neighbourhood V of 0 such that f ]~ is a biholomorphism between 1%

and V = f(V) and moreover

| det df, |2
(1 = fwl?)n*
where 7,, is the automorphism of B™ given by (2.2.1), and we used Corollary 2.2.3.

Then, since f o7, (0) = f(w), if for every z € V we take w € V so that f(w) = z we
get

Vw eV |det d(f o Yw)o| ™2 = < K(20) +¢,

K(z) <|det d(fO'yw)o\_2 < K(20) +¢,
and we are done.

(ii) By part (i), it suffices to show that kx is lower semicontinuous. Assume, by
contradiction, there is a z9 € X where kx is not lower semicontinuous. Then, retaining
the notations introduced in the proof of part (i), there are ¢ > 0 and a sequence {z,} C X
converging to zo such that K(z,) < K(zp) —¢ for all v € N. Choose f, € Hol(B", X) such
that f,(0) = z, and |det d(f,)o| ™2 < K(2,) +¢/2 for all v € N. Up to a subsequence, we
can assume f, — f € Hol(B™, X), for X is taut; hence f(0) = zog and

| det dfo| ™ < K (20) — £/2 < K(20),
impossible, q.e.d.

In particular, then, if X is a complex manifold, Kx defines by integration a nonnega-
tive Borel measure on X (note that £x is locally bounded: it suffices to compare it with
the volume form of a coordinate neighbourhood biholomorphic to B™) contracted by holo-
morphic maps. In particular, the Kobayashi volume vol(X) of a complex manifold X is
given by

volg(X) = / Fx € [0, +od).
X

Clearly, a natural problem now is when kx is everywhere positive. The clever reader
will immediately suspect that this is the case when X is hyperbolic; our next aim is to
confirm this brilliant suspect.

A complex manifold X is measure hyperbolic if kx > 0; strongly measure hyperbolic
if there is a hermitian metric h on X such that for every zy € X there are a constant ¢ > 0
and a neighbourhood U of zy such that

Rx(z) > cOp(2)

forall z e U.
Clearly, a strongly measure hyperbolic manifold is measure hyperbolic; our idea is
that every hyperbolic manifold is strongly measure hyperbolic. We need two lemmas:



178 2.3 Invariant objects

Lemma 2.3.38: Let X be a hyperbolic manifold, U C X an open set and H a compact
subset of U. Then there is r € (0,1) such that, if we set rB™ = {z € C" | ||z|| < r}, then
for every n € N and for every f € Hol(B™, X) such that f(0) € H we have f(rB™) C U.

Proof: Let a = kx(H,X \U) > 0. If z € B™ is such that kg~ (0, z) < a we have
kX (f(o)a f(Z)) S kB"(O?Z) <a,
and so f(z) € U. Therefore r = tanh a will do, q.e.d.

Lemma 2.3.39: Let X be a hyperbolic manifold, U C X an open set and H a compact
subset of U. Then there exists ¢ > 0 such that

/%U|H S C/%X|H- (2316)
Proof: Clearly, we can assume U is a coordinate neighbourhood of a point zy € X, and

H ={zp}. Let {z1,...,2,} belocal coordinates in U centered about zy, and for every z € U
define n(z) € Ag" (T X) as in (2.3.15), and Kx, Ky:U — R by kix(z) = Kx(2)n(z)

and Ry (z) = Ky(2) n(2).
Choose € > 0. Then there is f € Hol(B™, X) such that f(0) = 2z, and

|det df0|_2 < K_)((Z()) + €.

Let » > 0 be given by Lemma 2.3.38, and define g € Hol(B", X) by g(z) = f(rz). Then
g(B™) C U and

1 1
Ky (z) < |det dgo| ™2 = rz—n|det dfo| 2 < m(KX(ZO) +e).

Since € > 0 is arbitrary, (2.3.16) follows, q.e.d.
This is what we need for

Theorem 2.3.40: Every hyperbolic manifold X is strongly measure hyperbolic.

Proof: Fix a hermitian metric A on X, and let zp € X. Choose two neighbourhoods
V cC U of zy such that U is biholomorphic to B™, where n is the complex dimension
of X. By Lemma 2.3.39 there is ¢ > 0 such that

FEx|v > ¢ tRuly.

Now, by Proposition 2.3.36 kg is the volume form of a hermitian metric on U; therefore
it is clear that there is ¢; > 0 such that

Rulv > ca10n|v,

and the assertion follows, q.e.d.
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We end this section with two applications of these methods. The first one is the
announced theorem on holomorphic maps between compact hyperbolic manifolds:

Theorem 2.3.41: Let X and X' be two compact hyperbolic manifolds of the same di-
mension. Then

(i) if volg(X) < volg(X'’) then every holomorphic map f: X — X' is everywhere degen-
erate;

(i) if volx(X) < 2vol,(X’) then every holomorphic map f: X — X' is either everywhere
degenerate or biholomorphic.

Proof: Since X and X' are compact and hyperbolic, they are complete hyperbolic (and
thus taut), and their Kobayashi volume is finite and positive (by Proposition 2.3.37.(ii)
and Theorem 2.3.40). Furthermore, being Kx and Fxs continuous and never zero, the
topological degree of f is given by

1
= — *Rxr. 2.3.1
degf = s [ s (2.3.17)
X
Therefore f*rkx: < Kx implies
de f < M (2 3 18)
81 = SoL (XY’ i

note that deg f > 0 by (2.3.17), because f*kx: > 0.

Now, deg f = 0 iff f*kx = 0, that is, since X’ is strongly measure hyperbolic, iff f is
everywhere degenerate. In particular, (2.3.18) implies (i). If volx(X) < 2volg(X’), then
either deg f = 0 or deg f = 1. In the first case, f is everywhere degenerate. In the second
case,

VOlk(X) = f*/%X/
/

together with f*kx/ < kx imply
[TRxr = Fx. (2.3.19)

It remains to show that (2.3.19) implies f is a biholomorphism.

First of all, f is injective. In fact, if there are z # w € X such that f(z) = f(w), then
we can find two disjoint open subsets U and V of X such that f(U) = f(V). But then
if, by a slight abuse of notation, we denote by xx the measure induced by the Kobayashi
volume form, we have

Fx(UUV) =&x(U)+&x(V) > kx (f(U)) +Ex(V) > &x (f(U)) = kx: (f(UUV)),

contradiction.
Finally, f is also surjective. Indeed, suppose not. Then, since X is compact, X'\ f(X)
is open, and so

VOlk(X/) = Kx/ (f(X)) + Rx7 (X/ \ f(X)) > Kx/ (f(X)) = VOlk(X),

impossible. Hence f is bijective, and thus, by Osgood’s theorem, a biholomorphism, q.e.d.
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The second application is a characterization of B™ we shall need in chapter 2.6. We
begin with a general lemma:

Lemma 2.3.42: Let X, Y be complex manifolds of dimensionn, and let { f,} C Hol(X,Y)
be such that there are zy € X and wg € Y so that f,(z9) = wq for all v € N. Furthermore,
suppose that there is g € Hol(Y, X) such that {go f,} converges to ¢ € Aut(X). Then
g is a biholomorphism.

Proof: By Osgood’s theorem, it suffices to show that g is bijective. First of all, g is surjec-
tive. In fact, fix z € X, and choose a neighbourhood U of 2’ = p~1(2) relatively compact
in X. Since g o f, — ¢ uniformly on U, for v large enough g o f, |y is a biholomorphism
with its image. Then we can apply Lemma 2.1.19, concluding that z = ¢(2') € go f,(U)
for v large enough, and so z € g(Y).

It remains to show that g is injective. Fix w € Y; we claim that there exists a compact
set K C X such that @ € f,(K) for all v large enough. To prove this, let ¢ be a curve
in Y joining wp to w, and set 7 = go o, Zyg = g(wg) = ¢(20) and Z = g(w). Thus 7
connects Zy to Z in X. Let W be an open neighbourhood of 7 (we are identifying a curve
and its image) which is relatively compact in X, and set V = ¢~ 1(W); note that 2o € V.
Then K =V will do.

Indeed, suppose not. Since g o f, — ¢ uniformly on a neighbourhood U of V, we
can choose vy so large that if v > vy then g o f, is a biholomorphism of U with g(f, (U))
and, moreover, T is a compact subset of g( f,,(V)) (this is possible for ¢ 1
subset of V). In particular, g|y, () is a biholomorphism between f,(U) and g(f,(U)).

By our assumption, there is v > 1y such that @ ¢ f,(V). However, f,(z0) = wo;
therefore o N f, (V') does not have compact closure in f, (V). But the biholomorphic map
9ls, ) sends o N f,(V) into a subset of 7, which does have compact closure in g(f,(V)),
contradiction.

Now we can prove that g is injective. Take wy, we € Y with w; # ws and assume,
by contradiction, that g(w;) = g(wsz). There is a compact subset K of X such that
wi, wp € f,(K) for all v large enough; choose 27, 25 € K so that f,(2}) = w; for j =1, 2;
clearly 27 # z§. Up to a subsequence, we can assume z{ — z; € K and 2§ — 20 € K
as v — +o0. Since go f,(2}) = go f,(2¥) for all v, and go f, — ¢, it follows that z; = z5.
But now, g o f, must be injective in a neighbourhood of z; = 25 for v large enough; it
follows that

oT is a compact

g(w) =go fu(21) # go fu(23) = g(ws)
for any v sufficiently large, contradiction, q.e.d.

