
Chapter 2.2
The ball

In the first part of this book, the unit disk ∆ played quite a distinguished role: it was
the model space of the whole theory. It is natural then to conjecture that the euclidean
unit ball Bn of Cn will hold a similar position in this part of the book. Well; this is
partly true and partly false. On one side, the unit ball is the simplest example of strongly
pseudoconvex domain, and the theory on it is a good representative of the generic situation
(this is the spirit of Rudin [1980]). On the other side, every hyperbolic Riemann surface
was obtained by the unit disk following a fixed procedure, whereas nothing of this kind
is even vaguely true in several variables. The unit ball is more an ideal model to follow
than an effective tool for proving general theorems. Furthermore, the existence of a unique
universal covering space for all hyperbolic Riemann surfaces allowed us to avoid too many
topological considerations; in several variables, the absence of such a device will force us
to focus on domains without topological obstructions, like convex domains.

Nevertheless, the unit ball is both an instructive and useful example, and we decided
to devote a whole chapter to it. We shall deal with the main themes of this book —
iteration theory, angular derivatives and common fixed points —, and the rest of this work
will essentially be a description of how to extend the theorems proved for the ball to more
general domains.

We shall start with a thorough discussion of Aut(Bn); then, after talking about
Schwarz’s lemma in Bn and horospheres (the multidimensional version of the horocy-
cles), we shall drive toward angular derivatives, passing through a discussion of Lindelöf’s
theorem in Bn and of several extensions of the non-tangential limit. Next, iteration theory:
we shall obtain a complete analogue of the Wolff-Denjoy theorem, anticipating the general
discussion of chapter 2.4. Finally, common fixed points: we shall both generalize Shields’
theorem and make up a fixed point for every compact group of automorphisms of Bn.

Summing up, this chapter will give you a fair idea of what we shall do in the rest
of the book. How we shall do it, however, will be revealed only starting from the next
chapter. . .

2.2.1 The automorphism group

So we begin the study of our main example, the unit ball of Cn

Bn = {z ∈ Cn | kzk < 1},

where k · k is the usual euclidean norm kzk =
° nP
j=1

|zj |2
¢1/2, induced by the canonical

hermitian product (z, w) =
nP

j=1
zjwj . This section is devoted to the construction and an
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accurate examination of the automorphism group of Bn. As usual, the focus is on the
fixed point sets.

First of all, we want to explicitely describe Aut(Bn). For reasons we shall discuss in the
next section, this time Schwarz’s lemma is not the natural tool. The right replacement is
Corollary 2.1.23, whereby the isotropy group of the origin is U(n), the group of n×n unitary
matrices. So to compute Aut(Bn) we need only a transitive subset of automorphisms.

Let a ∈ Cn, a 6= 0, and define Pa, Qa:Cn → Cn by

Pa(z) =
(z, a)
(a, a)

a and Qa(z) = z − Pa(z).

Pa is the orthogonal projection on the subspace generated by a, and Qa is the projection
on the orthogonal complement. In particular, both Pa and Qa send Bn into itself.

If a ∈ Bn, put sa = (1− kak2)1/2 and define ∞a:Bn → Cn by

∞a(z) =
a− Pa(z)− saQa(z)

1− (z, a)
. (2.2.1)

Note that if n = 1 then ∞a is an automorphism of ∆; see (1.1.3).

Lemma 2.2.1: For every a ∈ Bn, a 6= 0, we have:
(i) ∞a(0) = a and ∞a(a) = 0;
(ii) d(∞a)0 = −s2

aPa − saQa and d(∞a)a = −Pa/s2
a −Qa/sa;

(iii) for all z, w ∈ Bn we have

1−
°
∞a(z), ∞a(w)

¢
=

°
1− (a, a)

¢°
1− (z, w)

¢
°
1− (z, a)

¢°
1− (a,w)

¢ ; (2.2.2)

(iv) for all z ∈ Bn we have

1− k∞a(z)k2 =
(1− kak2)(1− kzk2)

|1− (z, a)|2 ; (2.2.3)

(v) ∞a is an involution, that is ∞a ◦ ∞a = idBn ;
(vi) ∞a extends to a homeomorphism of Bn onto Bn, and is an automorphism of Bn.

Proof: (i) Obvious.
(ii) For any z ∈ Bn (2.2.1) can be rewritten in the form

∞a(z) =
£
1 + (z, a) + (z, a)2 + · · ·

§£
a− (Pa + saQa)(z)

§

= ∞a(0) + (z, a)a− (Pa + saQa)(z) + O(kzk2)
= ∞a(0)− (s2

aPa + saQa)(z) + O(kzk2),

and we get the first formula. The second one follows from

∞a(a + h) =
−Pa(h)− saQa(h)

s2
a − (h, a)

.
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(iii) Since Pa and Qa are self-adjoint projections, we have

1−
°
∞a(z), ∞a(w)

¢
= 1−

°
a− Pa(z), a− Pa(w)

¢
+ s2

a

°
Qa(z), Qa(w)

¢
°
1− (z, a)

¢°
1− (a,w)

¢

= 1−
°
a− Pa(z), a− w

¢
+

°
1− (a, a)

¢°
z − Pa(z), w

¢
°
1− (z, a)

¢°
1− (a,w)

¢

=
°
1− (a, a)

¢°
1− (z, w)

¢
°
1− (z, a)

¢°
1− (a,w)

¢ .

(iv) By (iii), with z = w.
(v) Let √ = ∞a ◦ ∞a. Then √(0) = 0 and d√0 = d∞a(a) · d∞a(0) = Pa + Qa = id, for

P 2
a = Pa, Q2

a = Qa and PaQa = QaPa = 0. By Theorem 2.1.21, √ = idBn .
(vi) ∞a sends Bn into Bn and @Bn into @Bn, by (iv). It follows from (v) that ∞a is

invertible, and we are done, q.e.d.

Hence the automorphism group is given by

Corollary 2.2.2: Every ∞ ∈ Aut(Bn) is of the form

∞ = U∞a,

where a = ∞−1(0) and U ∈ U(n). In particular, Aut(Bn) acts transitively on Bn, and
every element of Aut(Bn) extends continuously to a homeomorphism of Bn onto itself.

Proof: The map ∞ ◦ ∞a is an automorphism of Bn that fixes the origin; hence, by Corol-
lary 2.1.23, it is linear. Therefore it should be unitary, and the assertion follows, q.e.d.

We shall see later that Aut(Bn) acts doubly transitively on @Bn.
A consequence of (2.2.2) and Corollary 2.2.2 is that for every ∞ ∈ Aut(Bn) we have

∀z, w ∈ Bn 1−
°
∞(z), ∞(w)

¢
=

°
1− (a, a)

¢°
1− (z, w)

¢
°
1− (z, a)

¢°
1− (a,w)

¢ , (2.2.4)

where a = ∞−1(0).
Another consequence that we shall need in the next chapter is:

Corollary 2.2.3: Take ∞ ∈ Aut(Bn) and set a = ∞−1(0). Then

∀z ∈ Bn
ØØdet (d∞)z

ØØ2 =
µ

1− kak2
|1− (z, a)|2

∂n+1

.

Proof: Fix z ∈ Bn, and set w = ∞(z). Then 0 is a fixed point of ∞w ◦ ∞ ◦ ∞z and so
∞ = ∞wU∞z for some U ∈ U(n). In particular,

(d∞)z = (d∞w)0U(d∞z)z.
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By Lemma 2.2.1.(ii), (d∞w)0 has a one-dimensional eigenspace of eigenvalue −s2
w, and

a (n − 1)-dimensional eigenspace of eigenvalue −sw, so that det(d∞w)0 = (−1)nsn+1
w .

Analogously, det(d∞z)z = (−1)ns−n−1
z ; hence

|det(d∞)z|2 =
µ

1− k∞(z)k2
1− kzk2

∂n+1

,

and the assertion follows from (2.2.4), q.e.d.

Exactly as for n = 1, there is a different realization of Bn which is often useful, for
instance to study Aut(Bn). It is the Siegel upper half-space Hn ⊂ Cn defined by

Hn =
©
w ∈ Cn

ØØ Imw1 > kw0k2
™
,

where for every w = (w1, w2, . . . , wn) ∈ Cn we set w0 = (w2, . . . , wn).
The Cayley transform ™:Bn → Hn given by

™(z) =
µ

i
1 + z1

1− z1
,

iz2

1− z1
, · · · , izn

1− z1

∂

is, exactly as in the one dimensional case, a biholomorphism between Bn and Hn, with
inverse given by

™−1(w) =
µ

w1 − i

w1 + i
,

2w2

w1 + i
, · · · , 2wn

w1 + i

∂
.

We notice incidentally that ™ = (™1, . . . ,™n) satisfies

∀z ∈ Bn Im™1(z)−
nX

j=2

|™j(z)|2 =
1− kzk2
|1− z1|2.

(2.2.5)

The boundary of Hn in Cn is given by @Hn =
©
w ∈ Cn

ØØ Imw1 = kw0k2
™
. We

shall denote by Hn the one-point compactification of Hn ∪ @Hn; it is easily seen that
™ extends to a homeomorphism between Bn and Hn sending (1, 0, . . . , 0) in the point at
infinity of Hn.

There are two subgroups of Aut(Hn) which are worth mentioning. The first one is
composed by the (non-isotropic) dilatations δt, where t > 0, given by

δt(w) = (t2w1, tw
0).

Every δt fixes only 0 and 1; hence ™−1 ◦ δt ◦™ is an automorphism of Bn fixing no points
of Bn and exactly two points of @Bn. Moreover, (δt)−1 = δ1/t.

The second subgroup consists of the translations ha, where a ∈ @Hn, given by

ha(w) =
°
w1 + a1 + 2i(w0, a0), w0 + a0

¢
. (2.2.6)

Every ha fixes only1; hence ™−1 ◦ha ◦™ is an automorphism of Bn fixing no points of Bn

and exactly one point of @Bn. Moreover, (ha)−1 = hã, where ã = (−a1,−a0).
We can use dilations and translations to describe Aut(Hn):
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Proposition 2.2.4: Every automorphism ∞ of Hn is of the form

∞ = δt ◦ ha ◦ µU ,

for suitable U ∈ U(n), t > 0 and a ∈ @Hn, where µU (w) = ™
°
U™−1(w)

¢
is an automor-

phism of Hn fixing (i, 0, . . . , 0).

Proof: Let b = (b1, . . . , bn) = ∞(i, 0, . . . , 0). Since b ∈ Hn, we have Im b1 > kb0k2; set
t =

°
Im b1 − kb0k2

¢1/2. Now define a = (a1, . . . , an) ∈ @Hn by

a1 =
1
t2

£
Re b1 + ikb0k2

§
,

a0 = b0/t,

and set ã = (−a1,−a0). Then hã ◦ δ1/t(b) = (i, 0, . . . , 0); hence, by Corollary 2.2.2,
hã ◦ δ1/t ◦ ∞ = µU for a suitable U ∈ U(n), and ∞ = δt ◦ ha ◦ µU , q.e.d.

A first corollary is the promised

Corollary 2.2.5: Aut(Bn) acts doubly transitively on @Bn.

Proof: Since Aut(Bn) contains U(n), it suffices to show that for every x ∈ @Bn, x 6= e1,
there is ∞ ∈ Aut(Bn) such that ∞(e1) = e1 and ∞(−e1) = x, where e1 = (1, 0, . . . , 0). Using
the Cayley transform, we can rephrase the problem in the following terms: given a ∈ @Hn

find ∞ ∈ Aut(Hn) such that ∞(1) = 1 and ∞(0) = a. But then it suffices to take ∞ = ha,
q.e.d.

