Chapter 1.4 One-parameter semigroups

Let's now look at iteration theory from another point of view. Let X be a Riemann surface; then $\operatorname{Hol}(X, X)$, endowed, as usual, with the compact-open topology, is a topological semigroup with identity, that is the composition product $(f, g) \mapsto f \circ g$ is continuous, associative and has an identity. Consider now a semigroup homomorphism $\Phi: \mathbb{N} \to \operatorname{Hol}(X, X)$. Then Φ is the same thing as the sequence of iterates of the single function $\Phi(1)$; in other words, in the previous chapter we have actually studied semigroup homomorphisms of \mathbb{N} into $\operatorname{Hol}(X, X)$.

It is now evident that a natural generalization of the sequence of iterates is a oneparameter semigroup, i.e., a continuous semigroup homomorphism $\Phi: \mathbf{R}^+ \to \operatorname{Hol}(X, X)$. In this chapter we shall thoroughly study these objects, aiming toward a complete classification. This will be possible because on Riemann surfaces with non-abelian fundamental group every one-parameter semigroup Φ is trivial, i.e., $\Phi_t = \operatorname{id}_X$ for all $t \ge 0$. Furthermore, the one-parameter semigroups on other Riemann surfaces (but the disk) are easily classified (section 1.4.3); so the main problem is the description of one-parameter semigroups on Δ .

We shall actually provide three different descriptions on Δ , answering three different kinds of problems. We shall show how to replace Δ by another simply connected domain (in essentially a unique way) so to express a generic one-parameter semigroup in a particularly simple form. We shall show how to relate one-parameter semigroups to Cauchy problems and ordinary differential equations, proving that a semigroup is completely determined by a holomorphic function $F: \Delta \to \mathbf{C}$, its infinitesimal generator. Finally, we shall give both a differential characterization and a completely explicit description of infinitesimal generators.

A last word of advice: we shall freely use standard facts about ordinary differential equations (collected for easy reference in Theorem 1.4.9). Proofs can be found, e.g., in Narasimhan [1968] or Hörmander [1973].

1.4.1 The infinitesimal generator

In this section we collect some general facts regarding one-parameter semigroups: univalence, fixed points and the like. Our principal aim will be the construction of the infinitesimal generator of a one-parameter semigroup, thus relating our theory to ordinary differential equations.

We begin recalling some (well known) general lemmas about homomorphic images of \mathbf{R}^+ :

Lemma 1.4.1: Let G be a group. Then:

(i) every semigroup homomorphism $\Phi: \mathbf{R}^+ \to G$ can be extended in a unique way to a group homomorphism of \mathbf{R} into G;

(ii) if G is finite, every semigroup homomorphism $\Phi: \mathbb{R}^+ \to G$ is trivial.

Proof: (i) The (unique) extension is obviously given by $\Phi(t) = [\Phi(-t)]^{-1}$ for t < 0.

(ii) Extend Φ to a group homomorphism $\Phi: \mathbf{R} \to G$, and let K be the kernel of Φ . If n is the order of G, we have $nt \in K$ for all $t \in \mathbf{R}$. Hence $\mathbf{R} = n\mathbf{R} \subset K \subset \mathbf{R}$, that is Φ is trivial, **q.e.d.**

Lemma 1.4.2: Let $\Phi: \mathbb{R}^+ \to (\mathbb{C}, +)$ be a continuous semigroup homomorphism. Then $\Phi(t) = at$ for some $a \in \mathbb{C}$.

Proof: Fix $t_0 > 0$. Then $\Phi(nt_0) = n\Phi(t_0)$ for all $n \in \mathbb{N}$. Hence for any $p \in \mathbb{N}^*$ we have

$$\Phi(1) = \Phi(p/p) = p\Phi(1/p),$$

and $\Phi(1/p) = \Phi(1)/p$. Therefore $\Phi(r) = r\Phi(1)$ for all $r \in \mathbf{Q}^+$ and, by continuity, for all $r \in \mathbf{R}^+$. The assertion follows setting $a = \Phi(1)$, **q.e.d.**

Lemma 1.4.3: Let $\Phi: \mathbb{R}^+ \to (\mathbb{R}^+, \cdot)$ be a continuous semigroup homomorphism. Then $\Phi(t) = e^{at}$ for some $a \in \mathbb{R}$.

Proof: Since Φ takes values in \mathbf{R}^+ , $\log \Phi$ is a continuous semigroup homomorphism from \mathbf{R}^+ to $(\mathbf{R}, +)$. By Lemma 1.4.2, $\log \Phi(t) = at$ for some $a \in \mathbf{R}$, and the assertion follows, **q.e.d.**

Lemma 1.4.4: Let $\Phi: \mathbf{R}^+ \to (\mathbf{S}^1, \cdot)$ be a continuous semigroup homomorphism. Then $\Phi(t) = e^{ibt}$ for some $b \in \mathbf{R}$.

Proof: Let $\pi: \mathbf{R} \to \mathbf{S}^1$ be the covering map $\pi(x) = e^{ix}$; note that π is a group homomorphism from $(\mathbf{R}, +)$ to (\mathbf{S}^1, \cdot) . Then Φ lifts to a continuous semigroup homomorphism $\widetilde{\Phi}: \mathbf{R}^+ \to (\mathbf{R}, +)$ such that $\Phi = \pi \circ \widetilde{\Phi}$. Then the assertion follows from Lemma 1.4.2, **q.e.d.**

Lemma 1.4.5: Let $\Phi: \mathbf{R}^+ \to (\mathbf{C}^*, \cdot)$ be a continuous semigroup homomorphism. Then $\Phi(t) = e^{\lambda t}$ for some $\lambda \in \mathbf{C}$.