Then
Theorem 2.3.43: Let X be a complex manifold of dimension n. Suppose that for

some zyg € X we have Kx(z9) = Yx(20) # 0. Then X is biholomorphic to B".

Proof: By definition, there exist sequences {f,} C Hol(B™, X) and {g,} C Hol(X, B")
such that f,(0) = 20, g,(20) = 0 for all » € N and

((£,1)©), — Fx(20),
(9,0)z, — ¥x(20)-
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Since B™ is taut, up to a subsequence we can assume that {g,} converges to a holomor-
phic map g: X — B"; clearly, (¢*©),, = 9x(z0). Then the sequence {g o f,} is such
that g(f,(0)) = 0 for all v € N and |det d(go f,)o| — 1 as v — +oo. Up to a subse-
quence, we can assume that {g o f,} converges to ¢ € Hol(B™, B") such that ¢(0) = 0
and |det dpg| = 1. But then Theorem 2.1.21 implies that ¢ € Aut(B™) and hence, by
Lemma 2.3.42, g is a biholomorphism, q.e.d.

2.3.4 The Kobayashi distance in convex domains

In the following chapters we shall be often concerned with the study of convex domains
of C", mainly because in these domains the Kobayashi distance is particularly well be-
haved, as we shall see in detail in chapter 2.6. In this short section we present three
propositions, giving a first idea of the characteristic features of the Kobayashi distance in
convex domains.

First of all, in convex domains the definition of Kobayashi distance can be considerably
simplified:

Proposition 2.3.44: Let D CC C" be a bounded convex domain. Then ép = kp.
Proof: First of all, note that dp(z, w) < +oo for all z, w € D. Indeed, let

Q={\eC|(1-\z+\weD}.

Since D is convex, () is a convex subset of C containing 0 and 1. Let ¢: A — € be a
biholomorphism such that ¢(0) = 0; then the map ¢: A — D given by

p(¢) = (1= 8(¢)z + ¢(Quw

is such that z, w € p(A).

Now, if z, w € D are distinct, then dp(z,w) > kp(z,w) > 0, by Proposition 2.3.14;
hence it suffices to show that dp satisfies the triangular inequality — cf. (2.3.4). Take
21, 22, z3 € D and fix € > 0. Then there are @1, w2 € Hol(A, D) and (3, (2 € A such that

©1(0) = 21, 1(C1) = ¥2(C1) = 22, p2(C2) = 23 and

w(0,¢1) < dp(z1,22) + ¢,
w(C1,C2) < 6p(22,23) + €.

Moreover, we can assume that (; and (» are real, and that (; > (; > 0. Furthermore,
up to replacing ¢; by ¢’ defined by ¢%(¢) = ¢;(r¢) for r close enough to 1, we can also

assume that ¢; is defined and continuous on A (and this for j =1, 2).
Let \:C\ {¢1,¢ '} — C be given by

C-G)C-6G

MO = o=y
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A is meromorphic in C and in a neighbourhood of A the only pole is the simple pole at (;.
Moreover, A\(0) = 1, A({2) = 0 and A\(DA) C [0,1]. Then define 1): A — C" by

Y(€) = AO)e1(Q) + (L = AC))#2(C)-

¢ is holomorphic on A — for ¢1(¢1) = 2(C1) —, ¥(0) = 21, ¥(C2) = 23 and Y(9A) C D;
hence 1(A) C D. Indeed, otherwise there would be {y € A such that ¥({y) = xo € OD. Let
A: C" — C be the weak peak function for D at xg defined in the proof of Corollary 2.1.11.
Then we would have |Aot)| < 1 on dD and | Aot ((p)| = 1; thus, by the maximum principle,
[Aop| =1, ie., ¥(A) C ID, whereas ¥(0) € D, contradiction.

In particular, then,

op(21,23) Sw(0,¢2) = w(0,(1) +w(C1,C2) < dp(z1,22) + dp(22, 23) + 2¢,
and the assertion follows, since ¢ is arbitrary, q.e.d.
Next, a fact already mentioned:

Proposition 2.3.45: Let D CC C" be a bounded convex domain. Then D is complete
hyperbolic.

Proof: We can assume 0 € D. It clearly suffices to show that all the closed Kobayashi
balls By (0,r) of center 0 are compact. Let {z,} C By(0,7); we must find a subsequence
converging to a point of D. Clearly, we may suppose that z, — wy € D as v — 400,
for D is bounded. Assume, by contradiction, that wy € dD; since D is convex, there is
a linear functional A\: C" — C such that Re A\(z) < Re A(wyp) for all z € D; in particular,
A(wg) # 0 (for 0 € D).

Set H = {¢ € C | ReA(Cwp) < ReA(wyp)}; clearly H is a half-plane of C, and the
linear map m: C" — C given by 7(z) = A(2)/A(wp) sends D into H. In particular

r>kp(0,2z,) > ky (O,W(zy)).

Since H is complete hyperbolic, by Proposition 2.3.17 the closed Kobayashi balls in H
are compact; therefore, up to a subsequence {m(z,)} tends to a point of H. On the other
hand, 7(z,) — m(wg) = wp € OH, and this is a contradiction, q.e.d.

Finally, the convexity is reflected by the shape of Kobayashi balls:

Proposition 2.3.46: Let D CC C" be a bounded convex domain. Then for all A € [0, 1]
and zg, z1, 220 € D we have

]{ID (ZQ, )\21 + (1 — )\)22) S max{k:D(zo, Zl), kD(ZO, Zg)} (2320)

In particular, the closed Kobayashi balls of D are compact and convex.

Proof: Choose zp, 21, z2 € D with, for instance, kp(zo,22) < kp(z0,21), and fix € > 0.
By Proposition 2.3.44, there are @i, p2: A — D and (i, (2 € A such that ¢;(0) = 2o,
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©;(¢;) = #z; and w(0,¢;) < kp(2o0,2j) + ¢, for j = 1, 2; moreover, we may assume both (;
and (o real and (; > (2 > 0. Define ¢: A — D by

w0 = e 29)
1
and ¢x: A — C" by

PA(C) = Apr(€) + (1 = A)w(Q),

for A € [0,1]. Since D is convex, every ¢, maps A into D; hence

kp (20, Az1 4+ (1 = N)z2) = kp (20, 92(¢1)) < w(0,¢1) < kp(20,21) + &,

and (2.3.20) follows. The convexity of the closed Kobayashi balls is then immediate, and
the compactness follows from Proposition 2.3.45 together with Proposition 2.3.17, q.e.d.

2.3.5 Boundary behavior of the Kobayashi distance

As already mentioned, the Kobayashi distance is quite difficult to compute; so, for the
applications, it becomes important to find a way of approximating it using something
more explicit. Near interior points of a hyperbolic manifold X, this is easily accomplished
by means of Lemma 2.3.31, Theorem 2.3.32 and Proposition 2.3.33, showing that kx is
locally equivalent to the distance induced by any hermitian metric on X. On the other
hand, if D C C" is a hyperbolic domain, at present we have no way of estimating the
behavior of kp near 0D.

The aim of this section is to give tools to handle this problem when D is strongly pseu-
doconvex. In B", the Bergmann distance kg (0, z) is of the same order of —1 log(1 — ||z||)
as z — OB™; therefore kpn (0, z) diverges exactly as —1 logd(z,0B"), where d(z,0B™) de-
notes the euclidean distance of z from 0B™. The idea is that this happens in every
strongly pseudoconvex domain D: kp(zg, z) blows up exactly as —% logd(z,0D), for any
base point zg € D. Actually, we shall not stop here: we shall study the behavior of kp(z, w)
when both z and w go to the boundary, again comparing it with the euclidean distance
from the boundary. We shall get quite powerful and precise estimates and, to give you an
idea of how to work with them, we shall end the section with a proof of the continuous ver-
sion of Fefferman’s theorem resting on these estimates. In the next section using different
arguments we shall study the boundary behavior of the Kobayashi metric, and we shall
come back again to boundary estimates in the next chapter, for weakly convex domains.

Complex analysis focused on strongly pseudoconvex domains because on them it is
possible to solve quite accurately the O-equation. Accordingly, we begin our job quoting
two standard facts of complex analysis, which are the only external results we shall need
about strongly pseudoconvex domains.

We shall denote by L?,,,(D) the space of (0,1)-forms on a domain D C C" with

(0,1)
square-integrable coefficients, and by L (D) the space of (0, 1)-forms on D with bounded

coefficients. Note that if D is bounded then L{7 ;) (D) is contained in L%O 1)(D). Then the

first fact is the existence of a solution of the d-equation on strongly pseudoconvex domains:
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Theorem 2.3.47: Let D CC C" be a strongly pseudoconvex domain with smooth bound-
ary. Let n be a 0-closed smooth (0, 1)-form in L%O 1)(D). Then there is a unique smooth

function u = Sn € L?(D) such that Ou = n and u is orthogonal in L?(D) to the holomor-
phic functions on D. Moreover, S is a bounded linear operator, that is there exists C' > (
depending only on D such that

[ull2 < Clinllrz, | (p)- (2.3.21)

(0,1)

And the second fact is the continuous dependence of the solution on parameters:

Theorem 2.3.48: Let M be a compact subset of R, and D cC C" a strongly pseu-
doconvex domain with smooth boundary. Let n: M — L 1)( ) be a continuous map

such that n, = n(x) is smooth and O-closed for every x € M. Set u, = Sn,. Then
u: M x D — C given by u(z, z) = u,(2) is continuous on M x D.