Now we want to study the fixed point set of an automorphism of Bn. We saw
that an automorphism of Bn can have no fixed points in Bn. On the other hand,
if U ∈ U(n) ⊂ Aut(Bn) its fixed point set is the intersection of Bn with a complex
linear subspace of Cn. To describe the general case, we need a couple of definitions.

An affine subspace of Cn is the translation of a linear subspace; an affine subset of Bn

is the intersection of Bn with an affine subspace of Cn. If L is a linear subspace of Cn

and c0 ∈ Bn, then the affine subset E = (c0 + L) ∩ Bn is said parallel to L and passing
through c0.

The idea is that the fixed point set in Bn of an automorphism of Bn is either empty
or an affine subset of Bn. To prove this assertion, we need the following

Lemma 2.2.6: Every automorphism of Bn sends affine subsets into affine subsets.

Proof: Let ∞ ∈ Aut(Bn), and set a = ∞−1(0). Let E be an affine subset of Bn, and
write E = (c0 + L) ∩ Bn, where c0 ∈ Bn and L is a linear subspace of Cn. Fix a basis
{v1, . . . , vk} of L, and set cj = vj + c0 ∈ E, for j = 1, . . . , k; we can choose the basis so
that c1, . . . , ck ∈ B. Then it is easy to see that

E =
Ω

kP
j=0

∏jcj

ØØØØ ∏0, . . . ,∏k ∈ C,
kP

j=0
∏j = 1

æ
∩Bn.
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Take z =
kP

j=0
∏jcj ∈ E. Then

∞(z) =
kX

j=0

µj∞(cj),

where
µj = ∏j

1− (cj , a)
1− (z, a)

, (j = 0, . . . , k).

Then
kP

j=0
µj = 1 and ∞(E) = (∞(c0) + L1) ∩ Bn, where L1 is the linear subspace of Cn

generated by
©
∞(c1)− ∞(c0), . . . , ∞(ck)− ∞(c0)

™
, q.e.d.

Then

Theorem 2.2.7: Let ∞ ∈ Aut(Bn). Then the fixed point set of ∞ in Bn is either empty
or an affine subset. Conversely, every affine subset of Bn is the fixed point set of some
automorphism of Bn.

Proof: Suppose ∞(z0) = z0 for some z0 ∈ B. Then ∞z0 ◦∞◦∞z0 is an unitary transformation,
and its fixed point set E (in Bn) is the intersection of Bn with a linear subspace of Cn.
Therefore the fixed point set of ∞ is ∞z0(E) and hence affine, by Lemma 2.2.6.

For the converse, let E be an affine subset of Bn, and take z0 ∈ E. Then ∞z0(E) is
the fixed point set (in Bn) of an unitary transformation U , and E is the fixed point set of
∞ = ∞z0U∞z0 , q.e.d.

It may happen that an automorphism ∞ of Bn has no fixed points in Bn; on the other
hand, every ∞ ∈ Aut(Bn) has a fixed point in Bn. This is a consequence of Brouwer’s
theorem:

Theorem 2.2.8: Let f :K → K be a continuous map of a compact convex subset K
of RN into itself. Then f has a fixed point.

A proof can be found in Massey [1967], or in Spanier [1966], for instance.
It turns out that an automorphism without fixed points in Bn can have at most two

fixed points in @Bn:

Proposition 2.2.9: Let ∞ ∈ Aut(Bn) be without fixed points in Bn. Then ∞ has at least
one and at most two fixed points in @Bn.

Proof: By Brouwer’s theorem, ∞ has at least one fixed point in @Bn. Assume that there
exist three distinct fixed points z1, z2, z3 ∈ @Bn of ∞. (2.2.4) yields

1− (zj , zk) =
°
1− (a, a)

¢°
1− (zj , zk)

¢
°
1− (zj , a)

¢°
1− (a, zk)

¢ ,
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for j, k = 1, 2, 3, where a = ∞−1(0). If j 6= k, then (zj , zk) 6= 1 and hence

1− (zj , a) =
1− (a, a)
1− (a, zk)

.

With k = 3 and j = 1 or 2 this implies that

(z1, a) = (z2, a). (2.2.7)

Put z = 1
2 (z1 + z2) ∈ Bn. Then (2.2.7) implies

∞a(z) =
1
2
°
∞a(z1) + ∞a(z2)

¢
.

Hence, if we write ∞ = U∞a for a suitable U ∈ U(n), we obtain

∞(z) = U∞a(z) =
1
2
°
∞(z1) + ∞(z2)

¢
= z,

contradiction, q.e.d.

We end this section characterizing the automorphisms of Bn with just one or two fixed
points in @Bn and none in Bn. For sake of simplicity, we transfer the problem to Hn, and
we ask for a description of the automorphisms of Hn keeping fixed either only 1 or only 0
and 1 (there is no loss in generality thanks to Corollary 2.2.5).

Proposition 2.2.10: Let ∞ ∈ Aut(Hn). Then 1 is the only fixed point of ∞ iff

∀w ∈ Hn ∞(w) = ha(w1, U
0w0) (2.2.8)

for some U 0 ∈ U(n − 1) and a ∈ @Hn, where U 0 and a are such that for every solu-
tion w0 ∈ Cn−1 of (In−1 − U 0)w0 = a0 we have Re a1 6= 2 Im(w0, a0).

Proof: Write ∞ = δt ◦ ha ◦ µU for some t > 0, a ∈ @Hn and U ∈ U(n). Since 1 is
a fixed point for both δt and ha, it follows that µU (1) = 1. In particular, setting
e1 = (1, 0, . . . , 0), Ue1 = e1 and so µU (w) = (w1, U 0w0) for a suitable U 0 ∈ U(n− 1).

Now we claim that t = 1. Indeed, assume by contradiction that t 6= 1. Then
det(U 0 − t−1In−1) 6= 0; hence there is v0 ∈ Cn−1 such that t(U 0v0 + a0) = v0. Set
v1 = α + ikv0k2, with α ∈ R to be chosen; then v = (v1, v0) ∈ @Hn, and we have

∞(v1, v) =
°
t2[α + ikv0k2 + a1 + 2i(v0, a0)], v0

¢
.

Now, ∞ ∈ Aut(Hn); hence ∞(v) ∈ @Hn and

Im
£
t2

°
α + ikv0k2 + a1 + 2i(v0, a0)

¢§
= kv0k2 = Im v1.

On the other hand,

Re
£
t2

°
α + ikv0k2 + a1 + 2i(v0, a0)

¢§
= t2α + t2 Re

°
a1 + 2i(v0, a0)

¢
;
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since t 6= 1, we can choose α ∈ R so that

t2α + t2 Re
°
a1 + 2i(v0, a0)

¢
= α,

and thus ∞(v) = v, contradiction.
It remains to show that an automorphism of the form (2.2.8) has a fixed point

different from 1 iff the equation (In−1 − U 0)w0 = a0 has a solution w0 ∈ Cn−1 such
that Re a1 = 2 Im(w0, a0). Indeed, ha(w1, U 0w0) = (w1, w0) iff

Ω
w0 = U 0w0 + a0,
a1 + 2i(U 0w0, a0) = 0.

Recalling that ka0k2 = Im a1, if we plug the first equation in the second one we find that
ha(w1, U 0w0) = (w1, w0) iff

Ω
w0 = U 0w0 + a0,
Re a1 = 2 Im(w0, a0),

q.e.d.

Proposition 2.2.11: Let ∞ ∈ Aut(Hn). Then 0 and 1 are the only fixed points of ∞ iff

∀w ∈ Hn ∞(w) = δt(w1, U
0w0) (2.2.9)

for some U 0 ∈ U(n− 1) and t > 0, with t 6= 1.

Proof: This time it is obvious that every ∞ of the form (2.2.9) fixes only 0 and 1 iff t 6= 1.
For the converse, write ∞ = δt ◦ha ◦µU , and assume 0 and 1 are the only fixed points of ∞.
Since both δt and ha have 1 as fixed point, it follows as before that µU (w) = (w1, U 0w0)
for a suitable U 0 ∈ U(n−1). Finally, since both δt and µU have 0 as fixed point, it follows
that a = 0, q.e.d.

2.2.2 Schwarz’s lemma and horospheres

We start this section by introducing our staunch fellow, Schwarz’s lemma, in its grown-up
version:

Theorem 2.2.12: Let f :Bn → Bn be holomorphic and such that f(0) = 0. Then

∀z ∈ Bn kf(z)k ≤ kzk, (2.2.10)

and

∀v ∈ Cn kdf0(v)k ≤ kvk. (2.2.11)

Proof: Fix x, y ∈ @Bn and define ϕ:∆ → ∆ by ϕ(≥) =
°
f(≥x), y

¢
. Then the one variable

Schwarz lemma yields |ϕ0(0)| ≤ 1 and |ϕ(≥)| ≤ |≥| for all ≥ ∈ ∆. Since x is an arbitrary
element of @Bn this implies ØØ°df0(v), y

¢ØØ ≤ kvk
for all v ∈ Cn and ØØ°f(z), y

¢ØØ ≤ kzk
for all z ∈ Bn. Since also y is an arbitrary element of @Bn, the assertion follows, q.e.d.
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It should be emphasized that the equality at one point in (2.2.10) or in (2.2.11) do
not imply either the linearity of f or its invertibility (this is the reason we could not use
Schwarz’s lemma in the computation of the automorphism group of Bn). For instance,
define f :B2 → B2 by

f(z, w) = (z + 1
2w2, 0).

Then f(z, 0) = (z, 0) for all z ∈ ∆ and df0(∏, 0) = (∏, 0) for all ∏ ∈ C, but f is not linear,
and not even surjective or injective. The problem is similar to the one we discussed talking
about holomorphic retractions in the previous chapter: the behavior along a direction
cannot (at least not very strongly) control the behavior along orthogonal directions, and
so there are many new possibilities. Anyway, as for holomorphic retractions the image was
not exceedingly wild, so also in our case we have some sort of regularity:

Lemma 2.2.13: Let f ∈ Hol(Bn, Bn) be such that f(0) = 0, and take z ∈ Bn, z 6= 0.
Then
(i) kf(z)k = kzk iff kdf0(z)k = kzk;
(ii) f(z) = z iff df0(z) = z.

Proof: Let z0 ∈ Bn, z0 6= 0, be such that kf(z0)k = kz0k. Take U ∈ U(n) so that
Uf(z0) = z0, set x0 = z0/kz0k, and define ϕ ∈ Hol(∆,∆) by

ϕ(≥) =
°
Uf(≥x0), x0

¢
. (2.2.12)

Then ϕ(kz0k) = kz0k; by the classical Schwarz lemma, ϕ = id∆ and, in particular,
ϕ0(0) = 1. Then

kz0k2 =
°
Udf0(z0), z0

¢
≤ kUdf0(z0)k · kz0k ≤ kz0k2

by (2.2.11), and this is possible iff Udf0(z0) = z0, that is iff kdf0(z0)k = kz0k. In particular,
if f(z0) = z0 we can take U = In and thus infer df0(z0) = z0.