Proof: Starting from Φ we can construct two new homomorphisms: $|\Phi|: \mathbf{R}^+ \to (\mathbf{R}^+, \cdot)$ and $\Phi/|\Phi|: \mathbf{R}^+ \to (\mathbf{S}^1, \cdot)$. Then Lemmas 1.4.3 and 1.4.4 imply $\Phi(t) = e^{(a+ib)t}$ for suitable $a, b \in \mathbf{R}$, **q.e.d.**

Now we may begin a systematic study of one-parameter semigroups on Riemann surfaces. The first result shows that not every function can be imbedded in a one-parameter semigroup: **Proposition 1.4.6:** Let $\Phi: \mathbb{R}^+ \to \operatorname{Hol}(X, X)$ be a one-parameter semigroup on a Riemann surface X. Then Φ_t is injective for all $t \ge 0$.

Proof: First of all note that, since $\Phi'_t \to 1$ as $t \to 0$, for t small enough every Φ_t is locally injective.

Assume, by contradiction, that $\Phi_{t_0}(z_1) = \Phi_{t_0}(z_2)$ for some $t_0 > 0$ and $z_1, z_2 \in X$, with $z_1 \neq z_2$. Then if $t > t_0$ we have $\Phi_t(z_1) = \Phi_{t-t_0}(\Phi_{t_0}(z_1)) = \Phi_{t-t_0}(\Phi_{t_0}(z_2)) = \Phi_t(z_2)$. In other words, the two curves $t \mapsto \Phi_t(z_1)$ and $t \mapsto \Phi_t(z_2)$ start at distinct points, meet at $t = t_0$ and coincide thereafter. Let $t_0 > 0$ be the least t > 0 such that $\Phi_t(z_1) = \Phi_t(z_2)$, and set $z_0 = \Phi_{t_0}(z_1) = \Phi_{t_0}(z_2)$. Then no Φ_t can be injective in a neighbourhood of z_0 , and this is a contradiction, **q.e.d.**

In particular, it may happen that $\Phi_t \in \operatorname{Aut}(X)$ for all $t \ge 0$. In this case Φ extends to a group homomorphism $\widetilde{\Phi}: \mathbf{R} \to \operatorname{Aut}(X)$, by Lemma 1.4.1, and we say that Φ is a one-parameter group. Actually, Φ is a one-parameter group iff Φ_{t_0} is an automorphism for some $t_0 > 0$:

Proposition 1.4.7: Let $\Phi: \mathbb{R}^+ \to \operatorname{Hol}(X, X)$ be a one-parameter semigroup on a hyperbolic Riemann surface X. Assume $\Phi_{t_0} \in \operatorname{Aut}(X)$ for some $t_0 > 0$; then Φ is a one-parameter group.

Proof: Since $(\Phi_{t_0/n})^n = \Phi_{t_0} \in \operatorname{Aut}(X)$ for all $n \in \mathbb{N}^*$, we clearly have $\Phi_{rt_0} \in \operatorname{Aut}(X)$ for all $r \in \mathbb{Q}^+$. By continuity, $\Phi_{rt_0} \in \operatorname{Aut}(X)$ for all $r \in \mathbb{R}^+$ (for $\operatorname{Aut}(X)$ is closed in $\operatorname{Hol}(X, X)$, by Corollary 1.1.47), **q.e.d.**

As usual, a main role in our theory will be played by the fixed points. The definition is completely natural: a point $z_0 \in X$ is a fixed point of the semigroup Φ if $\Phi_t(z_0) = z_0$ for all $t \ge 0$. When we studied iteration theory, we saw that not necessarily a fixed point of an iterate of a function f is fixed by f itself. In the present context, the situation is much simpler:

Proposition 1.4.8: Let Φ : $\mathbb{R}^+ \to \operatorname{Hol}(X, X)$ be a one-parameter semigroup on a Riemann surface X. Assume that $\Phi_{t_0} \neq \operatorname{id}_X$ has a fixed point $z_0 \in X$ for some $t_0 > 0$. Then z_0 is a fixed point of Φ .

Proof: For any t > 0 we have

$$\Phi_{t_0}(\Phi_t(z_0)) = \Phi_t(\Phi_{t_0}(z_0)) = \Phi_t(z_0).$$

Therefore $t \mapsto \Phi_t(z_0)$ is a curve issuing from z_0 contained in the fixed point set of Φ_{t_0} . Since $\Phi_{t_0} \neq \mathrm{id}_X$, its fixed point set is discrete, and we infer $\Phi_t(z_0) = z_0$ for all $t \geq 0$, **q.e.d.**

Let $\Phi: \mathbf{R}^+ \to \operatorname{Hol}(X, X)$ be a one-parameter semigroup on a Riemann surface X with a fixed point $z_0 \in X$. Then we can define a continuous semigroup homomorphism $\mu: \mathbf{R}^+ \to \mathbf{C}^*$ setting $\mu(t) = \Phi'_t(z_0)$ (note that $\mu(t) \neq 0$ by Proposition 1.4.6). By Lemma 1.4.5, $\mu(t) = e^{\lambda t}$ for some $\lambda \in \mathbb{C}$; λ will be called the spectral value at z_0 of the semigroup Φ . Note that, by Theorem 1.3.4.(i), if X is hyperbolic then $\operatorname{Re} \lambda \leq 0$, and $\operatorname{Re} \lambda = 0$ iff Φ is a one-parameter group.

We shall see later on (Proposition 1.4.24) that the theory of one-parameter semigroups on Riemann surfaces is interesting only for simply and doubly connected surfaces. For this reason, in the rest of this section we shall limit ourselves to domains in \mathbf{C} .