Proofs of these theorems can be found in Krantz [1982], for instance.

We now set up some notations about strongly pseudoconvex domains. Let D CcC C"
be a strongly pseudoconvex domain (that we recall is always bounded and with C? bound-
ary), and let p: C" — R be a defining function for D; we shall always take p so that for
every x € 0D the Levi form L, , of p at x is positive definite on C". In particular, p is
strictly plurisubharmonic in a neighbourhood U of 0D, i.e., L, . is positive definite for
all z € U. Furthermore, since dD is compact, there are ¢1, co > 0 such that for all v € C"
and xg € 0D

c1[[oll* < Lp,uo (v, 0) < cafv]|. (2.3.22)

By the way, it is easy to check that for every x € 9D the positive definite hermitian
form Lp , on TC(0D) given by Lp . = |lgradp(x)|| "' L, . is independent of p; Lp , is the
Levi form of D at x € 0D.

The expression

n

1
Z 8zj 5 Z_ 8zhazk *h = @n)(2k = 2)

is the Levi polynomial of p at © € 0D. The expansion of p about xg € D can be written

p(z) = 2Re(puy(2)) + Lp o (2 — 0, 2 — 20) + 0(||2 — z0]|?)- (2.3.23)

Since p(z) < 0in DNU and L, 4, is positive definite, there is a neighbourhood V;, of z
such that Re(py,) < 0 in V,, N D. Moreover, since 0D is compact, we can assume that
V., is of uniform size, that is that there is a fixed neighbourhood V of the origin such that
Vo = 20 + V for all xyp € OD.

The notion of strongly pseudoconvex domain is stable under perturbation. In fact, if
D is given as before by means of a function p strictly plurisubharmonic in a neighbour-
hood U of 0D and v is any C? real-valued function compactly supported in U, then for
any € > 0 sufficiently small the function p — 1) is strictly plurisubharmonic in U and

D={zeC"|(p—ep)(z) < 0}
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is strongly pseudoconvex. In particular, D has a fundamental system of neighbourhoods
composed by strongly pseudoconvex C'*° domains.

In chapter 2.1 we saw how to use peak function to prove tautness. We constructed a
peak function at any point of the boundary of a strongly pseudoconvex domain; now we
shall use the material introduced so far to prove that we can link together peak functions
in a continuous way:

Theorem 2.3.49: Let D CC C™ be a strongly pseudoconvex C? domain. Then there
exist a neighbourhood D’ of D and a continuous function ¥: 9D x D' — C such that:

(i) ¥, = ¥(xo,-) is holomorphic in D' for any xy € 0D;

(ii) W,, is a peak function for D at xz( for each z¢ € OD.

Proof: Let V be a neighbourhood of the origin such that Rep,, < 0 in D NV, for
every g € 0D, where V,, = zo + V. Let A(xg) = {z € C" | py,(2) = 0}. We claim
that there exist two euclidean balls Bo CC By CC V centered at the origin and a strongly
pseudoconvex neighbourhood D of D such that for all xg € 0D

(B (0) \ Ba(z0)) N D N A(xo) = b,

where Bj(z¢) = x¢ + B for j = 1, 2. In fact, let ¢ > 0 be smaller than the eigenvalues
of L, 4, for all xg € D, where p is a defining function for D strictly plurisubharmonic in
a neighbourhood U of 0D — cf. (2.3.22). Choose a ball By so that

A(zo) N Bi(20) N{z € U | pl(2) —¢l|z — wo|* = 0} = {wo}.
Then take any ball By CC By, of radius r, say, and put
D={zeC"|p(z) <er}.

Finally, let D be a strongly pseudoconvex smooth domain such that D CC D cc D. We
shall solve @ on D.

Let x: C™ — [0, 1] be a smooth function with support contained in By and identically 1
on By, and put x.,(2) = x(z —x0). Then x4, /pz, is well defined on D for every z¢ € 0D,
and Re(Xz,/Pzo) < 0 on D. Moreover, the (0,1)-form 1., = O(Xz,/Pz,) has bounded
smooth coefficients on E, is 0-closed and depends continuously on zg € dD. Therefore
Theorem 2.3.48 can be applied with M = 0D, and the solutions u,, = Sn,, yield a
continuous function u: D x D — C. Moreover, slightly shrlnkmg D if necessary (but still
with D CC D) we may assume that v is bounded on 0D x D by a constant £ > 0, say. In
particular, the functions x.,/pz, — Uz, — k are meromorphic on D and have negative real
part there.

The function h(w) = (w + 1)/(w — 1) maps the left half-plane onto A, sending oo
into 1. Thus if we set

Voo = h(Xao/Dao — Uay — k),

U defined by ¥(xg, ) = V,, is exactly as we want, provided that it is defined in a neigh-
bourhood of D.
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VU, is clearly holomorphic on D U (ZN) \ Ba(z)). On Ba(xo),

1 — (ugy +k —1)pay
1— (ugy +k+ Dpsy

Ve, =

<k
and the Levi polynomials are equicontinuous on 0D, there is an even smaller strongly

pseudoconvex smooth neighbourhood D’ of D contained in D where all the functions Y,
are holomorphic, and we are done, q.e.d.

This function is holomorphic when the denominator is not zero. Since ||ug, | Lo (B)

This is all we need for our investigation of the boundary behavior of the Kobayashi
distance. The idea is to compare kp(zo, z), where zg is a given point of a strongly pseudo-
convex domain D and z € D is near D, with d(z,0D), the euclidean distance from the
boundary. The sort of results we should expect is exemplified in

Lemma 2.3.50: Let B, be the euclidean ball of radius r in C" centered at the origin.
Then for every z € B,

tlogr — logd(z,0B,) < ¢p,(0,2) = kg, (0,2) < 1 log2r — 3 logd(z,0B,).
Proof: We have
kBT“LZ)::CBTHLZ)::“’<0,H;U>,

and
d(z,0B,) =r—||z||.

Then, setting t = ||z||/r, we get

1+1¢
: tg%log + =w(0,t) < Llog

1—t
~ Llog2r — }logd(=.05,),

Llogr — logd(z,0B,) = 1 log 11

q.e.d.

And indeed this is the general case. We need a definition. Let M be a (not necessarily
smooth; C? is enough) compact hypersurface of R¥, and fix an unit normal vector field n
on M (since M is orientable, there are only two choices: n and —n). We shall say that
M has a tubular neighbourhood U, of radius ¢ if the segments {z + tn, |t € (—¢,¢)} are
pairwise disjoint, and we set

U. = U {z+1tn, |t € (—¢,e)}.
zeEM

Note that if M has a tubular neighbourhood of radius ¢, then d(z + tn,, M) = |t| for
every t € (—¢,¢) and x € M; in particular, U, = (J,c,, B(x,€). A proof of the existence of
a tubular neighbourhood of radius sufficiently small for any compact hypersurface of RV
can be found, e.g., in Spivak [1979].

And now, we begin with the estimates. The upper estimate does not even depend on
the strong pseudoconvexity:
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Theorem 2.3.51: Let D CC C” be a C? domain, and zy € D. Then there is a constant
c1 € R depending only on D and zy such that for all z € D

cp(20,2) < kp(20,2) < 1 — & logd(z,dD). (2.3.24)

Proof: Since D is a C? domain, D admits tubular neighbourhoods U, of radius ¢ < 1
small enough. Put

c1 =sup{kp(z0,w) | w € D\ U.js} + max{0, 1 logdiam(D)},

where diam(D) is the euclidean diameter of D.
There are two cases:

(i) z € UsyaND. Let x € OD be such that ||z — z|| = d(z,0D). Since U, 5 is a tubular
neighbourhood of 9D, there exists A € R such that w = Az — z) € 0U./2 N D and the
euclidean ball B of center w and radius /2 is contained in U. N D and tangent to 9D in x.
Therefore Lemma 2.3.50 yields

cp(20,2) < kp(20,2) < kp(20,w) + kp(w,2) < kp(20, w) + kp(w, 2)
< kp(z0,w) + 1 loge — £ logd(z,0B)
< ¢ — 3logd(z,0D),

because w ¢ Uy, /4 (and € < 1).
(i) z€ D\ U /4. Then

cp(20,2) < kp(z0,2) < ¢ — %logdiam(D) <c — %logd(z,@D),
because d(z,0D) < diam(D), and we are done, q.e.d.
Now we pass to the more interesting lower estimate:

Theorem 2.3.52: Let D CC C" be a strongly pseudoconvex domain, and zg € D. Then
there is a constant co € R depending only on D and zgy such that for all z € D

¢y — 5 logd(z,0D) < cp(20,2) < kp(20, 2). (2.3.25)

Proof: Let D' DD D and ¥:9D x D' — C be given by Theorem 2.3.49, and define
¢:0D x A — C by

Y(x,20) ¢— U(z, 20)
U(x,20) 1—U(x,20)¢
Then the map ®(z,z) = ®,(z) = ¢(z, ¥(z,z)) is defined on a neighbourhood D x Dy
of 0D x D (with Dy CC D’) and satisfies

(a) ® is continuous and @, is a holomorphic peak function for D at = for any x € dD;
(b) for every x € 0D we have ®,(z9) = 0.