Conversely, assume kdf0(z0)k = kz0k. Again, take U ∈ U(n) so that Udf0(z0) = z0

— with U = In in case (ii) —, set x0 = z0/kz0k and define ϕ ∈ Hol(∆,∆) as in (2.2.12).
Then ϕ0(0) = 1 and, again by Schwarz’s lemma, ϕ = id∆. Therefore ϕ(kz0k) = kz0k, and

kz0k2 =
°
Uf0(z0), z0

¢
≤ kUf0(z0)k · kz0k ≤ kz0k2

by (2.2.10), and again this is possible iff Uf(z0) = z0, q.e.d.

Proposition 2.2.14: Let f ∈ Hol(Bn, Bn) be such that f(0) = 0. Assume kf(z0)k = kz0k
for some z0 ∈ Bn with z0 6= 0 — or kdf0(v0)k = kv0k for some v0 ∈ Cn with v0 6= 0.
Then there is a linear subspace V of Cn containing z0 — respectively v0 — such that
f |V ∩Bn = df0|V ∩Bn is the restriction of a suitable U ∈ U(n).

Proof: By Lemma 2.2.13, the set of z ∈ Bn such that kf(z)k = kzk coincides with the set
of z ∈ Bn such that kdf0(z)k = kzk. Set

V = {v ∈ Cn | kdf0(v)k = kvk}.
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If ≥ ∈ C and v1, v2 ∈ V we have

k≥v1 + v2k2 = |≥|2kv1k2 + kv2k2 + 2Re(≥v1, v2),

kdf0(≥v1 + v2)k2 = |≥|2kv1k2 + kv2k2 + 2Re
°
df0(≥v1), df0(v2)

¢
.

Since, by (2.2.11), kdf0(≥v1 + v2)k ≤ k≥v1 + v2k, it follows that

∀≥ ∈ C Re
£
≥
°
df0(v1), df0(v2)

¢§
≤ Re[≥(v1, v2)],

which is possible iff
°
df0(v1), df0(v2)

¢
= (v1, v2). In particular,

∀v1, v2 ∈ V kdf0(v1 + v2)k = kv1 + v2k.

So V is a linear subspace of Cn, and df0|V :V → df0(V ) is an isometry. Therefore there
is U ∈ U(n) such that df0|V = U |V , and it remains to show that f |V ∩Bn = df0|V ∩Bn .

Take z0 ∈ V ∩Bn. Then, setting g = f − df0, for every ≥ ∈ ∆ we have

|≥|2kz0k2 = kf(≥z0)k2 = |≥|2kz0k2 + 2Re
°
g(≥z0), df0(≥z0)

¢
+ kg(≥z0)k2. (2.2.13)

Therefore ≥ 7→ Re
°
g(≥z0), df0(≥z0)

¢
is a non-positive harmonic function in ∆ vanishing

at 0; so it is identically zero and, by (2.2.13), f(z0) = df0(z0), q.e.d.

So the equality in (2.2.10) or in (2.2.11) implies at least a partial linearity of f ; it is
better than nothing.

Another consequence of Lemma 2.2.13 is the description of the fixed point sets of
holomorphic maps f :Bn → Bn, and thus of the holomorphic retracts of Bn:

Corollary 2.2.15: Let f ∈ Hol(Bn, Bn). Then the fixed point set of f is either empty or
an affine subset of Bn.

Proof: This follows from Lemma 2.2.13, Lemma 2.2.6 and Corollary 2.2.2, q.e.d.

Corollary 2.2.16: The holomorphic retracts of Bn are exactly the affine subsets of Bn.

Proof: One direction is Corollary 2.2.15. Conversely, by Lemma 2.2.6 every affine subset
of Bn is, up to an automorphism, the image of Bn under an orthogonal projection of Cn

onto a linear subspace, q.e.d.

In particular, then, every fixed point set in Bn is a holomorphic retract; in chapter 2.5
we shall generalize this fact to bounded convex domains.

Now, come back to Schwarz’s lemma. First of all, using Aut(Bn) we can get an
invariant version of Theorem 2.2.12:
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Proposition 2.2.17: Let f ∈ Hol(Bn, Bn). Then for every z, w ∈ Bn we have

ØØ1−
°
f(z), f(w)

¢ØØ2

(1− kf(z)k2)(1− kf(w)k2) ≤
|1− (z, w)|2

(1− kzk2)(1− kwk2) , (2.2.14)

and for every z ∈ Bn and v ∈ Cn we have

1
(1− kf(z)k2)2

hØØ°dfz(v), f(z)
¢ØØ2 + (1− kf(z)k2)kdfz(v)k2

i

≤ 1
(1− kzk2)2

£
|(v, z)|2 + (1− kzk2)kvk2

§
.

(2.2.15)

In particular, if f is an automorphism of Bn then both (2.2.14) and (2.2.15) are always
equalities.

Proof: (2.2.14) is just (2.2.10) applied to ∞f(w)◦f◦∞w and computed in ∞w(z). Analogously,
(2.2.15) is (2.2.11) applied to d(∞f(z) ◦ f ◦ ∞z)0 and computed in d(∞z)z(v), q.e.d.

Exactly as happened in section 1.1.1, (2.2.15) invites us to introduce a differential
metric and a distance on Bn.

Let ds2 denote the euclidean differential metric at 0. Then the Bergmann metric d∑2

on Bn is given setting d∑2
0 = ds2 and, for all a ∈ Bn and u, v ∈ Cn

d∑2
a(u, v) =

£
(∞a)∗ds2

§
(u, v) =

1
(1− kak2)2

£
(u, a)(a, v) + (1− kak2)(u, v)

§
, (2.2.16)

where we are identifying the tangent space of Bn at a with Cn. The distance kBn associated
to d∑2 is the Bergmann distance on Bn. Using these definitions, Proposition 2.2.17 becomes

Corollary 2.2.18: Let f ∈ Hol(Bn, Bn). Then

∀z, w ∈ Bn kBn

°
f(z), f(w)

¢
≤ kBn(z, w), (2.2.17)

and

∀z ∈ Bn, ∀v ∈ Cn d∑f(z)

°
dfz(v)

¢
≤ d∑z(v). (2.2.18)

In particular, every automorphism of Bn is an isometry of the Bergmann metric.

Proof: (2.2.18) is just (2.2.15) in this fancier language, and (2.2.17) is an immediate con-
sequence, q.e.d.
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The Bergmann metric is the natural generalization of the Poincaré metric on ∆.
Indeed, it is easy to check that the restriction of the Bergmann metric to the intersection
of Bn with any one-dimensional linear subspace of Cn is exactly the Poincaré metric (1.1.7).
It should be remarked that, by Corollary 2.2.18 and Lemma 2.2.6, this is still true if we
consider the restriction of the Bergmann metric to any one-dimensional affine subset of Bn.

Arguing as in the proof of Lemma 1.1.5 it is easy to see that the radii t 7→ tx
for x ∈ @Bn are geodesics for the Bergmann metric. In particular,

∀z ∈ Bn kBn(0, z) = 1
2 log

1 + kzk
1− kzk . (2.2.19)

To visualize a bit the Bergmann metric, we shall now describe the open Bergmann
balls Bk(z0, R), that is the open balls for kBn of center z0 ∈ Bn and radius R > 0. Clearly,

Bk(z0, R) = ∞z0

°
Bk(0, R)

¢
.

Now, (2.2.19) shows that Bk(0, R) is the euclidean open ball B(0, tanhR) of center 0 and
radius tanhR. Therefore the Bergmann ball Bk(z0, R) is given by

Bk(z0, R) =
Ω

z ∈ Cn

ØØØØ
kPz0(z)− ak2

r2ρ2
+
kQz0(z)k2

r2ρ
< 1

æ
, (2.2.20)

where r = tanhR,

a =
1− r2

1− r2kz0k2
z0,

and

ρ =
1− kz0k2

1− r2kz0k2
.

Hence Bk(z0, R) is an ellipsoid; its intersection with the subspace Cz0 generated by z0

is a disk of radius ρr, which is of order R(1 − kz0k2) when R is small. On the other
hand, its intersection with the subspace orthogonal to Cz0 is a ball of the much larger
radius √ρr, which is roughly R(1 − kz0k2)1/2 when R is small. Note furthermore that,
being every Bk(z0, R) strictly contained in Bn, the Bergmann metric is complete.

Now we are ready to introduce in this setting one of the most useful tools we used in
the one-variable theory. In analogy with the definition in the disk, the horosphere E(x,R)
of center x ∈ @Bn and radius R > 0 is

E(x,R) =
Ω

z ∈ Bn

ØØØØ
|1− (z, x)|2

1− kzk2 < R

æ
. (2.2.21)

An easy computation shows that E(x,R) is the ellipsoid

E(x,R) =
Ω

z ∈ Cn

ØØØØ
kPx(z)− ak2

r2
+
kQx(z)k2

r
< 1

æ
, (2.2.22)
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where r = R/(1 + R) < 1 and a = (1− r)x. In particular,

∀x ∈ @Bn ∀R > 0 E(x,R) ∩ @Bn = {x} (2.2.23)

and given any two distinct points x, y ∈ @Bn it is always possible to find R0 > 0 so small
that

E(x,R0) ∩E(y,R0) = /∞, (2.2.24)

and so that E(x,R0) ∩E(y,R0) contains exactly one point.
The horospheres are intended as a natural generalization of the horocycles; so they

must enjoy the main properties of the horocycles. First of all, they are limit of Bergmann
balls, exactly as in the disk:

Proposition 2.2.19: Let B∫ = Bk(z∫ , R∫) be a sequence of Bergmann balls such that
z∫ → x ∈ @Bn and

1− kz∫k
1− r∫

→ R 6= 0, 1, (2.2.25)

where r∫ = tanhR∫ . Then
(i) if z ∈ B∫ for infinitely many ∫ then z ∈ E(x,R);
(ii) if z ∈ E(x,R) then z ∈ B∫ for all sufficiently large ∫.

Proof: We observe that z ∈ B∫ iff ∞z∫ (z) ∈ Bk(0, R∫) iff, by (2.2.3),

|1− (z, z∫)|2
1− kzk2 <

1− kz∫k2
1− r2

∫

=
1 + kz∫k
1 + r∫

1− kz∫k
1− r∫

.

Then (i) and (ii) follow taking the limit as ∫ → +1 and using (2.2.25), q.e.d.

Proposition 2.2.20: Let x ∈ @Bn and R > 0. Then

E(x,R) =
n
z ∈ Bn

ØØØ lim
w→x

£
kBn(z, w)− kBn(0, w)

§
< 1

2 log R
o
. (2.2.26)

Proof: We have, using (2.2.19)

kBn(z, w)− kBn(0, w) = kBn

°
0, ∞z(w)

¢
− kBn(0, w)

= 1
2 log

µ
1 + k∞z(w)k

1 + kwk · 1− kwk
1− k∞z(w)k

∂
,

and the assertion follows from (2.2.3), q.e.d.

Clearly, horospheres are sent into horospheres by automorphisms of Bn. Indeed,
take ∞ ∈ Aut(Bn), x ∈ @Bn and R > 0. Set z0 = ∞−1(0) and α = (1−kz0k2)/|1−(z0, x)|2.
Then using (2.2.4) it is easy to see that ∞

°
E(x,R)

¢
= E

°
∞(x),αR

¢
.

The two main properties of horocycles were Julia’s lemma and Wolff’s lemma. Our
horospheres should deserve their name only if they enjoy a multidimensional version of
these results. This is indeed the case, for we have a Julia’s lemma:
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Theorem 2.2.21: Let f :Bn → Bn be a holomorphic map and take x ∈ @Bn such that

lim inf
z→x

1− kf(z)k
1− kzk = α < +1.