Our main goal is to relate one-parameter semigroups and ordinary differential equations, thus making our work easier calling in an already well-established (and quite powerful) theory. We shall use the following basic existence theorem:

Theorem 1.4.9: Let Ω be an open subset of \mathbb{R}^n , and $F: \Omega \to \mathbb{R}^n$ a real analytic map. Then for any compact subset K of Ω there are $\delta > 0$, a neighbourhood $U \subset \Omega$ of K and a real analytic map $u: (-\delta, \delta) \times U \to \Omega$ such that

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = F(u(t,x)),\\ u(0,x) = x. \end{cases}$$
(1.4.1)

Furthermore, the solution of (1.4.1) is unique in the sense that if there are $\delta' > 0$, another neighbourhood $U' \subset \Omega$ of K and another map $u': (-\delta', \delta') \times U' \to \Omega$ satisfying (1.4.1), then $u \equiv u'$ on $((-\delta, \delta) \times U) \cap ((-\delta', \delta') \times U')$. Finally, if Ω is actually a domain in \mathbb{C}^n and $F: \Omega \to \mathbb{C}^n$ is holomorphic, then for every $t \in (-\delta, \delta)$ the map $u(t, \cdot): U \to \Omega$ is holomorphic.

As already mentioned, a proof can be found in Narasimhan [1968] or Hörmander [1973]. Using the uniqueness statement of the latter theorem, we can now introduce the link between one-parameter semigroups and ordinary differential equations:

Corollary 1.4.10: Let Ω be an open subset of \mathbb{R}^n , $F: \Omega \to \mathbb{R}^n$ a real analytic map, and K a compact subset of Ω . Choose $\delta > 0$ and a neighbourhood $U \subset \Omega$ of K such that there is a real analytic solution $u: (-\delta, \delta) \times U \to \Omega$ of the Cauchy problem (1.4.1). Then for every $s, t \in (-\delta, \delta)$ and $x \in K$ such that $s + t \in (-\delta, \delta)$ and $u(t, x) \in U$ we have

$$u(s, u(t, x)) = u(s + t, x).$$
(1.4.2)

Proof: Fix $t_0 \in (-\delta, \delta)$ and $x_0 \in K$ such that $u(t_0, x_0) \in U$, and take $\delta' \leq \delta - |t_0|$. Now define $v_1, v_2: (-\delta', \delta') \to \Omega$ setting $v_1(s) = u(s, u(t_0, x_0))$ and $v_2(s) = u(s + t_0, x_0)$. Then v_1 and v_2 are two real-analytic solutions of

$$\begin{cases} \frac{dv}{ds} = F \circ v, \\ v(0) = u(t_0, x_0) \end{cases}$$

Then, by uniqueness, $v_1 = v_2$, and (1.4.2) is proved, **q.e.d.**

In other words, the solution of the Cauchy problem (1.4.1) is locally a one-parameter group. In particular, if D is a domain in \mathbf{C} and $F \in \operatorname{Hol}(D, \mathbf{C})$ is such that the Cauchy problem

$$\begin{cases} \frac{\partial \Phi}{\partial t} = F \circ \Phi\\ \Phi(0, z) = z \end{cases}$$
(1.4.3)

has a global solution $\Phi: \mathbb{R}^+ \times D \to D$, then Φ is automatically a one-parameter semigroup, holomorphic in z and real analytic in t. In this case, F is called the *infinitesimal generator* of Φ . Note that Φ is completely determined by its infinitesimal generator.

The main result of this section is that every one-parameter semigroup is obtained in this way:

Theorem 1.4.11: Let $\Phi: \mathbf{R}^+ \to \operatorname{Hol}(D, D)$ be a one-parameter semigroup on a domain $D \subset \mathbf{C}$. Then there is a holomorphic function $F: D \to \mathbf{C}$ such that

$$\frac{\partial \Phi}{\partial t} = F \circ \Phi. \tag{1.4.4}$$

Proof: Let K be a compact convex subset of D. We can choose $\alpha \in (0, 1)$ such that the convex hull \hat{K} of $\Phi([0, \alpha] \times K)$ is still contained in D. Take $\delta \in (0, \alpha]$ such that

$$\sup_{z\in\widehat{K}}|\Phi'_t(z)-1| \le 1/10,$$

for all $t \leq \delta$ — the number 1/10 is cabalistic; what we really need is the last step in (1.4.6). Hence for all $t \in [0, \delta]$ and $z \in K$

$$|\Phi_{2t}(z) - 2\Phi_t(z) + z| = \left| \int_{z}^{\Phi_t(z)} \frac{d}{d\zeta} [\Phi_t(\zeta) - \zeta] d\zeta \right| \le \frac{1}{10} |\Phi_t(z) - z|, \qquad (1.4.5)$$

where the integration path is the segment from z to $\Phi_t(z)$, and thus is contained in \widehat{K} .

Therefore for all $t \in [0, \delta)$ and $z \in K$ we have

$$|\Phi_t(z) - z| \le \frac{10}{19} |\Phi_{2t}(z) - z| \le 2^{-2/3} |\Phi_{2t}(z) - z|.$$
(1.4.6)

Let $k \in \mathbf{N}$ be such that $2^k \delta \ge 1$, and put

$$M = 2^{2k/3} \sup \{ |\Phi_t(z) - z| \mid z \in K, \ t \in [2^{-k}, 1] \}.$$

Then (1.4.6) implies

$$\forall t \in [0,1] \quad \forall z \in K \qquad |\Phi_t(z) - z| \le M t^{2/3}. \tag{1.4.7}$$

Now repeat the same argument on a compact convex subset K_1 of D containing properly \hat{K} , coming up with a constant $M_1 > 0$ such that

$$\forall t \in [0,1] \quad \forall z \in K_1 \qquad |\Phi_t(z) - z| \le M_1 t^{2/3}.$$

Then the Cauchy inequalities produce a constant $\widetilde{M} > 0$ such that

$$\forall t \in [0,1] \quad \forall z \in \widehat{K} \qquad |\Phi'_t(z) - 1| \le \widetilde{M} t^{2/3}.$$
(1.4.8)

If we plug (1.4.7) and (1.4.8) in (1.4.5), we find that for all $t \in [0, \alpha]$ and $z \in K$

$$|\Phi_{2t}(z) - 2\Phi_t(z) + z| \le \widetilde{M}t^{2/3} |\Phi_t(z) - z| \le M\widetilde{M}t^{4/3}.$$

Thus

$$\left|\frac{\Phi_{2t}(z) - z}{2t} - \frac{\Phi_t(z) - z}{t}\right| \le \frac{M\widetilde{M}}{2} t^{1/3},$$

for $z \in K$ and $t \in (0, \alpha]$. Hence

$$\lim_{n \to \infty} \frac{\Phi(2^{-n}, z) - z}{2^{-n}} = F(z)$$

exists uniformly on compact subsets of D, defining a holomorphic function $F: D \to \mathbb{C}$.