¢(z,¢) = 1 — (2.3.26)
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Now set U. = U,cop P(x,€), where P(z,¢) is the polydisk of center x and polyra-
dius (e,...,e). The family {U.} is a basis for the neighbourhoods of dD; hence there
exists € > 0 such that U. CC Dy and U, is contained in a tubular neighbourhood of 0D.
Then for any x € 0D and z € P(x,c/2) the Cauchy estimates yield

1= ()] = |Pa(z) — Du(2)] Iz — |

H 0P,
P(z,e/2)

0z

2/n
< ?fH@HanUEHz — x| = M|z -z,

where M is independent of z and z. Put ¢co = —1 log M; note that c» < 1log(e/2), for
|®||lopxw. = 1. Then we again have two cases:

(i) 2z € DN U,y Choose x € 9D so that d(z,0D) = ||z — z||. Since ®,(D) C A
and @, (z9) = 0, we have

1
kp(z0,2) > cp(20,2) > w(Px(20), Pr(2)) > Llog — .
( R NE]
Now,
1—[®e(2)] < [1 = Pu(2)| < M|z — || = M d(z,0D);
therefore

kp(z0,2) > cp(20,2) > —1log M — 1logd(z,0D) > ¢y — +logd(z,dD).

>
(ii) z € D\ U;j2. Then d(z,0D) > ¢/2; hence

kp(z0,2) > cp(z0,2) > 0> Llog(e/2) — logd(z,0D) > ¢y — 1 logd(z, D),
and we are done, q.e.d.

A first consequence is the promised:

Corollary 2.3.53: Every strongly pseudoconvex domain D is complete hyperbolic.
Proof: Take zp € D, r > 0 and let z € By(zp,r). Then (2.3.25) yields

d(z,0D) > exp(2(cz — 1)),

where ¢y depends only on zo. Then By/(zg,7) is relatively compact in D, and the assertion
follows, q.e.d.

Now we want to study the behavior of kp(z1,22) when both z; and z tend to the
boundary of D. A deeper examination of the proof of Theorem 2.3.52 yields the following
result:
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Theorem 2.3.54: Let D CC C" be a strongly pseudoconvex domain, and 6 > 0. Then
there exist ¢1, €9 € (0,0) with g9 < €1 and a constant ¢ € R such that for all xy € 0D
and z € DN B(xg,&0) we have

kp(z,D\ B(zo,2e1)) > —3 logd(z,0D) + c. (2.3.27)

1
2

Proof: Let D' D> D and ¥:9D x D' — C be given by Theorem 2.3.49, and set again
Ue = Uyeop P(x,e). Now choose €1 € (0,9) such that Us., is contained in a tubular
neighbourhood of 9D and moreover Us., CC D'. Put

Ve, = {(2,20) €D x D | ||z — x|l = &1};

since V., is compact and |¥(x,z29)| < 1 for all (z,z9) € V;,, there is n < 1 such that
| W (z,20)| <n<1forall (z,2) € Vg,.
Define ¢: V., x A — C by

1—W(x,z2) ' ¢ —Y(x,z)

¢z, 20,¢) = 1—W(x,20) 1-— WC

Y

and fix v € (n,1). If we take a neighbourhood Dy CC D’ of D such that |¥(xz,2)| < v/n
for all z € 9D and z € Dy, then the map ®(x,z0,2) = .., (2) = qb(m,zo,\lf(w,z)) is
defined on V., x Dgy; moreover for every (z, zg,2) € V., x Dy we have

1
|® (2, 20, 2)]? <1+ ——5 < +o00.

Now choose g9 € (0,e1/2) so that Uy, CC Dy. Then for every (x,z9) € V. and
z € B(z,e9) C P(x,g9) we have

8(Dm,z
N O S e R
P(=.e0) (2.3.28)
vn
< )y, cp, 2 ~ 2.

Set ¢ = —3 log(v/n||®||v., x D, /). Take z € dD, z € B(x,g0) N D and z € D\ B(x,2¢1).
Then there is y € B(x,2ep) N 0D such that ||z — y|| = d(z,0D); moreover,

Iy = 20ll = llz = 20l] — lly — [l > 261 — 2¢0 = &1,
that is (y,20) € V.,. Then

kD(Za ZO) > CD(Z7 ZO) > w(q)%zo (Z)a (I)yazo (ZO)>
1

——— >c—1log|lz —y| =c— Llogd(z,0D),
1= [®y,2(2)| ? ?

by (2.3.28), q.e.d.



190 2.3 Invariant objects

Then the first step is done:

Corollary 2.3.55: Let D CC C" be a bounded strongly pseudoconvex domain of C",
and choose two points x1, ro € 0D with x1 # x5. Then there exist ¢g > 0 and K € R
such that for any z; € D N B(x1,e9) and z2 € D N B(x2,e9) we have

kp(z1,22) > —3logd(z1,0D) — 1logd(z2,0D) + K. (2.3.29)

1
2
Proof: Let €p, ¢1 € (0,0) be given by Theorem 2.3.54, where § > 0 is so small that
B(z1,20) N B(x2,26) = @. Take z; € B(xj,e0) for j =1, 2, and let o be any curve from z;
to zo. Then part of the image of o should be outside both B(x1,2¢1) and B(x2,2¢1);
therefore (2.3.27) yields

lr(0) > —1logd(z1,0D) — Llogd(z2,0D) + O(1),
and (2.3.29) follows from Theorem 2.3.32, q.e.d.

The last step is the description of what happens to kp(z1, 22) when z; and z9 approach
the same point of the boundary:

Theorem 2.3.56: Let D CC C" be a C? domain and xo € 0D. Then there exist € > 0
and C' € R such that for all z1, zo € D N B(xp,e) we have

2 2
kD(Zl,ZQ) S —% z log d(Z],aD) + % Z log(d(zj,aD) + ||Zl — ZQH) + C. (2330)
j=1 J=1

Proof: For every x € 0D denote by n, the outer unit normal vector to D at . Choose
e > 0 so small that 0D N B(zo, 4¢) is connected and

(1) |Iny —ng,|| < 1/8 for all x € 9D N B(xo,¢);
(ii) for every § € [0,2¢], z € D N B(xg,¢) and x € 0D N B(xg,4e) we have z — dn, € D
and
d(z — én,,0D) > 35/4.

Set U = B(xo,¢). Let z1, 2o € UND, and choose x1, z2 € D so that ||z; —z;| = d(z;,0D)
for j =1, 2. Set 2} = 2; — [|21 — 22||n.;; then

2
kD(Zl,ZQ) < kD(Zi,Zé) + ZkD(Zj,Z;').

j=1

We begin bounding from above the first term. Since ||z; — z3]| < 2¢, by (ii) we have
d(25,0D) > 3||z1 — 22||/4, and by (i) we have [[2] — 23| < 5|21 — 22]|/4. Define the open
set (2 in C by

Q= {¢ e C[min{[¢],|¢ — 1]} < 3/5},

and ¢:Q — C™ by
p(C) =21 + (25 — 21).-
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Then ¢(2) C D, ¢(0) = 21 and (1) = 24; hence

To end the proof we must bound from above kp(z;,2}). Let ¢; € Hol(C,C") be defined
by

then ¢;(0) = x5, ¢, (d(z;,0D)) = zj and ¢, (d(z;, 0D)+||z1—22|)) = z;. Set for every a > 0
Qo ={(=E+ine C|[(] <4e, &> aln?}.
If « is large enough, then ¢;(£2,) C DNU. For convenience, fix a domain ), C Q,, sym-
metric with respect to the real axis, obtained by smoothing 0f2,, in a small neighbourhood
of its two angular points. We have
k’D(Zj, Z;) < ]{TQIa (d(Zj, 8D), d(Zj, aD) + ||Zl — ZQH)
So it remains to show that if @ and b are real numbers satisfying 0 < a < b < 3¢, then

ka (a,b) < 1(logb —loga) + O(1).

Let 7 be a biholomorphism of Q/, with A such that 7(0) = 1 and 7 is real on the real

axis. Since 92, is of class C!, 7 extends to a diffeomorphism between ﬁ/a and A (by
Theorem 1.1.28). Therefore there are K > 1 and 6 € (—1, 1) such that for every ¢ € (0, 3¢)

max{f,1 — Kc} <7(c) <1-¢/K.
Then

2 1+
/K C°2TKb |

ke (a,5) = w(r(a), 7(8)) = w(0,7(a)) — w(0,7(3)) < % log

q.e.d.

We end the section proving the promised version of Fefferman’s theorem, showing that
every biholomorphism between two strongly pseudoconvex domains extends to a homeo-
morphism of the closures.

We need Hopf’s lemma:

Proposition 2.3.57: Let U C RY be a C? domain. Let f:U — R be subharmonic in U,
continuous in U and suppose that f has a local maximum at xo € OU. Let n = n,, be the
outer unit normal to OU at xq; then

lim inf f(xo) = f(wo ~ tn)

t—0+ t

> 0.
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Figure 2.1

In particular, 0f /On(z¢) > 0 when it exists.