Then there exists a unique y ∈ @Bn such that for every z ∈ Bn

ØØ1−
°
f(z), y

¢ØØ2

1− kf(z)k2 ≤ α
|1− (z, x)|2

1− kzk2 , (2.2.27)

that is

∀R > 0 f
°
E(x,R)

¢
⊂ E(y,αR). (2.2.28)

Proof: Choose a sequence {z∫} ⊂ Bn converging to x such that

lim
∫→1

1− kf(z∫)k
1− kz∫k

= α.

Up to a subsequence, we can assume that f(z∫) → y ∈ @Bn as ∫ → +1. Then, by
Proposition 2.2.17 for every z ∈ Bn and ∫ ∈ N we have

ØØ1−
°
f(z), f(z∫)

¢ØØ2

1− kf(z)k2 ≤ |1− (z, z∫)|2
1− kzk2 · 1 + kf(z∫)k

1 + kz∫k
· 1− kf(z∫)k

1− kz∫k
,

and (2.2.27) follows letting ∫ → +1. Finally, if (2.2.28) holds for two distinct bound-
ary points y1, y2 ∈ @Bn, then we get a contradiction taking R > 0 so small that
E(y1,αR) ∩E(y2,αR) = /∞, as in (2.2.24), q.e.d.

And even a Wolff’s lemma:

Theorem 2.2.22: Let f :Bn → Bn be a holomorphic map without fixed points. Then
there is a unique x ∈ @Bn such that for every z ∈ Bn

ØØ1−
°
f(z), x

¢ØØ2

1− kf(z)k2 ≤ |1− (z, x)|2
1− kzk2 , (2.2.29)

that is

∀R > 0 f
°
E(x,R)

¢
⊂ E(x,R). (2.2.30)

Proof: Choose a sequence {r∫} ⊂ (0, 1) increasing to 1, and set f∫ = r∫f . Clearly,
f∫(Bn) is relatively compact in Bn, and hence, by Corollary 2.1.32, every f∫ has a fixed
point w∫ ∈ Bn. Up to a subsequence, we can assume w∫ → x ∈ Bn as ∫ → +1. Exactly as
in the proof of the one-dimensional Wolff lemma we see that x ∈ Bn would imply f(x) = x,
impossible; hence x ∈ @Bn.

Now (2.2.14) says that for all z ∈ Bn and ∫ ∈ N
ØØ1−

°
f∫(z), w∫

¢ØØ2

1− kf∫(z)k2 ≤ |1− (z, w∫)|2
1− kzk2 ,

and (2.2.29) follows taking the limit as ∫ → +1.
Assume, by contradiction, there is another point x0 ∈ @Bn such that (2.2.30) holds.

Choose R and R0 so that the ellipsoids E(x,R) and E(x0, R0) are tangent to each other at
the point z ∈ Bn. Then (2.2.30) would imply f(z) = z, impossible, q.e.d.
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As we saw in chapter 1.2, Julia’s lemma will be used to study angular derivatives,
while Wolff’s lemma will become the cornerstone of iteration theory. But before probing
these questions, we should fit to our needs yet another tool.

2.2.3 Korányi regions and the Lindelöf theorem

When in chapter 1.2 we studied the boundary behavior of holomorphic functions in ∆,
the natural notion of limit was the non-tangential limit, as naturally expected. In 1967,
Korányi and Stein (see Korányi and Stein [1968] and Korányi [1969]) made the amazing
discovery that in several variables the non-tangential limit can be replaced by a broader
notion: the approach regions may be tangent to the boundary along the complex tangential
directions. In this section we shall introduce Korányi’s approach regions; however, we
shall not spend too much time describing the limit considered by Korányi (a longer and
quite better exposition is Rudin [1980]), because the main goal of this section, the several
variables version of Lindelöf’s Theorem 1.3.23, involves another kind of limit, slightly
weaker than Korányi’s.

But let’s be concrete. In section 1.2.1 we studied non-tangential limits using the Stolz
regions K∆(τ,M) (we placed the exponent ∆ to distinguish them from the Korányi regions
in Bn to be introduced momentarily) defined in (1.2.16). Their natural generalization in Bn

are the Korányi regions K(x,M) of vertex x ∈ @Bn and amplitude M > 0 given by

K(x,M) =
Ω

z ∈ Bn

ØØØØ
|1− (z, x)|

1− kzk < M

æ
. (2.2.31)

K(x,M) is empty if M ≤ 1; on the other hand, for any x ∈ @Bn the regions K(x,M)
fill Bn as M approaches +1.

We now introduce the limit considered by Korányi. Let f :Bn → C be a function.
We shall say that f has K-limit (or admissible limit) ∏ at x ∈ @Bn (possibly ∏ = 1) if
f(z) → ∏ as z → x within K(x,M) for any M > 1. If n = 1 we saw that this is exactly
the non-tangential limit; to understand its meaning in the present context, let us examine
more closely the shape of Korányi regions.

First of all, note that every U ∈ U(n) permutes the Korányi regions: in fact,
U

°
K(x,M)

¢
= K(Ux,M).

So to sketch K(x,M) we can assume without loss of generality x = (1, 0, . . . , 0) = e1.
Then the intersection of K(e1,M) with the complex subspace generated by e1 is

K∆(1,M) =
Ω

z1 ∈ ∆
ØØØØ
|1− z1|
1− |z1|

< M

æ
,

that is the usual Stolz region in ∆. On the other hand, the intersection with the copy
of R2n−1 obtained by setting Im z1 = 0 contains the ball

µ
Re z1 −

1
M

∂2

+ kz0k2 <

µ
1− 1

M

∂2

,

where z0 = (z2, . . . , zn), as usual, which is tangent to @Bn in e1.
In chapter 2.7 we shall need a more precise description of the tangential shape of the

Korányi regions:
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Lemma 2.2.23: Let x ∈ @Bn; for every M > 1 and ≥ ∈ K∆(1,M) set

δM (≥) = inf{kvk | (v, x) = 0 and ≥x + v ∈ @K(x,M)};

δM (≥) is the radius of the largest (n− 1)-dimensional ball centered at ≥x contained in the
affine (n−1)-dimensional subset of Bn passing through ≥x and parallel to TC

x (@Bn). Then
for any 1 < M < M1 and all ≥ ∈ K∆(1,M) we have

µ
1− M

M1

∂
(1− |≥|)1/2 ≤ δM1(≥) ≤

√
2(1− |≥|)1/2.

Proof: Let v ∈ Cn be any vector orthogonal to x; then ≥x + v ∈ @K(x,M1) iff

|1− ≥| = M1

°
1− (|≥|2 + kvk2)1/2

¢
.

Therefore

δM1(≥)2 =
µ

1− |1− ≥|
M1

∂2

− |≥|2.

In particular,
δM1(≥)2 ≤ 1− |≥|2 ≤ 2(1− |≥|).

On the other hand, ≥ ∈ K∆(1,M) means |1− ≥| < M(1− |≥|); hence

δM1(≥)2 ≥
µ

1− M

M1
(1− |≥|)

∂2

− |≥|2

=
µ

1− M

M1

∂
(1− |≥|)

∑
1− M

M1
+

µ
1 +

M

M1

∂
|≥|

∏

≥
µ

1− M

M1

∂2

(1− |≥|),

q.e.d.

So the Korányi regions are tangent to @Bn along the complex tangential directions.
In particular, a function having K-limit always has non-tangential limit; in K-limits,
the approach is restricted to be non-tangential only in the radial direction. However, as
mentioned before, we shall need a slightly different notion of limit, still generalizing non-
tangential limit, and so we refer to Rudin [1980] for a more complete discussion of K-limits
in Bn.

Our next goal is a several variables version of Lindelöf’s Theorem 1.3.23. The classical
statement in ∆ says that, for a bounded holomorphic function, the limit along a curve
ending at a boundary point determines the behavior along any curve ending at the same
boundary point, and in particular determines the non-tangential limit. In Bn this is not
anymore true. Take, for instance, f ∈ Hol(B2,∆) given by

f(z, w) =
w2

1− z2
. (2.2.32)
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Then for every ∏ ∈ ∆ and t ∈ (0, 1) we have

f(t,∏
p

1− t2) = ∏2,

and so the limit of f along the curve σ∏(t) = (t,∏
√

1− t2) ending at (1, 0) depends on the
parameter ∏. Note, furthermore, that f has no K-limit at (1, 0), because for every t ∈ (0, 1)
and ∏ ∈ ∆ we have σ∏(t) ∈ K

°
(1, 0), 2/(1− |∏|2)

¢
.

The idea is that to extend Lindelöf’s theorem to Bn we need some kind of restriction
on the curves we want to consider. To describe the precise statement, we introduce some
definitions.

For x ∈ @Bn, a x-curve is a curve σ: [0, 1) → Bn such that σ(t) → x as t → 1. To every
x-curve we associate its orthogonal projection σx = (σ, x)x into Cx. Then (σ − σx) ⊥ σx,
so that

kσk2 = kσ − σxk2 + kσxk2,

and hence
kσ − σxk2
1− kσxk2

< 1,

because kσk2 < 1.
A x-curve is special if

lim
t→1

kσ(t)− σx(t)k2
1− kσx(t)k2 = 0, (2.2.33)

and restricted if it is special and moreover there is A < 1 such that for all t ∈ [0, 1)

kσx(t)− xk
1− kσx(t)k ≤ A. (2.2.34)

In other words, a special curve σ is restricted iff its projection σx is nontangential. Note
that a restricted x-curve can be tangent to @Bn at x: take for instance n = 2, x = (1, 0)
and

σ(t) =
°
t(2− t), (1− t)3/2

¢
. (2.2.35)

Let f :Bn → C be any function, and x ∈ @Bn. We shall say that f has restricted K-
limit (or hypoadmissible limit) ∏ at x if f

°
σ(t)

¢
→ ∏ as t → 1 for any restricted x-curve σ.

As promised, this is an intermediate notion between non-tangential limit and K-limit, as
shown in

Lemma 2.2.24: Let σ: [0, 1) → Bn be a x-curve, where x ∈ @Bn. Then
(i) if σ is non-tangential, then it is restricted;
(ii) assume σ is special. If σ satisfies (2.2.34) then it lies eventually in K(x,M) for
all M > A. Conversely, if σ lies in K(x,M) then it satisfies (2.2.34) with A = M .

Proof: (i) We recall that a x-curve σ is non-tangential iff there is C ≥ 1 such that

∀t ∈ [0, 1)
kσ(t)− xk

1−Re
°
σ(t), x

¢ ≤ C < +1. (2.2.36)
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Now note that for every curve σ we have
∀t ∈ [0, 1) kσ(t)− σx(t)k ≤ kσ(t)− xk

and
∀t ∈ [0, 1) kσx(t)− xk ≤ kσ(t)− xk. (2.2.37)

Therefore if σ satisfies (2.2.36) we find
∀t ∈ [0, 1)

ØØIm
°
σ(t), x

¢ØØ ≤ (C − 1)1/2
£
1−Re

°
σ(t), x

¢§
.

It follows that since Re
°
σ(t), x

¢
→ 1 as t → 1, for every δ < 1 we eventually have

1− kσxk ≥
1− kσxk2

2
≥ 1

2
£
1−Re(σ, x)

§ £
2− C

°
1−Re(σ, x)

¢§

≥ δ
°
1−Re(σ, x)

¢
.