For $z_0 \in D$ and $t_0 > 0$, $\Phi([0, t_0] \times \{z_0\})$ is a compact subset of D. Hence, as $n \to +\infty$, the function $2^n[\Phi(t+2^{-n}, z_0) - \Phi(t, z_0)]$ tends uniformly to $F(\Phi(t, z_0))$ for $t \in [0, t_0]$. This implies

$$\Phi_t(z) = z + \int_0^t F(\Phi_s(z)) \, ds$$

for all $z \in D$ and $t \in \mathbf{R}^+$, and (1.4.4) is proved, **q.e.d.**

So every one-parameter semigroup is the solution of a Cauchy problem, and there is a one-to-one correspondance between infinitesimal generators and one-parameter semigroups. In particular, the classification of one-parameter semigroups is reduced to the classification of their infinitesimal generators, which will be attained using the following observation:

Corollary 1.4.12: Let D be a domain in C, and take $F \in Hol(D, C)$. Then F is an infinitesimal generator iff (1.4.3) has a global solution on $\mathbf{R}^+ \times D$.

Proof: This follows from Corollary 1.4.10 and Theorem 1.4.11, q.e.d.

As we shall see, this approach will eventually provide us with a complete classification of one-parameter semigroups. For the moment, we end this section showing how to recover fixed points and spectral values using infinitesimal generators: **Proposition 1.4.13:** Let $\Phi: \mathbb{R}^+ \to \operatorname{Hol}(D, D)$ be a one-parameter semigroup on a domain $D \subset \mathbb{C}$, and let $F: D \to \mathbb{C}$ be its infinitesimal generator. Then:

(i) $z_0 \in D$ is a fixed point of Φ iff $F(z_0) = 0$;

(ii) if Φ has a fixed point z_0 , then its spectral value at z_0 is $F'(z_0)$.

Proof: If $z_0 \in D$ is a fixed point of Φ , then (1.4.4) immediately yields $F(z_0) = 0$. Conversely, assume $F(z_0) = 0$, and set $\varphi(t) = \Phi(t, z_0)$. Then φ solves the Cauchy problem

$$\begin{cases} \frac{d\psi}{dt} = F \circ \psi \\ \psi(0) = z_0. \end{cases}$$

Since $F(z_0) = 0$, $\psi \equiv z_0$ is a solution and thus, by Theorem 1.4.9, it is the only solution. Hence $\varphi \equiv z_0$, and z_0 is a fixed point of Φ .

Finally, assume $z_0 \in D$ is a fixed point of Φ . Hence, if λ is the spectral value of Φ at z_0 , we have

$$F'(z_0)e^{\lambda t} = F'(z_0)\Phi'_t(z_0) = \frac{\partial}{\partial z}(F \circ \Phi)(t, z_0) = \frac{\partial^2 \Phi}{\partial z \partial t}(t, z_0) = \frac{\partial}{\partial t}\Phi'_t(z_0) = \lambda e^{\lambda t}$$

and $F'(z_0) = \lambda$, q.e.d.

1.4.2 One-parameter semigroups on the unit disk

This section is devoted to the description of one-parameter semigroups on Δ . We shall first give a differential characterization of infinitesimal generators; next, after the description of the asymptotic behavior modelled on the Wolff-Denjoy theorem, we shall present an explicit classification of infinitesimal generators. Finally, we shall describe a concrete realization of one-parameter semigroups by means of accurately chosen biholomorphisms of Δ with specific domains in **C**.

Without losing any more time, we immediately begin with the first characterization:

Theorem 1.4.14: A holomorphic function $F: \Delta \to \mathbf{C}$ is the infinitesimal generator of a one-parameter semigroup on Δ iff

$$\forall z \in \Delta \qquad \operatorname{Re}\left[2\,\overline{z}\,F(z) + (1-|z|^2)F'(z)\right] \le 0. \tag{1.4.9}$$

Proof: Assume first F is the infinitesimal generator of a one-parameter semigroup Φ on Δ . Fix $z_0 \in \Delta$; then, by the Schwarz-Pick lemma, for every $t_2 > t_1 > 0$ we have

$$\frac{|\Phi_{t_1}'(z_0)|}{1-|\Phi_{t_1}(z_0)|^2} \ge \frac{|\Phi_{t_1}'(z_0)| \, |\Phi_{t_2-t_1}'(\Phi_{t_1}(z_0))|}{1-|\Phi_{t_2}(z_0)|^2} = \frac{|\Phi_{t_2}'(z_0)|}{1-|\Phi_{t_2}(z_0)|^2}$$

In other words, for every $z_0 \in \Delta$ the function $t \mapsto |\Phi'_t(z_0)|/(1-|\Phi_t(z_0)|^2)$ is not increasing. Therefore

$$0 \ge \frac{\partial}{\partial t} \frac{|\Phi_t'(z_0)|}{1 - |\Phi_t(z_0)|^2} \bigg|_{t=0} = \frac{1}{(1 - |z_0|^2)^2} \operatorname{Re} \left[2 \overline{z_0} F(z_0) + (1 - |z_0|^2) F'(z_0) \right],$$

and (1.4.9) is proved.