Proof: Let € > 0 be such that there exists a ball B of radius ¢ internally tangent to 0U
at zg so that f(xg) > f(z) for all x € B. Up to a translation, we can assume that the center
of B is the origin. Let By be a ball centered at zq of radius €1 < ¢, and let B’ = BN Bj.
Then OB’ is the union of S’ = 9B’ N B and S} = 9B’ N By (cf. Figure 2.1).

Define h: RN — R by

. 2 2
h(:lj‘) —e al|z|| _ Qe ’

where o > 0. Then A > 0 on B’ C B and
Ak = e12I (402||2||2 — 2aN).

In particular, if « is large enough then Ah > 0 on B’. Now set

v(z) = f(z) + oh(x).

If § is small enough then v(z) < f(xg) on S7; moreover we have v(z) = f(z) < f(xq) for
all z € "\ {zo}. Since v is subharmonic in B’, we infer that

max v(z) = f(zo)-
zeB

Therefore

liming 2E0) = U(@0 =) _ 5O () | i jns £120) = F (0 — )
t—0% t on >0+ t

> 0.

But 0h/0n(xzg) = —20ce=*¢" < 0, and the assertion follows, q.e.d.

And now, here we are:
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Theorem 2.3.58: Let D, D' CC C" be strongly pseudoconvex domains, and f: D — D’
a biholomorphism. Then f extends continuously to a homeomorphism of D with D’.

Proof: We need a preliminary observation. Let p be a defining function for D strictly
plurisubharmonic in a neighbourhood U of dD. We can assume that U has C? boundary,
is contained in a tubular neighbourhood of 9D and that f(U N D) is contained in a
tubular neighbourhood of 9D’. Then we can apply Proposition 2.3.57 to the subharmonic
function p o f~1 defined on f(U N D) which assumes maximum on D', obtaining that
there exists ¢ > 0 such that for all 2’ € 9D’

-1 ! t ,
lim inf pof(x na)
t—0+ —t

> >0, (2.3.31)

where n, is the outer unit normal vector to 0D’ at z’.
Now, (2.3.31) means that there is ¢ > 0 such that
po f iz —tny) < —ct
for all t € [0,¢] and 2’ € OD’; moreover, t = d(z' — tn,/,0D’), for f(U N D) is contained
in a tubular neighbourhood of dD’. Then, shrinking U if necessary, we infer
cd(f(),0D') < —p(2)
for all z € UN D. Now the expansion (2.3.23) shows that —p(z) is of the order of d(z,dD)
near 0D (essentially because the gradient of p is nowhere vanishing). Therefore there exists
a different constant K > 0 such that
d(f(z),0D") < Kd(z,0D) (2.3.32)
for all z € U N D and thus, since D \ U is compact, for all z € D (possibly changing K
again).

Now we can show that f extends continuously to 0D. Choose zg € 0D and assume,

by contradiction, that there are two sequences {zl}, {22} C D such that 2!, 22 — zq

as v — +oo and f(z}l) — y! € D', f(22) — y? € D’ with y* # y?. By Theorem 2.3.56,
we eventually have

2 . 2 .
kp(zh,22) < —1 3 logd(=),0D) + 4 . log(d(=), OD) + |24 — 22[)) + O(1).  (2:3.33)
j=1 j=1
On the other hand, Corollary 2.3.55 yields

ko (f(z), f(z2)) > %élogd( f(2]),0D) + O(1). (2.3.34)

1

But kp/ (f(2.), f(22)) < kp(z},22); hence (2.3.32), (2.3.33) and (2.3.34) imply

l\')l)—‘

~ 3 loa(d:4. 0D) + 12— 1) < O)

and letting v — +00 we get a contradiction.

Finally, f:D — D’ is clearly a homeomorphism, because for the same reason also
f~! extends to a continuous map from D’ to D, and this obviously is the inverse of the
extension of f, q.e.d.
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2.3.6 Localization at the boundary

The Kobayashi distance, metric and volume form are globally defined objects, but we saw
in the previous section that it is possible to study them locally near the boundary. In this
section we shall further pursue this argument, showing that in a strongly pseudoconvex
domain D the behavior of kp, kp and Kp near a point xg € 0D depends only on the
local shape of D near xg, and not on the overall geometry of D. As an application, we
shall describe the boundary behavior of the Kobayashi metric in strongly pseudoconvex
domains.

We start with the Kobayashi volume form. Let D be a domain in C"; then the
Kobayashi volume element Kp: D — R is defined by

Yze D /?LD(Z) = KD(Z)@,

where O is given by (2.3.11); the properties of Kp can be easily deduced from the properties
of kp described in section 2.3.3.

Our aim is to compare Kp with Kpny near xg € D, where U is any neighbourhood
of xg. Obviously, Kp < Kpny; to get some information in the reverse direction, we need
a couple of preliminary facts.

Let D be a bounded domain of C™; a point « € 0D is a local peak point for D if there
is a local peak function for D at x.

Proposition 2.3.59: Let X be a complex manifold, D a bounded domain of C", x € 0D a
local peak point for D and {f,} a sequence in Hol(X, D). If there is a point zop € X such
that lim f,(z9) = z, then f, — x.

Proof: Since D is tautly imbedded in C", it suffices to show that x is the only limit point
of {f,} in Hol(X,C™). Let f € Hol(X,C") be a limit point of {f,}; obviously, f(z9) = =.
Let U be a neighbourhood of z in C"™ such that there is a peak function h € Hol(U, C)
for DNU at x. Then h o f is defined on a neighbourhood of zp, and has a maximum in
zo; therefore it is constant. This implies that f is constant in a neighbourhood of zy, and
hence everywhere (for X is connected). Since f(zyg) = z, this implies f = z, and we are
done, q.e.d.

Corollary 2.3.60: Let X be a complex manifold, D a bounded domain of C", x € 0D a
local peak point for D and zg € X. Then given a neighbourhood U of x and a compact
subset K C X containing zy there exists a neighbourhood V- C U of x such that for
all f € Hol(X, D)

f(z0) e V= f(K)CU.

Proof: Let {V,,} be a fundamental system of neighbourhoods of z, with V,,,; C V,. If,
by contradiction, there exist a neighbourhood U of x and a compact subset K C X
containing zo such that for any v € N there is f, € Hol(X, D) so that f,(z9) € V,, and
fu(K) ¢ U, then we would have f,(z9) — x and f, / x, against Proposition 2.3.59,
q.e.d.
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Now we can prove our first localization theorem, that will be the model for others to
follow:

Theorem 2.3.61: Let D be a bounded domain of C™, x € 0D a local peak point for D
and U a neighbourhood of x in C" such that U N D is connected. Then

. Kp(z)
lim ——— =1.
2T KDmU(Z)
Proof: Since Kp < Kpny, we clearly have
K
lim sup ﬂ <1

z2—x KDﬂU (Z)

To estimate the liminf, let {z,} € D NU be a sequence converging to x, and fix ¢ > 0.
Let f, € Hol(B™, D) be such that f,(0) = z, and

| det d(fy)o|™* < (1+¢€)Kp().

Define f5 € Hol(B™, D) by fi(w) = f,((1 —e)w). By Corollary 2.3.60, f5(B™) c UND
for all v large enough. Therefore

—on _ I+e¢
Kprv(zy) < (1 —¢)"2"det d(f,)o| > < 5 Kp(2),

~(1-¢)

and thus

_ 2\2n
lim inf Kp(z) > (L—¢)
V—00 KDQU(ZV) 1+e¢

But this is true for any sequence converging to x and for any € > 0; hence

lim inf >1
Z—X

b

KD (Z)
DmU(Z)

and the assertion follows, q.e.d.

We remark that this theorem can be applied to strongly pseudoconvex points, by
Lemma 2.1.12 and Proposition 2.1.13.

Now we move on to the localization theorem for the Kobayashi metric. The main step
is contained in

Lemma 2.3.62: Let X be a hyperbolic manifold, and D, U open domains in X. De-
fine 5: DNU — RT by

Vze DNU §(z) =0p(2,D\U) = i%f\U5D(z,w),
we
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where dp is the function introduced in (2.3.2). Then
kpnu(z;v) < cotanh(8(z))kp(2;v) (2.3.35)

for every z € DNU andv € T, X.

Proof: Note that cotanhdp(z,w) = sup{|¢{|~! | 3¢ € Hol(A, X) : ¢(0) = z,¢(¢) = w}.
Since cotanh is a decreasing function, this implies

cotanh(d(z)) = sup cotanhdp(z,w)
weD\U
— sup{Ic|™! | Fp € Hol(A, X) : 9(0) = 2,0(¢) € D\ U}.
Now fix € > 0 and take ¢ € Hol(A, X) and £ € C such that ¢(0) = 2z, dgo(§) = v and
€] < (14 ¢e)rp(z;v). If r~1 > cotanh(8(z)) then we have p(A,) C DNU, and thus

1+¢
ppro(zi0) < 1S < LY

. . kp(z;v).