In conclusion, we eventually have
kσ − σxk2
1− kσxk2

=
kσ − σxk2
kσ − xk2 · kσ − xk

1− kσxk
· kσ − xk
1 + kσxk

≤ C

δ
kσ − xk → 0,

and so every non-tangential curve is special and, by (2.2.37), restricted.
(ii) Assume σ satisfies (2.2.34). Then

|1− (σ, x)| = kσx − xk ≤ A(1− kσxk),
and thus

|1− (σ, x)|
1− kσk ≤ A

µ
1− kσ − σxk2

1− kσxk2

∂−1

· 1 + kσk
1 + kσxk

. (2.2.38)

Since σ is special, the right-hand side of (2.2.38) tends to A as t → 1; therefore σ lies
eventually in K(x,M) for all M > A.

Conversely, assume σ lies in K(x,M). Then

kσx − xk = |1− (σ, x)| ≤ M(1− kσk) ≤ M(1− kσxk),
and the assertion follows, q.e.d.

So a function having K-limit has restricted K-limit, and a function having restricted
K-limit has non-tangential limit. The function f ∈ Hol(B2,∆) given in (2.2.32) is an
example of a bounded holomorphic function having restricted K-limit but no K-limit. On
the other hand, the function g:B2 → C given by

g(z, w) =
°
|1− z|2 + |w|2

¢2/3

1−Re z

has non-tangential limit 0 at (1, 0), whereas the curve σ given in (2.2.35) is a restricted
(1, 0)-curve such that g

°
σ(t)

¢
→ 1.

The choice of a non-holomorphic (though real analytic) function for the latter coun-
terexample is not casual. In fact, the Lindelöf theorem we shall present in a moment states
that for a bounded holomorphic function f :Bn → C the existence of the limit along a spe-
cial x-curve implies that f has restricted K-limit at x; in particular, for bounded (and not
only bounded, as we shall see) holomorphic functions the non-tangential limit implies the
restricted K-limit. This is the content of Čirka’s theorem:
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Theorem 2.2.25: Let f ∈ Hol(Bn,C) be a bounded holomorphic function such that
there are x ∈ @Bn and a special x-curve σo: [0, 1) → Bn such that

lim
t→1

f
°
σo(t)

¢
= ∏ ∈ C.

Then f has restricted K-limit ∏ at x.

Proof: Clearly we can assume f(Bn) ⊂ ∆. Let σ be any special x-curve; we claim that

lim
t→1

£
f
°
σ(t)

¢
− f

°
σx(t)

¢§
= 0. (2.2.39)

Take ≥ ∈ C; then (1− ≥)σx(t) + ≥σ(t) ∈ Bn iff

|≥|2 <
1− kσx(t)k2
kσ(t)− σx(t)k2 .

Fix R > 1, set ∆R = {≥ ∈ C | |≥| < R}, and define ϕt,R:∆R → ∆ by

ϕt,R(≥) = f
°
(1− ≥)σx(t) + ≥σ(t)

¢
;

since σ is special, for every R > 1 the function ϕt,R is defined as soon as t is close enough
to 1. Then Schwarz’s lemma applied to ϕt,R − ϕt,R(0) yields

lim sup
t→1

ØØf
°
σ(t)

¢
− f

°
σx(t)

¢ØØ ≤ 2/R,

and (2.2.39) follows, for R is arbitrary.
In particular, (2.2.39) implies that f

°
σo

x(t)
¢
→ ∏ as t → 1. But then the classical

Lindelöf Theorem 1.3.23 implies that f |Cx∩Bn has non-tangential limit ∏ at x; so, if σ is
any restricted x-curve, f

°
σx(t)

¢
→ ∏ as t → 1. Hence another application of (2.2.39)

implies that f
°
σ(t)

¢
→ ∏ as t → 1, and we are done, q.e.d.

So for bounded holomorphic functions, non-tangential limit, restricted K-limit and
limit along a special curve are one and the same thing. This in an instance of the so-called
Lindelöf principle: for bounded holomorphic functions, the existence of the limit along
one curve forces the existence of the limit along quite larger sets. We shall discuss other
examples of Lindelöf’s principles in chapter 2.7; for the moment we limit ourselves to the
following result, a Lindelöf principle for not necessarily bounded holomorphic functions:

Proposition 2.2.26: Let f ∈ Hol(Bn,C) and x ∈ @Bn be such that f is bounded in
every region K(x,M). Suppose furthermore that there is a restricted x-curve σo such that

lim
t→1

f
°
σo(t)

¢
= ∏ ∈ C.

Then f has restricted K-limit ∏ at x.

Proof: Arguing as in the proof of Theorem 2.2.25 we see that (by Lemma 2.2.24.(ii) and
Theorem 1.1.28) it suffices to prove that for every restricted x-curve σ we have

lim
t→1

£
f
°
σ(t)

¢
− f(σx(t)

¢§
= 0. (2.2.40)
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Since σ is restricted, there is M > 1 such that σ(t) ∈ K(x,M) eventually (Lemma 2.2.24).
Choose M1 > 2M , and take ∏ ∈ C. Then (1− ∏)σx(t) + ∏σ(t) ∈ K(x,M1) whenever

|∏|2 <
1− kσxk2
kσ − σxk2

− 2
M1

|1− (σ, x)|
kσ − σxk2

.

If σ(t) ∈ K(x,M), then
ØØ1−

°
σ(t), x

¢ØØ < M(1−kσ(t)k); so (1−∏)σx(t)+∏σ(t) ∈ K(x,M1)
whenever

|∏|2 <
M1 − 2M

M1

1− kσx(t)k2
kσ(t)− σx(t)k2 .

Since f is bounded in K(x,M1) (and σ is special), we can now apply the same Schwarz’s
lemma trick used in the proof of Theorem 2.2.25 to get (2.2.40), and we are done, q.e.d.

2.2.4 Angular derivatives

The aim of this section is to prove a generalization of the Julia-Wolff-Carathéodory The-
orem 1.2.7 to Bn using Theorem 2.2.21. The main difference compared with the one-
dimensional case is that if f ∈ Hol(Bn, Bn) is such that f(z) → y ∈ Bn as z → x ∈ @Bn,
then the behavior of the radial component (f, y) of f is quite different from the behavior
of the tangential component f − (f, y)y of f , and even more so for the various components
of the differential of f .

The theorem we are driving at will be expressed in terms of restricted K-limits. The
idea is to use Proposition 2.2.26, but to find suitable restricted curves we shall need two
lemmas, specifying even more the shape of Korányi regions:

Lemma 2.2.27: Choose x ∈ @Bn and fix M > 1 and R > 0. Then:
(i) if r = (M2 − R)/(M2 + R) then every z ∈ K(x,M) such that kzk ≥ r is contained

in E(x,R);
(ii) if z ∈ E(x,R) then kzk ≥ (1−R)/(1 + R).

Proof: (i) If z ∈ K(x,M) and kzk ≥ r we have

|1− (z, x)|2
1− kzk2 =

|1− (z, x)|2
(1− kzk)2 · 1− kzk

1 + kzk < M2 · 1− r

1 + r
= R.

(ii) If z ∈ E(x,R) we have

R >
|1− (z, x)|2

1− kzk2 ≥ (1− kzk)2
1− kzk2 =

1− kzk
1 + kzk ,

and the assertion follows, q.e.d.



2.2.4 Angular derivatives 143

Lemma 2.2.28: Choose M1 > M > 1, and set

δ =
1
5

µ
1
M
− 1

M1

∂
·
µ

1− M

M1

∂
≤ 1

5
.

Let x ∈ @Bn, and take z ∈ K(x,M). Then
(i) If ∏ ∈ ∆ is such that |∏| ≤ δ|1− (z, x)| then z + ∏x ∈ K(x,M1);
(ii) If w ∈ Bn is such that (w, x) = 0 and kwk ≤ δ|1− (z, x)|1/2, then z + w ∈ K(x,M1).

Proof: First of all note that z ∈ K(x,M) implies |1− (z, x)| < M . It is then easy to check
that δ is chosen in such a way that for every z ∈ K(x,M)

∑
1− 1

M
|1− (z, x)|

∏2

+ 5δ|1− (z, x)| ≤
∑
1− 1

M1
|1− (z, x)|

∏2

.

For every z ∈ Bn set z0 = z − (z, x)x = Qx(z). Then z ∈ K(x,M) iff

kz0k2 <

∑
1− 1

M
|1− (z, x)|

∏2

− |(z, x)|2.

Now fix z ∈ K(x,M). If ∏ ∈ ∆ is such that |∏| ≤ δ|1− (z, x)| we have

kz0k2 <

∑
1− 1

M
|1− (z, x)|

∏2

− |(z, x)|2 ≤
∑
1− 1

M1
|1− (z, x)|

∏2

− 5|∏|− |(z, x)|2

≤
∑
1− 1

M1
|1− (z + ∏x, x)|

∏2

− |(z + ∏x, x)|2,

and (i) is proved. If w ∈ Bn is such that (w, x) = 0 and kwk ≤ δ|1− (z, x)|1/2, we have

kz0 + wk2 ≤ kz0k2 + 2kz0k kwk+ kwk2

≤
∑
1− 1

M
|1− (z, x)|

∏2

− |(z, x)|2 + (3δ + δ2)|1− (z, x)|

<

∑
1− 1

M1
|1− (z + w, x)|

∏2

− |(z + w, x)|2,

where we have used the fact that 2kz0k2 < 3|1− (z, x)|1/2 for all z ∈ Bn, and (ii) is proved,
q.e.d.

And now:
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Theorem 2.2.29: Let f ∈ Hol(Bn, Bn) and x ∈ @Bn be such that

lim inf
z→x

1− kf(z)k
1− kzk = α < 1.

Then f has K-limit y ∈ @Bn at x, and the following functions are bounded in every
Korányi region:

(i)
°
1− (f(z), y)

¢
/
°
1− (z, x)

¢
,

(ii) Qy

°
f(z)

¢
/
°
1− (z, x)

¢1/2
,

(iii)
°
dfzx, y

¢
,

(iv)
°
1− (z, x)

¢1/2
Qy(dfzx),

(v)
°
dfzx⊥, y

¢
/
°
1− (z, x)

¢1/2
,

(vi) Qy(dfzx⊥),
where x⊥ is any non-zero vector orthogonal to x, and Qy(z) = z− (z, y)y is the orthogonal
projection on the othogonal complement of Cy. Moreover, the functions (i) and (iii) have
restricted K-limit α at x, and the functions (ii), (iv) and (v) have restricted K-limit 0
at x.