Conversely, assume F satisfies (1.4.9); we should show that (1.4.3) has a global solution on $\mathbf{R}^+ \times D$ (by Corollary 1.4.12). Fix $z_0 \in \Delta$, and let $\phi: [0, \delta) \to \Delta$ be a maximal solution of the Cauchy problem

$$\begin{cases} \frac{d\phi}{dt} = F \circ \phi, \\ \phi(0) = z_0; \end{cases}$$
(1.4.10)

we have to show that $\delta = +\infty$. Assume, by contradiction, $\delta < +\infty$; we claim that $\phi([0, \delta))$ is contained in a compact subset of Δ . Indeed, we have

$$\frac{d}{dt} \frac{|\dot{\phi}(t)|^2}{(1-|\phi(t)|^2)^2} = \frac{2|F(\phi(t))|^2}{(1-|\phi(t)|^2)^3} \operatorname{Re}\left[2\overline{\phi(t)}F(\phi(t)) + (1-|\phi(t)|^2)F'(\phi(t))\right] \le 0,$$

by (1.4.9); thus the function $t \mapsto |\dot{\phi}(t)|/(1-|\phi(t)|^2)$ is not increasing. Fix $t_0 < \delta$, and let $\sigma: [0, t_0] \to \Delta$ be the curve $\sigma(t) = \phi(t)$; then

$$\omega(z_0,\phi(t_0)) \le \int_{\sigma} d\kappa = \int_{0}^{t_0} \frac{|\dot{\phi}(t)|}{1-|\phi(t)|^2} dt \le t_0 \frac{|F(z_0)|}{1-|z_0|^2} \le \delta \frac{|F(z_0)|}{1-|z_0|^2},$$

and so $\phi([0, \delta))$ is contained in a closed Poincaré disk K, as claimed. Let $\delta_1 > 0$ and $u: (-\delta_1, \delta_1) \times K \to \Delta$ be given by Theorem 1.4.9 applied to K, and choose $t_0 \in [0, \delta)$ such that $\delta - t_0 < \delta_1$. Then the uniqueness statement of Theorem 1.4.9 shows that the function $\psi: [0, \delta_1 + t_0) \to \Delta$ given by

$$\psi(t) = \begin{cases} \phi(t) & \text{if } t < \delta, \\ u(t - t_0, \phi(t_0)) & \text{if } t \ge t_0, \end{cases}$$

is still a solution of (1.4.10), against the maximality of δ , q.e.d.

So the infinitesimal generators are characterized by a sort of ordinary differential inequality. A first consequence is:

Corollary 1.4.15: The set of all infinitesimal generators of one-parameter semigroups on Δ is a real convex cone in Hol(Δ , **C**) with vertex at 0.

At this point, the knowledgeable reader may wonder whether the infinitesimal generators of one-parameter groups are maybe characterized by a differential equation; after all, $\operatorname{Aut}(\Delta)$ is a Lie group, and so we can apply the third Lie theorem, and... Indeed, the knowledgeable reader is right, and the differential equation is easily find:

Corollary 1.4.16: A holomorphic function $F: \Delta \to \mathbf{C}$ is the infinitesimal generator of a one-parameter group on Δ iff

$$\forall z \in \Delta$$
 $\operatorname{Re}\left[2\,\overline{z}\,F(z) + (1-|z|^2)F'(z)\right] = 0.$ (1.4.11)

Proof: Assume first F is the infinitesimal generator of a one-parameter group Φ on Δ . For every $t \ge 0$ set $\Phi_t^+ = \Phi_t$ and $\Phi_t^- = \Phi_{-t}$. Then Φ^+ and Φ^- are two one-parameter semigroups, of infinitesimal generators F and -F respectively, and so Theorem 1.4.14 yields (1.4.11).

Conversely, assume (1.4.11) holds; then, by Theorem 1.4.14 and Corollary 1.4.12, (1.4.3) has a global solution Φ on $\mathbf{R} \times D$. Hence we can quote Corollary 1.4.10, showing that Φ is a one-parameter group of infinitesimal generator F, **q.e.d.**

Our next aim is an explicit description of the infinitesimal generators; in other words, we want to solve (1.4.9). We begin describing the asymptotic behavior of one-parameter semigroups, generalizing the Wolff-Denjoy theorem.

Let $\Phi: \mathbf{R}^+ \to \operatorname{Hol}(\Delta, \Delta)$ be a non-trivial one-parameter semigroup. By Proposition 1.4.8, either Φ has a fixed point, or $\operatorname{Fix}(\Phi_t) = \phi$ for all t > 0; in this latter case, we shall say that Φ is fixed point free.

If Φ has a fixed point $z_0 \in \Delta$, then the spectral value λ of Φ at z_0 satisfies $\operatorname{Re} \lambda \leq 0$, and $\operatorname{Re} \lambda = 0$ iff Φ is a one-parameter group of elliptic automorphisms (Theorem 1.3.4 and Proposition 1.4.7). Furthermore, in the latter case Φ_t has no limit in $\operatorname{Hol}(\Delta, \mathbf{C})$ as $t \to +\infty$ (by Lemma 1.4.4). Looking at the Wolff-Denjoy theorem it is now clear what is going on:

Theorem 1.4.17: Let $\Phi: \mathbf{R}^+ \to \operatorname{Hol}(\Delta, \Delta)$ be a non-trivial one-parameter semigroup on Δ . Assume Φ is not a one-parameter group of elliptic automorphisms. Then Φ_t converges as $t \to +\infty$ to a constant $\tau \in \overline{\Delta}$, the Wolff point of Φ_1 .

Proof: By assumption, Φ either is fixed point free or has a fixed point with spectral value having nonzero real part. By the Wolff-Denjoy theorem, the sequence $\{\Phi_k\}$ converges as $k \to +\infty$ to a point $\tau \in \overline{\Delta}$, the Wolff point of Φ_1 .