Being r and € > 0 arbitrary, (2.3.35) follows, q.e.d.
Then we have

Theorem 2.3.63: (i) Let D CC C™ be a complete hyperbolic domain, x € 0D and U a
neighbourhood of x in C™ such that U N D is connected. Then

Yo € C™\ {0} lim 2(5Y)

=1
2= kpnu(z3v)

uniformly in v € C™\ {0}.
(ii) Let D CcC C™ be a strongly pseudoconvex domain, and U a neighbourhood of 0 in C"
such that U, N D is connected for all x € 0D, where U, = x + U. Then

uniformly in v € C" \ {0} and in z € 9D.

=1,

Proof: As usual, kp(z;v) < kpnu(z;v). Conversely, Lemma 2.3.62 yields

/iDmU(ZQ U)

) < cotanh(6p(z, D\ U)) < cotanh(kp(z,D\U)) — 1
kp(z;v

as z — x, because cotanh is a decreasing function and D is complete hyperbolic, and the
proof of (i) is complete.

To prove (ii), it suffices to show that cotanh(kp(z, D\ U,)) — 1 as z — z uniformly
in x € 9D. Choose § > 0 such that B(0,29) C U, and let €y, €1 € (0,d) and ¢ € R be
given by Theorem 2.3.54. Then B(x,2e,) C U, for all x € 9D and

cotanh (kp(z, D \ Uy)) < cotanh(kp(z, D\ B(z,2¢1)) < cotanh(—1 logd(z,0D) + c),

and we are done, q.e.d.
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The reason of the splitting in two parts of the previous statement is that we shall
need the precise uniform assertion for strongly pseudoconvex domains in our study of the
boundary behavior of the Kobayashi metric.

The next step is the localization theorem for the Kobayashi distance. The idea is to
integrate Theorem 2.3.63; to control the integration paths, we need the following

Lemma 2.3.64: Let D CC C" be a strongly pseudoconvex domain. Take xo € 0D, and
two sequences {z,}, {w,} C D converging to x¢. Let {y,} C D be a third sequence such
that there is a constant C' > 0 so that

Yv eN k:D(Zuayz/) + kD(yluwu) S k:D(Zuawy) + C.

Then y,, — xg as v — +o0.

Proof: Assume, by contradiction, that {y, } does not converge to z¢; then, up to a subse-
quence, we can assume vy, — Yo € D, yg # xg. If yo € D, Theorem 2.3.52 yields

—1logd(z,,0D) — Llogd(w,,dD) + 2¢s < kp (2, y0) + kp(wy, yo)
< kD(ZV; yu) + kD(UJu,yu) + 2kD(yV7 yO) < kD(Zua wl/) + Cl

for a suitable constant C; > 0, since the sequence {kp(y,,yo)} is bounded, and this is
impossible, by Theorem 2.3.56.
So yg € 0D; but then Corollary 2.3.55 yields

—1logd(z,,0D) — 1 logd(w,,dD) —logd(y,,dD) + 2K
S kD(Zluyu) + kD(ylnwl/) < kD(Zl/7wU) + 07

and again this is impossible by Theorem 2.3.56, q.e.d.
Then

Theorem 2.3.65: Let D CC C™ be a strongly pseudoconvex domain. Take xo € 0D,
and let U be a neighbourhood of xy in C™ such that D N U is connected. Then

k}D(Z,’UJ)
——=1.
#0200 e (2,w)
Proof: Clearly,
lim sup M < 1.
z,w;mo k;DmU(z,w)

To estimate the liminf, let {z,}, {w,} C DNU be two sequences converging to xy, with
2, # w,, and fix ¢ > 0. By Theorem 2.3.63 there is a neighbourhood V C U of zy such
that for every z € VN D and v € C" we have

kpnu(z;0) < (1+¢€)kp(z;0). (2.3.36)
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Set £, = min{e, kp(z,,w,) 1}, and choose a curve o,: [0,1] — D connecting 2, to w, such
that

/,%D (oy(t);(fy(t)) dt < (1+4¢€,)kp(zp,wy);

o, exists by Theorem 2.3.32. We claim that 0,(]0,1]) C V N D for every v sufficiently
large. Indeed, otherwise we can find a subsequence {o,,} and points ¢; € [0, 1] such that
yj = 0,,(t;) ¢ V for all j € N. Now

1
kp(zu;,y5) + kp(y;, wy,;) < //-@D oy, (t ij(t)) dt < kp(zy;,wy,;) + 1,
0

and so, by Lemma 2.3.64, y; — x, contradiction.
Hence 0,([0,1]) C V N D eventually, and thus

1
kpnu (2, w,) < /F&DmU o (t ,,(t)) dt
0

1
(1+¢) /FLD ))dt<( +€)%kp (2, w,),
0

by (2.3.36). Therefore, being both ¢ and the sequences {z,}, {w,} arbitrary,

liminf M > 1,
A ooy (2,0)

and the assertion follows, q.e.d.

We are left with the study of the boundary behavior of the Kobayashi metric in
strongly pseudoconvex domains. The idea is to replace D locally by simpler domains, and
then to invoke the localization Theorem 2.3.63. So we begin introducing a special class of
domains.

Let H: C" xC™ — C be a positive definite hermitian product on C"; then the analytic
ellipsoid associated to H is the domain

E={2€C"|pp(z)=—21—2z1+ H(z,2) <0}

Note that L,, . = H for every z € C"; so pg is everywhere strictly plurisubharmonic.
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Lemma 2.3.66: Let E be the analytic ellipsoid associated to the positive definite hermi-
tian product H. Then

Ve EYoe C" (kp(zv))’ =

H H(v,z) — v |
(v, ‘ U (2.3.37)

—pe(z —PE( )

Proof: The idea is to find a biholomorphlsm U: F — B™ and then to compute kg(z;v)
as kpn (V(2);d¥.(v)). Let A = (ani) be the positive definite hermitian matrix represent-
ing H; up to a unitary transformation leaving e; = (1,0,...,0) fixed (and thus (2.3.37)

invariant) we can assume apr, = 0 for h # k, h, k = 2,...,n. Since A is positive definite,
this implies that aso, ..., a,, > 0 and
— |ay,|?
det A = GQQ...ann|:CL11 —ZL] > 0.
—5 4jj
j=2

Then define ¥: £ — C" by

{ \111(2:) = apgr1 — 1,
\I/](Z) = (aoajj)l/Q(zj + a,ljZl/Cij) fOI‘ j = 27 oo, n,

where ag = a11 — Z la1;|*/aj; > 0. Since ||¥(2)]|?> = 1 + appr(2), it is clear that ¥ is a

biholomorphism between F and B™. Finally, being

{ (dV.(v)), = agv1,

(d\IJ ( )) (aoajj)l/ (Uj +aljvl/ajj) fOI'j: 2,...,7’1,,

for every z € F and v € C", it easily follows that [kpn (¥ (2);d¥.(v))] %is given by (2.3.37),
q.e.d.

Given positive constants co > ¢; > 0, we denote by E(c1,c2) the set of analytic
ellipsoids associated to positive definite hermitian products H such that

Vv e C" ci||v]|? < H(v,v) < ea|vl?.

Since we introduced analytic ellipsoids as a tool for our study of the boundary behavior
of the Kobayashi metric, we are clearly interested in the behavior of kg near 0 € OF. For
the moment, we restrict ourselves to non-tangential behavior, that is we restrict z to
approach 0 within the cone

Ay ={2€ C"|Rez > alz|} (2.3.38)

for some o > 0; note that —e; is exactly the outer unit normal vector to OF in 0 for any
analytic ellipsoid E.

To state the next lemma, we introduce a new notation. Let D CC C™ be a C? domain,
and p a defining function for D. Then we can find a tubular neighbourhood U, of 9D such
that grad p is nowhere vanishing in U.; in particular, we can extend differentiably the
outer unit normal vector field n to U.. Take v € C™ and z € U,; the normal part vy (z)
of v at z is given by vn(2) = (v,n.)n,, and the tangential part vr(z) of v at z is given
by vr(z) = v —vn(2).
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Lemma 2.3.67: Fix 0 < ¢; < cg, « > 0 and let E € E(c1,c2) be an analytic ellipsoid.
Then

Yv e C* lim kg(z;v)Rez = 3|v1, (2.3.39)

zZ—

zEA,
uniformly in E € £(c1,c2) and v of unit length. Furthermore,
Yo e C" ;1_{% (ke (2 UT(z))}Q Rez1 = $Lg,o(vr(0),vr(0)), (2.3.40)
z€A,
again uniformly in E € £(c1,¢2) and v of unit length.
Proof: First of all

L
VzeA.NE Lpo(z2) < acs||z];
RBZl
therefore

. Re z; 1
lim = -,
=0 —pp(z) 2

z€A,

uniformly in E € £(c1,¢2), and (2.3.39) follows. To prove (2.3.40), we must show that

. [LE0(02(2):2) = (vr(2), [

—0 — z
=0 pE(2)

=0,

uniformly in £ and v. But indeed for every z € A, N F and v € C” we have

|Leo(vr(z),2)| < calloll ]I2],
—pe(2) = (2a — caof|z|)] 2],
and
|(vr(2)),] < esllvll 2]l + o(llz]]),

uniformly in E and v, for some constant c3 > 0 independent of v, and we are done, q.e.d.
Using Lemma 2.3.66 we can also see what happens varying both z and v together:

Lemma 2.3.68: Choose co > ¢; > 0, let E € &E(cy1,c2) be an analytic ellipsoid, U a
neighbourhood of 0, and v:U N E — C" a continuous map. Then
(i) if ||v(2)|| = O(||z]]) and |v1(2)| = o(||z||) as z — O, then for every a > 0

l% ke (z0(2)) =0,
z€A,
uniformly in F;

(ii) if [|v(2)]| = O(||z|) as z — 0, then kg(z;v(2)) is bounded in A, NENU for every o > 0,
uniformly in E.