Proof: We shall divide the proof in five steps.
Step (a): The behavior of f . Let y ∈ @Bn be given by Theorem 2.2.21; we claim

that f has K-limit y at x. Let {w∫} be a sequence contained in some K(x,M) converging
to x; we have to prove that f(w∫) → y. Fix r < 1, and let R ∈ (0, 1) be such that
(1−αR)/(1+αR) > r. Since w∫ → x, by Lemma 2.2.27.(i) we have w∫ ∈ E(x,R) for any ∫
large enough; therefore, by Theorem 2.2.21, f(w∫) ∈ E(y,αR) and, by Lemma 2.2.27.(ii),
kf(w∫)k > r for any ∫ large enough. In other words, we have proved that kf(w∫)k → 1
as ∫ → +1. This implies, by Theorem 2.2.21 and Lemma 2.2.27.(i), that every limit point
of {f(w∫)} is contained in

E(y,αR) ∩ @Bn = {y},

by (2.2.23), and so f has K-limit y at x, as claimed.
Step (b): Radial behavior. Our next aim is to prove that

lim
ξ→1

1−
°
f(ξx), y

¢

1− ξ
= α, (2.2.41)

and

lim
ξ→1

f(ξx)−
°
f(ξx), y

¢
y

(1− ξ)1/2
= 0, (2.2.42)

where ξ varies in (0, 1).
Put 1 − ξ = 2R/(1 + R). Then ξx ∈ @E(x,R) and, by Theorem 2.2.21, we have

f(ξx) ∈ E(y,αR), that is

αR ≥
ØØ1−

°
f(ξx), y

¢ØØ2

1− kf(ξx)k2 ≥ 1− kf(ξx)k
1 + kf(ξx)k .
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In particular,

1− kf(ξx)k ≤ 2αR

1 + αR
.

Hence
1− kf(ξx)k2

1− ξ2
≤ α

1 + R

1 + αR

1 + kf(ξx)k
1 + ξ

≤ α
1 + R

1 + αR

2
1 + ξ

. (2.2.43)

Since R → 0 as ξ → 1,

lim sup
ξ→1

1− kf(ξx)k2
1− ξ2

≤ α,

and so, by definition of α and by Step (a),

lim
ξ→1

1− kf(ξx)k2
1− ξ2

= α = lim
ξ→1

1− kf(ξx)k
1− ξ

. (2.2.44)

Now, by Theorem 2.2.21 and (2.2.43),

ØØ1−
°
f(ξx), y

¢ØØ2

(1− ξ)2
≤ α

1− kf(ξx)k2
1− ξ2

≤ α2 1 + R

1 + αR

2
1 + ξ

. (2.2.45)

Since 1− kf(ξx)k ≤ 1−
ØØ°f(ξx), y

¢ØØ ≤
ØØ1−

°
f(ξx), y

¢ØØ, (2.2.44) and (2.2.45) imply

lim
ξ→1

1−
ØØ°f(ξx), y

¢ØØ

1− ξ
= lim

ξ→1

ØØ1−
°
f(ξx), y

¢ØØ

1− ξ
= α. (2.2.46)

In particular, the ratio of the two numerators in (2.2.46) converges to 1 as ξ → 1. Now

ØØØØ
1− a

1− |a|

ØØØØ
2

= 1 +
2

|a| + Re a
·
ØØØØ

Im a

1− |a|

ØØØØ
2

for every a ∈ ∆ with Re a > 0; therefore we have

lim
ξ→1

1−
°
f(ξx), y

¢

1−
ØØ°f(ξx), y

¢ØØ = 1,

and (2.2.41) follows from (2.2.46).
Since

°
f(ξx), y

¢
→ 1 as ξ → 1, (2.2.41) is the same as

lim
ξ→1

1−
ØØ°f(ξx), y

¢ØØ2

1− ξ2
= α. (2.2.47)

Now (2.2.42) follows from (2.2.44) and (2.2.47) because

kfk2 = |(f, y)|2 + kf − (f, y)yk2. (2.2.48)
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Step (c): The functions (i) and (ii). Fix M > 1, and take z ∈ K(x,M). Put
R = M |1− (z, x)|. Then

|1− (z, x)|2 =
R

M
|1− (z, x)| < R(1− kzk) < R(1− kzk2),

that is z ∈ E(x,R). Then f(z) ∈ E(y,αR), by Theorem 2.2.21; in particular,
°
f(z), y

¢
be-

longs to the horocycle in ∆ of center 1 and radius αR. Now, the euclidean diameter of
this horocycle is 2αR/(1 + αR), and thus

ØØ1−
°
f(z), y

¢ØØ ≤ 2αR

1 + αR
< 2αR = 2αM |1− (z, x)|.

Therefore
°
1 − (f(z), y)

¢
/
°
1 − (z, x)

¢
is bounded in every Korányi region, and Proposi-

tion 2.2.26 and (2.2.41) imply that its restricted K-limit at x is α.
Finally, if we write kfk2 as in (2.2.48), f(z) ∈ E(x,αR) implies, by (2.2.22)

∞∞Qy

°
f(z)

¢∞∞2
< αR = αM |1− (z, x)|.

Therefore Qy

°
f(z)

¢
/
°
1− (z, x)

¢1/2 is bounded in every Korányi region, and again Propo-
sition 2.2.26 and (2.2.42) imply that its restricted K-limit at x is 0.

Step (d): The functions (iii) and (iv). This time we should deal with differentiation
in the direction x. Let 1 < M < M1, choose δ as in Lemma 2.2.28, take z ∈ K(x,M) and
put

r = r(z) = δ|1− (z, x)|. (2.2.49)

Then z + ∏x ∈ K(x,M1) for all ∏ ∈ C with |∏| ≤ r. By the Cauchy formula,

(dfzx, y) =
1

2πi

Z

|∏|=r

°
f(z + ∏x), y

¢

∏2
d∏. (2.2.50)

Replacing
°
f(z + ∏x), y

¢
by

°
f(z + ∏x), y

¢
− 1 (and the right-hand side of (2.2.50) is

unchanged), multiplying and dividing the integrand by (z+∏x, x)−1 and setting ∏ = reiθ,
we get

(dfzx, y) =
1
2π

πZ

−π

1−
°
f(z + reiθx), y

¢

1− (z + reiθx, x)
·
Ω

1− 1− (z, x)
reiθ

æ
dθ. (2.2.51)

The first factor in the integrand is bounded, by Step (c); the second one is at most 1+δ−1,
by (2.2.49). Therefore (dfzx, y) is bounded in every Korányi region.

When z = ξx in (2.2.51), the second factor in the integrand is 1 − δ−1e−iθ, and the
first factor converges boundedly to α as ξ → 1 (for ξ +r(ξx)eiθ tends to 1 non-tangentially
for every θ ∈ R). Therefore (dfξxx, y) → α as ξ → 1, by the dominated convergence
theorem, and again Proposition 2.2.26 shows that (dfzx, y) has restricted K-limit α at x.
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Another application of the Cauchy formula yields

Qy(dfzx) =
1
2π

πZ

−π

Qy

°
f(z + reiθx)

¢

°
1− (z + reiθx, x)

¢1/2
·
°
1− (z + reiθx, x)

¢1/2

reiθ
dθ.

Then exactly as before we find that
°
1 − (z, x)

¢1/2
Qy(dfzx) is bounded in every Korányi

region, and that its restricted K-limit at x is 0.
Step (e): The functions (v) and (vi). This time we should deal with differentiation

in the direction x⊥. Clearly, we can assume kx⊥k = 1. Let 1 < M < M1, choose δ as in
Lemma 2.2.28, take z ∈ K(x,M) and put

ρ = ρ(z) = δ|1− (z, x)|1/2. (2.2.52)

Then z + ∏x⊥ ∈ K(x,M1) for all ∏ ∈ C with |∏| ≤ ρ. An application of the Cauchy
formula as in Step (d) yields

°
dfzx⊥, y

¢

°
1− (z, x)

¢1/2
= −

°
1− (z, x)

¢1/2

ρ(z)
· 1
2π

πZ

−π

1−
°
f(z + ρeiθx⊥), y

¢

1− (z + ρeiθx⊥, x)
e−iθ dθ (2.2.53)

and

Qy(dfzx
⊥) =

°
1− (z, x)

¢1/2

ρ(z)
· 1
2π

πZ

−π

Qy

°
f(z + ρeiθx⊥)

¢

°
1− (z + ρeiθx⊥, x)

¢1/2
e−iθ dθ. (2.2.54)

The integrands are bounded, by Step (c) applied in K(x,M1). Hence (2.2.52) implies that
the left-hand sides of (2.2.53) and (2.2.54) are bounded in every Korányi region.

To finish, we have to prove that the left-hand side of (2.2.53) has radial limit 0 at x
(again by Proposition 2.2.26). Note that the curve σ(ξ) = ξx + ρ(ξx)eiθx⊥ is not special,
and thus a new argument is needed.

Let ϕ:Bn → ∆ be given by ϕ(z) =
°
f(z), y

¢
. Restricting the attention to the subspace

generated by x and x⊥ we can assume n = 2, x = (1, 0) and x⊥ = (0, 1). In particular,

(dfξxx⊥, y)
(1− ξ)1/2

=
@ϕ

@z2
(ξ, 0) · (1− ξ)−1/2.

We can expand ϕ in the form

ϕ(z1, z2) = √(z1) + 2z2(1− z1)1/2g(z1) +
1X

j=2

gj(z1)zj
2,

where
g(z1) =

1
2

@ϕ

@z2
(z1, 0) · (1− z1)−1/2.
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Then we have to show that g(ξ) → 0 as ξ → 1. Note that, by (2.2.41), √(ξ) → 1 as ξ → 1
in such a way that

°
1− √(ξ)

¢
/(1− ξ) → α. Set

h(z, w) = √(z) + w(1− z)1/2g(z);

since h is the arithmetic mean of the first two partial sums of the power series expansion
of ϕ, and |ϕ| < 1 on B2, we have |h| < 1 on B2.

Now choose ε > 0 and set c = α2/ε2. We wish to estimate

lim sup
ξ→1

ØØg
°
ξ + ic(1− ξ)

¢ØØ.

Set ≥ξ = ξ + ic(1 − ξ); it is easy to check that ≥ξ ∈ ∆ whenever 1 − ξ < 2/(1 + c2).
Furthermore,

1− |≥ξ|2 > 1− ξ

if 1− ξ < 1/(1 + c2). Hence if ξ is sufficiently close to 1 we can find ηξ ∈ C such that

1− |≥ξ|2 > |ηξ|2 > 1− ξ (2.2.55)

and
ηξ(1− ≥ξ)1/2g(≥ξ) ∈ R. (2.2.56)

Now (2.2.55) implies in particular that (≥ξ, ηξ) ∈ B2 as soon as 1− ξ < 1/(1+ c2). By
definition,

|1− ≥ξ| = (1− ξ)
p

1 + c2 ≥ c(1− ξ);

hence (2.2.55) yields, by (2.2.56),

Re[ηξ(1− ≥ξ)1/2g(≥ξ)] ≥ c1/2(1− ξ)|g(≥ξ)|. (2.2.57)

Now ≥ξ ∈ K∆(1, 2
√

1 + c2) if 1− ξ < 1/(1 + c2); hence

1− √(≥ξ)
1− ≥ξ

= α + o(1)

as ξ → 1, that is
√(≥ξ) = 1−

°
α + o(1)

¢
(1− ic)(1− ξ). (2.2.58)

Putting together (2.2.56), (2.2.57) and (2.2.58) we get

1 ≥ Reh(≥ξ, ηξ) ≥ 1−
°
α + o(1)

¢
(1− ξ) + c1/2(1− ξ)|g(≥ξ)|,

that is
|g(≥ξ)| ≤

α + o(1)
c1/2

.

Therefore
lim sup

ξ→1

ØØg
°
ξ + ic(1− ξ)

¢ØØ ≤ αc−1/2 = ε.

Clearly the same estimate holds for ≥ 0ξ = ξ − ic(1− ξ). Since |g(≥)| is bounded in any
Stolz region, it follows that

lim sup
ξ→1

|g(ξ)| ≤ ε.