Fix $z_0 \in \Delta$, and let $K = \Phi([0,1] \times \{z_0\})$. K is a compact subset of Δ ; hence for every $\varepsilon > 0$ there is $k_0 \in \mathbf{N}$ such that for any $k \ge k_0$ and $z \in K$ we have $|\Phi_k(z) - \tau| < \varepsilon$. Hence

$$\forall r \in [0,1] \quad \forall k \ge k_0 \qquad \qquad |\Phi_{k+r}(z_0) - \tau| < \varepsilon.$$

This means that $\lim_{t \to +\infty} \Phi_t(z_0) = \tau$. But z_0 was arbitrary; hence, by Corollary 1.1.41, $\Phi_t \to \tau$ as $t \to +\infty$, **q.e.d.**

In particular we have (cf. Theorems 1.3.22 and 1.3.24):

Corollary 1.4.18: Let $\Phi: \mathbb{R}^+ \to \operatorname{Hol}(\Delta, \Delta)$ be a non-trivial one-parameter semigroup on Δ . Then the Wolff point of Φ_t is independent from t.

Proof: If Φ has a fixed point $z_0 \in \Delta$, $\tau(\Phi_t) = z_0$ for all t > 0. If Φ is fixed point free,

$$\lim_{t \to +\infty} \Phi_t = \lim_{k \to +\infty} \Phi_{kt_0} = \tau(\Phi_{t_0})$$

for any $t_0 > 0$, and again $\tau(\Phi_{t_0})$ does not depend on t_0 , **q.e.d.**

Thus the Wolff point of a non-trivial one-parameter semigroup $\Phi: \mathbf{R}^+ \to \operatorname{Hol}(\Delta, \Delta)$ is well-defined.

We are now able to solve explicitly (1.4.9). Denote by \mathcal{P} the set of holomorphic functions $f: \Delta \to \mathbf{C}$ such that $f \not\equiv 0$ and $\operatorname{Re} f \geq 0$. Note that, by the minimum principle for harmonic functions, either $\operatorname{Re} f > 0$ on Δ or $f \equiv ib$ for some $b \in \mathbf{R}^*$. Then

Theorem 1.4.19: Let $\Phi: \mathbf{R}^+ \to \operatorname{Hol}(\Delta, \Delta)$ be a non-trivial one-parameter semigroup on Δ , and $\tau \in \overline{\Delta}$ its Wolff point. Then the infinitesimal generator of Φ is of the form

$$F(z) = (\overline{\tau}z - 1)(z - \tau)f(z), \qquad (1.4.12)$$

for a suitable $f \in \mathcal{P}$. In particular, Φ has a fixed point iff $\tau \in \Delta$, the fixed point is exactly τ and the spectral value is $(|\tau|^2 - 1)f(\tau)$. Conversely, given $f \in \mathcal{P}$ and $\tau \in \overline{\Delta}$, the function $F: \Delta \to \mathbf{C}$ given by (1.4.12) is the infinitesimal generator of a one-parameter semigroup on Δ with Wolff point τ .

Proof: Let $\Phi: \mathbf{R}^+ \to \operatorname{Hol}(\Delta, \Delta)$ be a non-trivial one-parameter semigroup on Δ , with Wolff point τ and infinitesimal generator F. Using Corollary 1.2.15, we see that the function

$$t \mapsto \frac{|1 - \overline{\tau} \Phi_t(z)|^2}{1 - |\Phi_t(z)|^2}$$

is non-increasing for any $z \in \Delta$. Hence its derivative in 0 is non-positive, and we get

$$\operatorname{Re}\left((1-\tau\overline{z})(\overline{z}-\overline{\tau})F(z)\right) \le 0. \tag{1.4.13}$$

Let $f(z) = (\overline{\tau}z - 1)^{-1}(z - \tau)^{-1}F(z)$; f is well-defined, for if $\tau \in \Delta$ then $F(\tau) = 0$ by Proposition 1.4.13. Then (1.4.13) implies $f \in \mathcal{P}$, and F is given by (1.4.12).

Conversely, let $F \in \text{Hol}(\Delta, \mathbb{C})$ be given by (1.4.12); we should prove that F satisfies (1.4.9). If $f \equiv ib$ for some $b \in \mathbb{R}^*$, then (1.4.9) is easily verified. Assume then Re f(z) > 0 for all $z \in \Delta$. Then Theorem 1.1.40 applied to (f-1)/(f+1) yields

$$\forall z \in \Delta$$
 $\frac{|f'(z)|}{2 \operatorname{Re} f(z)} \le \frac{1}{1 - |z|^2}.$ (1.4.14)

Now

$$2\overline{z}F + (1-|z|^2)F' = (1-|z|^2)(\overline{\tau}z-1)(z-\tau)f' - \left[|\overline{\tau}z-1|^2+|z-\tau|^2\right]f_z$$

hence (1.4.14) yields

$$\operatorname{Re}[2\,\overline{z}\,F + (1 - |z|^2)F'] = (1 - |z|^2)\operatorname{Re}\left[(\overline{\tau}z - 1)(z - \tau)f'\right] - \left[|\overline{\tau}z - 1|^2 + |z - \tau|^2\right]\operatorname{Re}f$$

$$\leq (1 - |z|^2)|\overline{\tau}z - 1||z - \tau||f'| - \left[|\overline{\tau}z - 1|^2 + |z - \tau|^2\right]\operatorname{Re}f$$

$$\leq -(|\overline{\tau}z - 1| - |z - \tau|)^2\operatorname{Re}f \leq 0,$$
(1.4.15)

and we are done, **q.e.d.**

We now spend a couple of words about one-parameter groups on Δ . A one-parameter group $\Phi: \mathbf{R} \to \operatorname{Aut}(\Delta)$ clearly acts on $\overline{\Delta}$; therefore, by Proposition 1.1.13, the fixed point set of Φ_t is independent from t > 0. In particular, every Φ_t is either elliptic (and Φ is an elliptic one-parameter group), or parabolic (and Φ is a parabolic one-parameter group), or hyperbolic (and Φ is a hyperbolic one-parameter group). Furthermore, since the group of all elliptic — parabolic, hyperbolic — automorphisms with given fixed points is isomorphic to $(\mathbf{S}^1, \cdot) - (\mathbf{R}, +), (\mathbf{R}^+, \cdot)$ —, the one-parameter groups on Δ are essentially determined by Lemmas 1.4.3, 1.4.4 and 1.4.5. For sake of completeness, in the next corollary we explicitely describe the infinitesimal generators of one-parameter groups:

Corollary 1.4.20: Let $\Phi: \mathbf{R} \to \operatorname{Aut}(\Delta)$ be a non-trivial one-parameter group on Δ , and $\tau \in \overline{\Delta}$ its Wolff point. Then the infinitesimal generator of Φ is of the form: (i) if Φ is an elliptic one-parameter group

$$F(z) = (\bar{\tau}z - 1)(z - \tau)ia, \qquad (1.4.16)$$

for some $a \in \mathbf{R}^*$, and the spectral value of Φ at τ is $(|\tau|^2 - 1)ia$; (ii) if Φ is a parabolic one-parameter group

$$F(z) = (z - \tau)^2 \overline{\tau} ia, \qquad (1.4.17)$$

for some $a \in \mathbf{R}^*$;

(iii) if Φ is a hyperbolic one-parameter group

$$F(z) = (z^2 - \tau^2)\overline{\tau}a + ib\overline{\tau}(z - \tau)^2, \qquad (1.4.18)$$

for some $a \in \mathbf{R}^*$ and $b \in \mathbf{R}$, and the other fixed point is $\sigma = \tau(-a+ib)/(a+ib) \in \partial \Delta$. Conversely, every function of the form (1.4.16) — (1.4.17), (1.4.18) — is the infinitesimal generator of an elliptic — parabolic, hyperbolic — one-parameter group of Wolff point τ .

Proof: Let $F \in \operatorname{Hol}(\Delta, \mathbb{C})$ be an infinitesimal generator of a non-trivial one-parameter group $\Phi: \mathbb{R} \to \operatorname{Aut}(\Delta)$; therefore F satisfies (1.4.11), and it is of the form (1.4.12) for suitable $f \in \mathcal{P}$ and $\tau \in \overline{\Delta}$.

If $f \equiv ia$ for some $a \in \mathbf{R}^*$, then F is given either by (1.4.16) — if $\tau \in \Delta$ — or by (1.4.17) — if $\tau \in \partial \Delta$. Assume then Re f(z) > 0 for all $z \in \Delta$. Now (1.4.11) implies that all the inequalities in (1.4.15) are actually equalities. The last one yields $\tau \in \partial \Delta$, the second one implies that (1.4.14) is an equality too, and the first one yields $f'(z) = 2a\tau(z-\tau)^{-2}$ for a suitable $a \in \mathbf{R}$. It follows that $f(z) = 2a\tau(\tau-z)^{-1} + c$ for some $c \in \mathbf{C}$; moreover, the equality in (1.4.14) forces Re c = -a, and so

$$f(z) = a \, \frac{\tau + z}{\tau - z} + ib,$$

for some $b \in \mathbf{R}$. In particular, since we assumed $\operatorname{Re} f > 0$ everywhere, $a \neq 0$, and then, by (1.4.12), F is of the form (1.4.18), as desired.

Finally, it is easy to check that every F of the form (1.4.16), (1.4.17) or (1.4.18) satisfies (1.4.11); furthermore, since (1.4.16) has only one zero which is in Δ , (1.4.17) has a unique zero which is in $\partial\Delta$, and (1.4.18) has two distinct zeroes on $\partial\Delta$, it is evident that (1.4.16) characterizes elliptic, (1.4.17) parabolic and (1.4.18) hyperbolic one-parameter groups, **q.e.d.** We end this section giving another, quite concrete, description of the action of oneparameter semigroups on Δ , relying on two particular kind of domains.

We start with fixed point free one-parameter semigroups. A domain $D \subset \mathbf{C}$ such that $z + it \in D$ for every $z \in D$ and $t \geq 0$ is called vertically invariant. Let D be a simply connected vertically invariant domain (different from \mathbf{C}), and take a biholomorphism $g: \Delta \to D$. Then define $\Phi: \mathbf{R}^+ \to \operatorname{Hol}(\Delta, \Delta)$ by

$$\Phi_t(z) = g^{-1} \big(g(z) + it \big)$$

 Φ is clearly a one-parameter semigroup without fixed points, of infinitesimal generator F(z) = i/g'(z). Then the idea is that every fixed point free one-parameter semigroup on Δ is obtained in this way.

To prove this assertion we need a preliminary lemma:

Lemma 1.4.21: Let $f: H^+ \to \mathbb{C}$ be a holomorphic function such that $\operatorname{Re} f' \geq 0$. Then f is either constant or injective.

Proof: If there is $z_0 \in H^+$ so that $\operatorname{Re} f'(z_0) = 0$, then f(z) = a + ibz for some $a, b \in \mathbf{R}$, and f is either constant or injective. We henceforth suppose $\operatorname{Re} f' > 0$.

Assume, by contradiction, that $f(z_1) = f(z_2)$ for two distinct points $z_1, z_2 \in H^+$. Integrating along the segment σ from z_1 to z_2 we obtain

$$0 = f(z_2) - f(z_1) = \int_{\sigma} f'(\zeta) \, d\zeta = (z_2 - z_1) \int_{0}^{1} f'(z_1 + t(z_2 - z_1)) \, dt.$$

Hence $z_1 \neq z_2$ implies

$$0 = \operatorname{Re} \int_{0}^{1} f'(z_{1} + t(z_{2} - z_{1})) dt = \int_{0}^{1} \operatorname{Re} f'(z_{1} + t(z_{2} - z_{1})) dt > 0,$$

contradiction, q.e.d.