Proof: This follows remarking that —pg(z) = O(]|z||) in Ay, uniformly in E € E(cq, ¢2),
and using (2.3.37), q.e.d.
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The passage from analytic ellipsoids to strongly pseudoconvex domains is accom-
plished using the following technical lemma:

Lemma 2.3.69: Let M be a compact set of symmetric n X n complex matrices, and let
F C Hol(C™, C™) denote the set of maps of the form

1 n
O(z) =2 — {5 Z hk zhzk} e1

h,k=1

with (api) € M. Then

(i) there exists 9 > 0 such that every ® € F is a biholomorphism in B(0,€g);

(ii) fix co > ¢1 > 0 and a > 0. Choose E € E(c1,¢2), ® € F and set D' = EN®(B(0,¢0))
and D = ®~1(D’). Then

Yv e C" lin%) kp(z;v) Rezr = §|vi| (2.3.41)
z€A,
and
veC  lim [kp (2 00(2))]° Rez1 = L o (vr(0), v7(0)), (2.3.42)
zEAN,

uniformly in E € £(c1,c2), ® € F and v € C™ of unit length.

Proof: (i) The assertion follows immediately from the compactness of M and the formula

det d®, =1 — Z ainzn.
h=1

(ii) The first step is transfer the limits from D to D’. First of all, we must show
that if z — 0 within A,, then there is o/ > 0 such that ®(z) — 0 within A, for
all ® € F. Indeed, the compactness of M provides us with a constant C' > 0 such
that |Re ®1(2)| > |Rez1| — CJz||? and ||®(2)|| < ||z + C||z||* for all @ € F; hence

Re ®4(2) S a—C|z]
[2(2)[] — 1+Cll=]

for all ® € F and z € A,. So ®(z) € A, for every o < a and z close enough to 0,
uniformly in ® € F, as claimed.
Next, we must replace Re z; by Re ®1(z); but indeed

e

Vz € A,
Z€ Re z;

_ 1' < Cal,

and so
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uniformly in ® € F. In other words, then, (2.3.41) is equivalent to
li_r)r(l) kp (P(2);dP.(v)) Re ®y(2) = 3|vs],
zEA,

and (2.3.42) is equivalent to

2
lim [KD, (@(z);d@(w(z)))} Re ) (2) = 1 Lg o (vr(0), vr(0)).
zEAN,
On the other hand, Lemma 2.3.67 and Theorem 2.3.63.(ii) yield

lim kp (w;v) Rew; = 1|
w—0

wEAQ/
and )
iiino (kD (w; v (w))]” Rew = 5Lg,o(vr(0),vr(0)),
wGAa/

uniformly in £ and v, where v/.(w) is the tangential part of v at w € E. Therefore we
must show

liil% Re ®4(z) [/'QD/ (®(2);v) — kD (q)(z);dq)z(v))] =0

z€EN,
and
: 2 2

lim Re @y (2){ [ip (9 (2); dP- (vr(2)))]” = [ (@(2); v (@(2)))]*} =0,

zEA,
uniformly in &, F and v.

Now, by Theorem 2.3.63, for every n > 1 we can find § > 0 such that for every

vy, v2 € C" and w € B(0,0) N D’ we have
k(Wi v1+v2) < nrp(w;v1+v2) < n(kp(w;v1)+re(w;v)) < n(kp (w;v1)+Ep (w;v2));

therefore it suffices to show (applying once again Theorem 2.3.63) that

,lii% Re ®1(2)kp (P(2);v — d®.(v)) =0 (2.3.43)
and o
lim Re@l(z){@(q><z); P, (vr(2)) — Vi (B(2))):
zEA, (2f&44)

kD (9(2); 4P (vr(2)) + s (@(2); v (@(2)) | } =0,
uniformly in &, F and v. But now a computation shows that v — d®,(v) = O(]|z]|) and
d®. (vr(z)) — v (®(2)) = O(||z|]), uniformly in ®, E and v; furthermore, as z — 0 both
d®. (vr(z)) and vf.(®(2)) tend to vr(0) = v/:(0), uniformly in the usual quantities. Then
Lemma 2.3.68 yields immediately (2.3.43), and (2.3.44) follows remarking that, by (the
uniform statement in) Lemma 2.3.67 and Theorem 2.3.63,

lig(l) [Re B4 (2)]/? [k (®(2); dP. (vr(2))) + K (P(2); v (D(2)))]
z2EA
exists finite, with the usual uniformities, and applying again Lemma 2.3.68, q.e.d.
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And now we can finally prove:

Theorem 2.3.70: Let D CC C™ be a strongly pseudoconvex domain, and xyg € 0D.
Then

Yv e C" lim kp(z;v)d(z,0D) = §|lvn (o),

Z—X0
and

Yo € C"* lim [K,D (z;vT(z))}Qd(z,aD) = %LD@O (UT(:UO),UT(:I:O)),

zZ—To

uniformly in o € 0D and v € C" of unit length.

Proof: Let p be a defining function for D strictly plurisubharmonic in a neighbourhood
of 0D, and set y(z) = ||grad p(x)|| for all x € dD. Up to an affine isometry of C", we
can assume zo = 0 and y(zp)n,, = grad p(xg) = —y(zo)e1. Therefore vy (zy) = vy for
all v € C™ and p becomes

(o) =2tz {2Re 21+ s 3 ST (0)z] + Lo e2) | +olo17)

where, by a slight abuse of notation, we are still denoting by Lp ., the extension of the
Levi form of D to all C" obtained by setting Lp 4, = 7(@0) L.z,

Now, when z( ranges over 9D, the set F of the maps ®: C" — C" defined in (2.1.2)
satisfies the hypotheses of Lemma 2.3.69; therefore we can find a neighbourhood P (inde-
pendent of xp) of the origin such that every ® € F is a biholomorphism in P and

Yw € ®(P) po® Hw) = y(zo)[—wi — W1 + Lpa, (w, w)] + o(||Jw]?). (2.3.45)

Choose €9 > 0 be smaller than the eigenvalues of Lp ., for all zo € 0D, and define
the analytic ellipsoids F4. for € < g¢ by

Ei.={wecC" ‘ —wy — Wy + Lp gy (w,w) Fellw|® < 0};

note that there are co > ¢; > 0 independent of xg such that Ei. € E(c1,c2) for all € < gg.
Now set Dy, = &~ (E1. N®(P)); by (2.3.45) we can suppose, shrinking uniformly P
if necessary, that

D_.cDNnPcCD.. (2.3.46)
Fix a > 0. Since d(z,0D) = Re z; + O(]|z]|?) as z — 0, uniformly in z, it is clear that
. Rezl
lim —fL
220 d(z,0D)
z€A,

uniformly in xy € 0D; therefore it remains to show that

lim kp(z;v)Rez = v (2.3.47)

zZ—

z2EA,
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and
lim [kp (z;vT(z))fRe z1 = 2 Lpo(vr(0),vr(0)), (2.3.48)

zEA,
uniformly in o € D and v of unit length; indeed, the uniformness in xy will allow us to
delete the restriction z € A, in both limits.
The first inclusion in (2.3.46) together with Lemma 2.3.69 yields

limsup kpnp(z;v) Rezy < 2lvy |
z—0
zEA,

and
limsup [kpnp (2; UT(Z))]2 Re 21 < 2[Lp,o(vr(0),v7(0)) + ellor(0)[?],

z—0
z€EA,

because if we denote by v,°(2) the tangential part of v at z € D_,, then it is not difficult
to check that ||v;°(z) — vr(2)| = O(]|z]|), uniformly in zy and v, and we can apply
Lemma 2.3.68 in D_..

Analogously, the second inclusion in (2.3.46) together with Lemma 2.3.69 yields

liminf kpnp(z;v) Rezy > %|v1|
z—0

z€EAL

and
limi(r)lf[/-stp(Z;vT(Z))fReZ& > 3 [Lp,o(vr(0), vr(0)) — ellor(0)]?].

z€EN,
Therefore, since by Theorem 2.3.63 we can replace Kk pnp by kp everywhere, (2.3.47) imme-
diately follows, and (2.3.48) is obtained by letting ¢ — 0. Finally, the uniform statement
follows from the analogous statements in Lemmas 2.3.68, 2.3.69 and Theorem 2.3.63.(ii),
q.e.d.