But ε > 0 is arbitrary; hence g(ξ) → 0 as ξ → 1, and the theorem is proved, q.e.d.
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We end this section with two examples showing that we cannot improve the statement
of Theorem 2.2.29; in other words, 1/2 is the best exponent, we cannot replace restricted
K-limits by K-limits, and the function (vi) may have no restricted K-limit at x.

Let √ ∈ Hol(∆,∆) be given by

√(≥) = exp
µ
−π

2
− i log(1− ≥)

∂
.

Note that
√0(≥) =

i

1− ≥
√(≥).

As ≥ → 1, √(≥) spirals around the origin without limit.
Define f ∈ Hol(B2, B2) by

f(z, w) =
°
z + 1

2w2√(z), 0
¢
.

Since f(z, 0) = (z, 0), the hypotheses of Theorem 2.2.29 are satisfied with x = y = (1, 0)
and α = 1. Now,

1−
°
f(z, w), y

¢

1− z
= 1− w2

2(1− z)
√(z),

°
df(z,w)x, y

¢
= 1 +

iw2

2(1− z)
√(z),

°
df(z,w)x

⊥, y
¢

(1− z)1/2
=

w

(1− z)1/2
√(z),

where x⊥ = (0, 1). Therefore the functions (i), (iii) and (v) have restricted K-limit at x
but they need not have K-limit at x (consider for instance the curve σ(t) =

°
t,∏
√

1− t2
¢
,

where ∏ ∈ ∆∗). Furthermore, the boundedness assertion made about (v) becomes false
replacing 1/2 by a larger exponent.

For the second example, define f ∈ Hol(B2, B2) by

f(z, w) =
°
z, w√(z)

¢
.

Again, the hypotheses of Theorem 2.2.29 are verified for x = y = (1, 0) and α = 1. Now,
taking x⊥ = (0, 1),

Qy

°
f(z, w)

¢

(1− z)1/2
=

w

(1− z)1/2
√(z)x⊥,

(1− z)1/2Qy(df(z,w)x) =
iw

(1− z)1/2
√(z)x⊥,

Qy(df(z,w) x⊥) = √(z)x⊥.

Therefore the functions (ii) and (iv) need not have K-limit at x, and (vi) need not even
have radial limit at x. Furthermore, the boundedness assertion made about (iv) becomes
false replacing 1/2 by a smaller exponent, and the one made about (ii) becomes false
replacing 1/2 by a larger exponent.
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2.2.5 Iteration theory and common fixed points in the ball

In this section we shall study iteration theory in Bn, using Wolff’s lemma and following
the guidelines provided by Theorem 2.1.29. We shall not be very detailed, because the
general theory for strongly convex domains we shall discuss in chapter 2.4 is very similar
to the one in the ball. The section will end with the generalization of Shields’ theorem to
the ball and the construction of a fixed point for any compact group of automorphisms
of Bn.

So take f ∈ Hol(Bn, Bn). The first step in the study of iterates is to decide whether
{fk} is compactly divergent. If f has a fixed point, clearly the sequence {fk} cannot be
compactly divergent. The interesting fact is that the converse is true too:

Proposition 2.2.30: Let f ∈ Hol(Bn, Bn). Then the sequence {fk} is not compactly
divergent iff f has a fixed point in Bn.

Proof: One direction is obvious. Conversely, assume that {fk} is not compactly divergent;
then, by Theorem 2.1.29, there is a subsequence {fk∫} converging toward a holomorphic
retraction ρ:Bn → M . Since f ◦ ρ = ρ ◦ f , f sends M into itself. If M is a point, the
proof is finished; otherwise, M is an affine subset of Bn (by Corollary 2.2.16), and thus
biholomorphic to Bm for some 0 < m ≤ n; since it suffices to show that f has a fixed
point in M , we can directly assume M = Bn. In particular, by Lemma 2.1.20 f is a
pseudoperiodic automorphism of Bn.

Assume, by contradiction, that f has no fixed points in Bn. Then using the Cayley
transform we can transfer everything to Hn and assume f is either of the form (2.2.8) or of
the form (2.2.9). But in both cases it is easy to check that fk(i, 0, . . . , 0) →1 as k → +1,
and so f cannot be pseudoperiodic, q.e.d.

So the main distinction is between maps with fixed points and maps without, exactly
as in the one-dimensional case. Again, Wolff’s lemma is the right tool to deal with the
fixed point free case:

Theorem 2.2.31: Let f ∈ Hol(Bn, Bn) be without fixed points. Then the sequence of
iterates of f converges to a point of @Bn.

Proof: By Proposition 2.2.30, the sequence {fk} is compactly divergent. Let x ∈ @Bn be
the point given by Theorem 2.2.22; if we show that x is the unique limit point of {fk} we
are done.

Let {fk∫} be a subsequence of {fk} converging to a holomorphic map h:Bn → Cn.
Since {fk} is compactly divergent, h(Bn) ⊂ @Bn. But then by Theorem 2.2.22

h
°
E(x,R)

¢
⊂ E(x,R) ∩ @Bn = {x}

for any R > 0, by (2.2.23). Therefore h ≡ x, and the assertion is proved, q.e.d.

Now let f ∈ Hol(Bn, Bn) have a fixed point z0 ∈ Bn; the idea is that in this case the
behavior of {fk} is completely described by the spectrum of dfz0 . Indeed
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Theorem 2.2.32: Let f ∈ Hol(Bn, Bn), and assume f has a fixed point z0 ∈ Bn. Then
the sequence of iterates {fk} converges iff sp(dfz0) ⊂ ∆ ∪ {1}.

Proof: Let ρ:Bn → M be the limit retraction of f . Clearly, z0 ∈ M , and sp(dρz0) ⊂ {0, 1}.
If the sequence {fk} converges, necessarily to ρ, and if ∏ ∈ sp(dfz0), then the sequence {∏k}
of powers of ∏ should converge to an eigenvalue of dρz0 , and hence ∏ ∈ ∆ ∪ {1}.

Conversely, assume sp(dfz0) ⊂ ∆ ∪ {1}, and let Cn = LN ⊕ LU be the dfz0-invariant
splitting of Cn ∼= Tz0B

n constructed in Theorem 2.1.21.(iv). Then dfz0 |LU = id and
(dfz0 |LN )k → 0 as k → +1; in particular, every limit point h of {fk} fixes z0 and is
such that dhz0 = dρz0 . Hence d(h|M )z0 = id and, by Theorem 2.1.21.(iii), h|M = idM .
Therefore Theorem 2.1.29 implies that ρ is the unique limit point of {fk}, q.e.d.

Summing up, we have proved that the sequence of iterates of a map f ∈ Hol(Bn, Bn)
converges iff either f has no fixed points or f has a fixed point z0 ∈ Bn such that
sp(dfz0) ⊂ ∆ ∪ {1}. In chapter 2.4 we shall show how to extend this result to strongly
convex domains; for the moment, we prefer spending our time describing the set of limit
points of the sequence of iterates when it does not converge.

Take f ∈ Hol(Bn, Bn) with a fixed point z0 ∈ Bn; then the idea is that the limit
points of {fk} are completely determined by sp(dfz0) ∩ @∆:

Proposition 2.2.33: Take f ∈ Hol(Bn, Bn) with a fixed point z0 ∈ Bn, and let ∏1, . . . ,∏r

be the eigenvalues of modulus 1 of dfz0 , listed according to their multiplicity. Then:
(i) the limit manifold of f is the affine subset of Bn passing through z0 and parallel to

the unitary space of dfz0 ;
(ii) the limit manifold of f coincides with Fix(f) iff the sequence {fk} converges, and in
this case it is

°
z0 + Fix(dfz0)

¢
∩Bn;

(iii) the sequence {fk} converges to z0 iff sp(dfz0) ⊂ ∆;
(iv) the limit points of {fk} are in one-to-one correspondence with the limit points of
the sequence of powers of (∏1, . . . ,∏r) ∈ Tr = S1 × · · · × S1, the torus group of (real)
dimension r.

Proof: Up to an automorphism of Bn, we can assume z0 = 0. Let ρ:Bn → Bn be the limit
retraction of f . Then the unitary space of df0 coincides with the eigenspace associated to
the eigenvalue 1 of dρ0 and hence, by Lemma 2.2.13, we have (i) and (iii).

(ii) follows immediately from (i), Lemma 2.2.13 and Theorem 2.2.32.
Finally, by Theorem 2.1.29 and Corollary 2.1.22, any limit point of {fk} is completely

determined by its differential at 0, and (iv) follows from the decomposition given in The-
orem 2.1.21.(iv), q.e.d.

We have seen that, as in the one-dimensional situation, iteration theory is mingled
with fixed point sets. We shall now explore the reverse of the coin: how to construct fixed
points using iteration theory.

The first result is the generalization of Shields’ theorem to Bn:
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Theorem 2.2.34: Let F be a family of continuous self-maps of Bn which are holomorphic
in Bn and commute with each other under composition. Then F has a fixed point in Bn.

Proof: If there is f ∈ F such that f(Bn)∩@Bn 6= /∞, then f ≡ x0 ∈ @Bn, and x0 is clearly
a fixed point of F . So we can suppose without loss of generality that F ⊂ Hol(Bn, Bn).

Assume there is f ∈ F without fixed points in Bn. By Theorem 2.2.31, the sequence
{fk} converges to a point x ∈ @Bn, and for any g ∈ F

g(x) = lim
k→1

g ◦ fk = lim
k→1

fk ◦ g = x,

and we have found a fixed point of F .
Now assume that every f ∈ F has a fixed point in Bn, and denote by Fix(f) the fixed

point set of f in Bn. In particular, no sequence {fk(z)}, where f ∈ F and z ∈ Bn, can
have a limit point in @Bn, by Corollary 2.2.18.

Let E be any affine subset of Bn, and g ∈ F be such that g(E) ⊂ E; then g has a
fixed point in E. In fact, otherwise {(g|E)k} should converge to a point of @Bn, and this
is prohibited by the previous observation.

Take f , g ∈ F . Then g sends Fix(f) into itself: indeed, if z ∈ Fix(f), then

f
°
g(z)

¢
= g

°
f(z)

¢
= g(z).

Since Fix(f) is affine (by Corollary 2.2.15), g has a fixed point in Fix(f), that is the
intersection Fix(f) ∩ Fix(g) is not empty.

By induction it follows that, for any finite number of maps f1, . . . , fr ∈ F the inter-
section Fix(f1) ∩ · · · ∩ Fix(fr) is not empty. Let

d = min
n
dim

°
Fix(f1) ∩ · · · ∩ Fix(fr)

¢ ØØØ f1, . . . , fr ∈ F , r ∈ N
o
≥ 0,

and choose f1, . . . , fr ∈ F such that dim
°
Fix(f1) ∩ · · · ∩ Fix(fr)

¢
= d. Set

E = Fix(f1) ∩ · · · ∩ Fix(fr);

then E is a non-empty affine subset of Bn; we claim that E ⊂ Fix(g) for all g ∈ F . In
fact, otherwise

0 ≤ dim
°
Fix(g) ∩E

¢
< dimE = d,

for some g ∈ F , contradiction, q.e.d.

The second application is the construction of a fixed point for a compact group acting
on Bn. The proof we present here is somehow involved, resting on a sort of uniform
convexity lemma and even on Zorn’s lemma. In chapter 2.5 we shall describe a simpler
proof in the setting of convex domains, but for the moment let’s begin with
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Lemma 2.2.35: Let F be a family of closed Bergmann balls in Bn such that K =
T

F
contains two distinct points. Then the interior part of K is non-empty.