NOTES

As already remarked, this chapter is only an introduction to the theory of invariant objects
on complex manifolds. After Kobayashi’s construction of kx and kx in 1967, there has
been a flourishing of alternative definitions and related concepts: we only mention the
metrics and distances introduced by Hahn [1981], Klimek [1985], Azukawa [1986] and
Demailly [1987], the general approach of Harris [1979], and the intermediate dimensional
invariant measures introduced by Eisenman [1970] and thoroughly studied in Graham
and Wu [1985b] and Venturini [1985, 1987|. Furthermore, in our approach we focused on
strongly pseudoconvex domains, because of the applications we have in mind; to get a more
complete picture (though not containing all the results we presented), the interested reader
may consult chapter 2.6 (of course), Reiffen [1963], Kobayashi [1970, 1976], Lang [1987]
and Franzoni and Vesentini [1980]. This latter book also deals with invariant metrics and
distances in domains of infinite dimensional complex Banach spaces.
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The Carathéodory distance was introduced by Carathéodory [1926, 1927, 1928]. He
was mainly interested in bounded domains in C?, where he could prove, using a normal
family argument, that his distance was finite and non-degenerate. The Carathéodory
distance remained a sort of curiosity for almost fifty years — in spite of some sporadic
applications (like H. Cartan [1936], where it is used to study the automorphism group of
a product of two domains) and of Reiffen’s work (summarized in Reiffen [1963]) — till the
publication of Kobayashi [1967a, b] where the Kobayashi distance and metric are defined.
By the way, it should be remarked that, in general, the one-disk function dx is not a
distance, not even for bounded domains of C”; an example is in Lempert [1981].

Explicit computations of c¢x are in Simha [1975] and Jarnicki and Pflug [1988].

In connection with Proposition 2.3.8, Royden [1971] and Jarnicki and Pflug [1989] have
shown that the Kobayashi (Carathéodory) distance on a product manifold is obtained by
taking the maximum of the Kobayashi (Carathéodory) distance of the coordinates. An
analogous statement holds for Kobayashi and Carathéodory metric; see Proposition 2.3.27
and Jarnicki and Pflug [1989].

The definition of hyperbolic manifold is already present in Kobayashi [1967a, b]. At
that time, there was a rival notion around: a complex manifold X is called tight if there is
a distance d on X inducing the manifold topology such that Hol(A, X) is equicontinuous
with respect to d (Wu [1967] and Barth [1970]). Shortly later, Kiernan [1970] proved that
a complex manifold is tight iff it is hyperbolic, and after the proof of Proposition 2.3.10
(Barth [1972]), the notion of tight manifold disappeared from the literature. By the way,
it should be remarked some of the statements of section 2.1.2 (like Lemma 2.1.20 and
Theorem 2.1.21) hold for hyperbolic manifolds too; cf. Kobayashi [1967a, 1970].

In general it is not known whether the Carathéodory distance induces the manifold
topology (assuming it is non-degenerate, of course); the answer is affirmative if the closed
Carathéodory balls are compact (Sibony [1975]). Note that this condition is stronger than
the completeness of cx, for Lemma 2.3.15 does not hold for the Carathéodory distance (an
example is in Franzoni and Vesentini [1980]).

Propositions 2.3.11, 2.3.13 and 2.3.20 are in Kobayashi [1967a], where it is also shown
that every (complete) hermitian manifold with holomorphic sectional curvature bounded
above by a negative constant is (complete) hyperbolic. Brody [1978] has characterized
compact hyperbolic manifolds: a compact complex manifold X is hyperbolic iff there are
no nonconstant holomorphic maps f: C — X.

Theorem 2.3.14 is due to Kiernan [1970]. Proposition 2.3.17 is in Kobayashi [1967a],
and it is typical of inner distances; see Rinow [1961] for definition and properties of inner
distances, and Kobayashi [1973] for a direct proof of the fact that kx is an inner distance.
In general, cx is not inner; see Barth [1977].

Theorem 2.3.18 is again due to Kiernan [1970] (but part of the proof comes from
Wu [1967]). In connection with Proposition 2.3.19, Nakajima [1985] has proved that every
homogeneous hyperbolic manifold is biholomorphic to a bounded homogeneous domain.

The Carathéodory metric was introduced by Carathéodory [1928], and the Kobayashi
metric by Kobayashi [1967a, b], but the theory of invariant metrics really started only with
Royden [1971], who proved Theorems 2.3.29, 2.3.32, and Propositions 2.3.33 and 2.3.34.
The complete proof of Lemma 2.3.28 is in Royden [1974]; Siu [1976] contains a more general
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statement. It is possible to prove directly that xx is measurable (and then Theorem 2.3.32)
without using Lemma 2.3.28: see Venturini [1988a], who also suggested the proof we
presented of Theorem 2.3.32.

The situation for the Carathéodory metric is quite different. In fact, yx is always
locally Lipschitz, but cx is not the integrated form of vyx; to be precise, the integrated
form of the Carathéodory metric is the inner distance induced by the Carathéodory dis-
tance. However, vx is, in a very precise sense, the derivative of cx, whereas kx is not
the derivative of kx. For proofs and even more on this matter, consult Reiffen [1963],
Harris [1979] and Venturini [1988a).

The Carathéodory and Kobayashi pseudovolume forms were introduced in Eisen-
man [1970]. It can be shown that Jx is always continuous; see Eisenman [1970]. The-
orem 2.3.40 is from Pelles [1975] (formerly Eisenman), while Theorem 2.3.41 is due to
Yau [1975]. For a proof of Osgood’s theorem see, for instance, Range [1986]. A direct
proof of the fact that a hyperbolic manifold is measure hyperbolic is in Kobayashi [1970].

Theorem 2.3.43 was first proved by Wong [1977] for complete hyperbolic domains
in C", and later generalized to bounded domains in C™ (Rosay [1979]) and to hyper-
bolic manifolds (Dektyarev [1981]). The version presented here is due to Graham and
Wu [1985a], and it will be used in chapter 2.5 to prove another characterization of B™, the
original theorem of Wong [1977].

In Greene and Krantz [1984] it is shown that the invariant distances, metrics and
volume forms depend continuously on the domain.

We should remark that a good deal of the material presented in sections 2.3.1, 2.3.2
and 2.3.3 can be carried over without sostantial changes to complex analytic spaces (see,
e.g., Kobayashi [1976] and Lang [1987]). For instance, if X is a complex analytic space, we
can define the invariant pseudovolume forms on the regular part of X; since the singular
part is a subspace of codimension at least 1, it does not influence the measures associated
to the invariant pseudovolume forms. In particular, Theorem 2.3.41 holds for compact
hyperbolic complex spaces too, and we shall need this general form in the next chapter.

Propositions 2.3.44 and 2.3.46 are due to Lempert [1981], where the Kobayashi dis-
tance in convex domains is thoroughly investigated; cf. also chapter 2.6. Patrizio [1984]
has proved that if D is a strongly convex C? domain, then kp(zo,-) is a convex function
for every zp € D. Proposition 2.3.45 is due to Harris [1979], who also proved that a convex
domain in C" is hyperbolic iff it is biholomorphic to a bounded domain. Our proof is
taken from Barth [1980], where it is also proved that a convex domain in C" is hyperbolic
iff it contains no complex affine lines.

Theorems 2.3.47 and 2.3.48 were first proved by Kohn [1963, 1964] (see also Gra-
ham [1975]). Later on, several new proofs have been developed; for a general account of
the present state of the theory consult, for instance, Krantz [1982] or Range [1986].

Theorem 2.3.49 is in Graham [1975]; see also Fornaess and Krantz [1979]. Theo-
rems 2.3.51 and 2.3.52 were first obtained for the Carathéodory distance by Vormoor [1973],
with a different proof; our approach is taken from Abate [1986]. Corollary 2.3.53 is due to
Graham [1975]. Corollary 2.3.55 was proved by Vormoor [1973] (see also Fadlalla [1983])
for the Carathéodory distance, in a completely different way; cf. also Abate [1988a]. The
approach presented here, via Theorem 2.3.54, is suggested by Forstneric and Rosay [1987],
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though our proof of Theorem 2.3.54 is different. Theorem 2.3.56 is from Forstneric and
Rosay [1987] too; Vormoor [1973] proved something similar for the Carathéodory distance
only. It should be remarked that all these estimates are local in character; cf. Forstneric
and Rosay [1987]. Other estimates of the Carathéodory and Kobayashi distances in pseu-
doconvex domains have been obtained by Range [1978] and Catlin [1989].

Proposition 2.3.57 is due to Hopf [1952] and Oleinik [1952].

Fefferman [1974] proved, by means of a very deep study of the Bergmann metric, that
every biholomorphism between strongly pseudoconvex smooth domains extends smoothly
to the boundary. Later, his proof was considerably simplified; see, e.g., Krantz [1982].
Theorem 2.3.58 is taken from Forstneric and Rosay [1987], and it was inspired by Vor-
moor [1973]. It can be proved that the extension is actually Holder-continuous of expo-
nent '%; cf. for instance Henkin [1973]. A very detailed study of the regularity of the
extension under various smoothness assumptions on the boundary is Lempert [1986].

The localization Theorem 2.3.61 is due to Wong [1977], and it is another step toward
his characterization of B™ that we shall discuss in chapter 2.5. Lemma 2.3.62 is stated in
Royden [1971]; the proof as well as Theorem 2.3.63 are in Graham [1975]. Theorem 2.3.65
is due to Venturini [1988b]. Finally, the discussion culminating in Theorem 2.3.70 is taken
from Graham [1975]; see also Henkin [1973].