Proof: Since a closed Bergmann ball is a compact convex subset of Bn, K is a compact
convex subset of Bn. Up to an automorphism of Bn, then, we can assume there is a
point z0 ∈ K, z0 6= 0, such that the whole segment from −z0 to z0 is contained in K; in
particular, 0 ∈ K. We shall show that there exists ε > 0 such that Bk(0, ε) is contained in
every closed Bergmann ball Bk(a,R) containing z0 and −z0, and the assertion will clearly
follow.

We recall — cf. (2.2.20) — that Bk(a,R) is given by

Bk(a,R) =
Ω

z ∈ Cn

ØØØØ
kPa(z)− αk2

r2ρ2
+
kQa(z)k2

r2ρ
< 1

æ
,

where r = tanhR ∈ (0, 1),

α =
1− r2

1− r2kak2 a ∈ Bn

and
ρ =

1− kak2
1− r2kak2 ∈ (0, 1).

Let F =
n
Bk(a,R)

ØØØ z0, −z0 ∈ Bk(a,R)
o
; we need to show that

ε = inf
©
kzk

ØØ z ∈ @B, B ∈ F
™

is strictly positive.
Now, Bk(a,R) contains the euclidean ball

B(α, r) =
©
z ∈ Cn

ØØ kz − αk2 < r2ρ2
™
;

hence it is enough to estimate the euclidean distance between 0 and @B(α, r) for ev-
ery Bk(a,R) ∈ F .

The point of @B(α, r) nearest to 0 is of the form tα, where t ∈ R satisfies

|t− 1| =
rρ

kαk . (2.2.59)

Since 0 ∈ Bk(a,R) implies r > kak, (2.2.59) yields

d
°
0, @B(α, r)

¢
=

r − kak
1− rkak ≥

r2 − kak2
2(1− r2kak2) .

Therefore it suffices to show that there exists c > 0 such that

(r2 − kak2)/(1− r2kak2) ≥ c (2.2.60)
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for every Bk(a,R) ∈ F .
Take Bk(a,R) ∈ F ; we can restrict our attention to the balls such that we have

both z0 ∈ @Bk(a,R) and −z0 ∈ Bk(a,R). This is equivalent to requiring

Re(z0, a) ≤ 0, (2.2.61)

and
kPa(z0)− αk2 + ρkQa(z0)k2 = r2ρ2. (2.2.62)

Now, plugging the definitions of Pa, Qa, ρ and α in (2.2.62), we find

r2 − kak2 = (1− kak2)kz0k2 + (1− r2)
£
|(z0, a)|2 − 2Re(z0, a)

§
.

Finding r2 in terms of kak2 and then computing the left-hand side of (2.2.60) we finally
obtain

r2 − kak2
1− r2kak2 =

kz0k2 + |(z0, a)|2 − 2Re(z0, a)
1 + |(z0, a)|2 − 2Re(z0, a) + kak2(1− kz0k2)

≥ kz0k2
4

,

since Re(z0, a) is nonpositive by (2.2.61), and the assertion follows, q.e.d.

Then:

Theorem 2.2.36: Let G ⊂ Hol(Bn, Bn) be a group under composition. Then G has a
fixed point z0 in Bn iff G is relatively compact in Hol(Bn, Bn). Moreover, in this case
there is a holomorphic retraction ρ:Bn → M such that every g ∈ G is of the form g = ∞◦ρ,
where ∞ belongs to a given subgroup of the isotropy group of z0 in M ; in particular, G is
isomorphic to a subgroup of U(m) for some 0 ≤ m ≤ n. Conversely, every subgroup
of U(m) with 0 ≤ m ≤ n can be realized as a group G ⊂ Hol(Bn, Bn) with a fixed point.

Proof: Let e ∈ G be the identity of G. Since e2 = e, e is a holomorphic retraction of Bn

onto an affine subset E of Bn. Now g ◦ e = g = e ◦ g if g ∈ G; hence g = ∞ ◦ e for a
suitable ∞ ∈ Hol(E,E). Moreover, since G is a group, ∞ belongs to Aut(E), and we have
established an isomorphism between G and a subgroup of Aut(E). If E is a point, there
is nothing else to prove; otherwise, E is biholomorphic to Bm for some 0 < m ≤ n (by
Corollary 2.2.16), and we can assume without loss of generality that E = Bn, that is that
G is a subgroup of Aut(Bn).

If G has a fixed point, then it is relatively compact in Hol(Bn, Bn) by Corollary 2.1.27.
Conversely, assume G is relatively compact in Hol(Bn, Bn); actually, we can directly as-
sume G compact (taking the closure, by Theorem 2.1.26). We want to show that G has a
fixed point.

Let K be a compact subset of Bn. Put

bK =
\n

Bk(z,R)
ØØØ z ∈ Bn, R > 0, K ⊂ Bk(z,R)

o
;
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clearly bK is a compact subset of Bn, and d∞(K) = ∞( bK) for all ∞ ∈ Aut(Bn). We shall
(temporarily) say that K is B-convex if bK = K. Note that a B-convex set is convex (but,
obviously, the converse is false).

Let K be a compact G-invariant subset of Bn (for instance, the G-orbit of a point).
Then bK is compact, G-invariant and B-convex. The intersection of any descending chain of
compact, G-invariant, B-convex subsets of bK is still compact, G-invariant and B-convex;
by Zorn’s lemma, there exists a minimal compact G-invariant B-convex subset H of bK.

Suppose, by contradiction, that H contains more than one point. Then the interior
part H̊ of H is not empty, by Lemma 2.2.35. Take z ∈ H̊; since H̊ is clearly G-invariant,
K1 = G(z) is a compact G-invariant subset of H̊. In particular, K1∩@H = /∞. Then there
exists a closed Bergmann ball B with center at 0 such that K1 ⊂ B and H 6⊂ B. But then
bK1 is strictly contained in bH = H, and this contradicts the minimality of H. So H is a
G-invariant subset of Bn containing just one point, that is, a fixed point of G.

Finally, If G is a subgroup of U(m) for some m ≤ n, take a m-dimensional affine
subset E of Bn, and a point z0 ∈ E. Then we can realize G as a subgroup of the isotropy
group of z0 in Aut(E), and thus as a subgroup of Hol(Bn, Bn), using a holomorphic
retraction of Bn onto E, q.e.d.

Notes

The study of Bn as a particularly meaningful example is relatively recent, and evolved
during the shift in complex analysis from the algebraic techniques of sheaf theory to the
analytic techniques linked to the @-equation; this caused a need for simple examples of
strongly pseudoconvex domains as gymnasium where testing conjectures should be easy.
The beatiful book Rudin [1980] is the best evidence of this situation, and indeed the
informed reader will easily recognize the debt we owe to that book for the first four sections
of this chapter.

The automorphisms of B2 are first described by Poincaré [1907b]; the general case
appears in Sommer [1949] and Erwe and Peschl [1953]. Another realization of Aut(Bn)
can be found in Franzoni and Vesentini [1980].

The Siegel upper half-space is named after Siegel [1943], and it is the main example
of Siegel domain of second kind; see Piatetsky-Shapiro [1966].

The translations ha defined in (2.2.6) induce a group structure on the boundary @Hn of
the Siegel upper half-space. @Hn with this structure, which is homeomorphic to R×Cn−1,
is called the Heisenberg group of order n− 1; see for instance Rothschild and Stein [1976].

Proposition 2.2.9 is in Hayden and Suffridge [1971]; our proof is due to D. Ullrich,
and is taken from Rudin [1980]. Proposition 2.2.10 is implicit in MacCluer [1983], where
it is ascribed to D. Ullrich.

Schwarz’s lemma in Bn is an easy generalization of the classical Schwarz lemma in ∆;
see Reinhardt [1921]. Lemma 2.2.13, Proposition 2.2.14 and Corollaries 2.2.15 and 2.2.16
are due to Hervé [1963a], while Proposition 2.2.17 for B2 appeared in Bergmann [1937];
cf. also Bureau [1952], Schieferdecker [1957], Suffridge [1974] and Rudin [1978].

The Bergmann metric of Bn is the concrete instance of three different general ob-
jects. The first two are the invariant Carathéodory and Kobayashi metrics, that we shall
thoroughly discuss in the next chapter. The third one is the Bergmann metric, introduced
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by Bergmann [1933, 1935] by means of the space of holomorphic square-integrable func-
tions, which is a Kähler metric invariant under automorphisms that can be defined on a
large class of complex manifolds, including for instance bounded domains of Cn. For more
details, see Kobayashi [1959], Lichnerowicz [1965] and Fefferman [1974].

The definition (2.2.21) of horospheres in the ball is in Hervé [1963a]; it is essentially
differential geometric in character, as we shall see in the notes to chapter 2.4. Proposi-
tion 2.2.20 is due to Yang [1978], and it will be very important in chapter 2.4.

Theorem 2.2.21 appears in Minialoff [1935] for B2; the general statement is due to
Hervé [1963a], where it is also discussed what happens in case of equality at one point
in (2.2.27).

Theorem 2.2.22 appears with a slightly different proof in MacCluer [1983], and with
a much more different proof in Chen [1984]. In MacCluer [1983] there is also a discussion
of the case of equality at one point in (2.2.29).

The Korányi regions were introduced by Korányi [1969] and Korányi and Stein [1968]
in the study of boundary behavior of harmonic functions in Bn. Later, Stein [1972] gen-
eralized Korányi’s approach to a large class of domains, exploiting the asimmetry between
the radial direction and the complex tangential directions appearing in horospheres and
Korányi regions; see also the notes to chapter 2.7.

The definition of restricted K-limit is an elaboration due to Rudin [1980] of a more
general notion introduced by Čirka [1973] in bounded C1 domains of Cn; Theorem 2.2.25
and Proposition 2.2.26 have the same origin.

Hervé [1963a] proved Theorem 2.2.29, but he dealt only with non-tangential limits and
considered only the functions (i) and (ii). The complete statement and the final examples
are due to Rudin [1980].

Theorem 2.2.31 was first proved by Hervé [1963a], and later rediscovered by Mac-
Cluer [1983]. Hervé’s proof relies on Julia’s lemma instead of Wolff’s lemma, with an
approach similar to the one used in the second proof of the Wolff-Denjoy theorem de-
scribed in section 1.3.2. Another paper dealing with the iterates in Bn is Kubota [1983].

Theorem 2.2.32 and Proposition 2.2.33 are in Hervé [1963a]; see also Vesentini [1985].
Suffridge [1974] proved Theorem 2.2.34 but only for two commuting maps, using a

different argument.
The proof we gave of Theorem 2.2.36 is modelled on Mitchell’s proof (Mitchell [1979])

of Theorem 1.3.28. Another proof, shorter but not self-contained, goes as follows: the
Bergmann metric has constant sectional curvature −4, and Bn is simply connected. Then
we can end the proof quoting É. Cartan’s theorem, which assures that a compact group of
isometries of a simply connected Riemannian manifold of negative sectional curvature has
a fixed point. A proof of É. Cartan’s theorem can be found, for instance, in Kobayashi
and Nomizu [1968].

Finally, it should be mentioned that a large amount of the material described in this
chapter has been generalized to the unit ball of a complex Banach space; see Renaud [1973],
Franzoni and Vesentini [1980], Goebel and Reich [1984], Stachura [1985] and references
therein.