Then we have

Theorem 1.4.22: Every fixed point free one-parameter semigroup $\Phi: \mathbf{R}^+ \to \operatorname{Hol}(\Delta, \Delta)$ is of the form

$$\Phi_t(z) = g^{-1}(g(z) + it), \qquad (1.4.19)$$

where g is a biholomorphism between Δ and a domain $D \subset \mathbf{C}$ vertically invariant; g is uniquely determined up to an additive constant. Furthermore, Φ is a one-parameter group iff D is either a vertical strip or a vertical half-plane.

Proof: Let Φ be a fixed point free one-parameter semigroup with infinitesimal generator F. We know that $F(z) = \overline{\tau}(z-\tau)^2 f(z)$ for a suitable $\tau \in \partial \Delta$ and $f \in \mathcal{P}$. Since we are assuming Φ without fixed points, $f(z) \neq 0$ for all $z \in \Delta$. Let $\mu: \Delta \to H^+$ be given by

$$\mu(z) = \frac{i}{2} \frac{\tau + z}{\tau - z}.$$

Then μ is a biholomorphism between Δ and H^+ such that $\mu'(z) = i\tau(z-\tau)^{-2}$. Let $h \in \operatorname{Hol}(H^+, \mathbb{C})$ be such that $h'(z) = 1/f(\mu^{-1}(z))$; by Lemma 1.4.21, h is injective. Therefore $g = h \circ \mu: \Delta \to \mathbb{C}$ is injective too, and furthermore

$$g'(z) = \frac{i}{F(z)}$$

Now fix $z_0 \in \Delta$. Then

$$\frac{\partial}{\partial t}g \circ \Phi_t(z_0) = g'\big(\Phi_t(z_0)\big) \cdot F\big(\Phi_t(z_0)\big) \equiv i;$$

therefore

$$g(\Phi_t(z)) = g(z) + it.$$

This means that $D = g(\Delta)$ is vertically invariant, and Φ is given by (1.4.19).

For the uniqueness, let $g_1: \Delta \to D_1$ be another biholomorphism between Δ and a vertically invariant domain D_1 such that (1.4.19) holds. Differentiating

$$g^{-1}(g(z) + it) = g_1^{-1}(g_1(z) + it)$$

with respect to t at t = 0 we get $g'(z) = g'_1(z)$ for all $z \in \Delta$, and then $g - g_1$ is constant. Conversely, it is easy to check that g + c satisfies (1.4.19) for every $c \in \mathbf{C}$.

Finally, Φ is a one-parameter group iff for every $t \in \mathbf{R}$ the function $z \mapsto z + it$ is an automorphism of D, that is iff D is either a vertical strip or a vertical half-plane, **q.e.d.**

An analogous theorem holds for one-parameter groups with a fixed point. Again, let's first describe the example. Fix $\lambda \in \mathbf{C}^*$; a domain $D \subset \mathbf{C}$ is λ -invariant if $e^{-\lambda t}z \in D$ for all $t \geq 0$ and $z \in D$. Let $D \subset \mathbf{C}$ be a simply connected λ -invariant domain (different from \mathbf{C}), with $\operatorname{Re} \lambda \geq 0$ and $0 \in D$. Let $g: \Delta \to D$ be a biholomorphism such that g(0) = 0. Then $\Phi: \mathbf{R}^+ \to \operatorname{Hol}(\Delta, \Delta)$ given by

$$\Phi_t(z) = g^{-1} \left(e^{-\lambda t} g(z) \right)$$

is a one-parameter semigroup on Δ with fixed point 0 and spectral value $-\lambda$ at 0. That's all:

Theorem 1.4.23: Every non-trivial one-parameter semigroup $\Phi: \mathbf{R}^+ \to \operatorname{Hol}(\Delta, \Delta)$ with fixed point $\tau \in \Delta$ is of the form

$$\Phi_t(z) = g^{-1} \left(e^{-\lambda t} g(z) \right)$$
(1.4.20)

where $\lambda \in \mathbf{C}^*$ with $\operatorname{Re} \lambda \geq 0$, and g is a biholomorphism between Δ and a λ -invariant domain $D \subset \mathbf{C}$ so that $g(\tau) = 0$; λ is uniquely determined, and g is uniquely determined up to a multiplicative constant. Furthermore, Φ is a one-parameter group iff $\operatorname{Re} \lambda = 0$ and D is a disk.

Proof: By (1.4.12), the infinitesimal generator of Φ is given by $F(z) = -(1-\overline{\tau}z)(z-\tau)f(z)$ for a suitable $f \in \mathcal{P}$; note that $0 \notin f(\Delta)$ for Φ is non-trivial. Let $\gamma_0 \in \operatorname{Aut}(\Delta)$ be given by $\gamma_0(z) = (z-\tau)/(1-\overline{\tau}z)$, and set $f_0 = (1-|\tau|^2)f \circ \gamma_0^{-1}$ and $\tilde{f} = f_0 \circ \pi$: $H^+ \to \mathbf{C}$, where $\pi: H^+ \to \Delta^*$ is the universal covering map $\pi(w) = e^{2\pi i w}$. Choose a holomorphic function $\tilde{h}: H^+ \to \mathbf{C}$ such that $\tilde{h}' = 1/\tilde{f}$. Now, $\tilde{f}(w+1) = \tilde{f}(w)$ for all $w \in H^+$; hence there is $\mu \in \mathbf{C}$ such that $\tilde{h}(w+1) = \tilde{h}(w) + \mu$ for all $w \in H^+$. Since \tilde{h} is injective (Lemma 1.4.21), $\mu \neq 0$; set $h = \mu^{-1}\tilde{h}$. h is a biholomorphism between H^+ and $\tilde{D} = h(H^+)$; moreover, $h' = \mu^{-1}/\tilde{f}$ and h(w+1) = h(w) + 1 for all $w \in H^+$. This implies that h factorizes through π , defining a biholomorphism $\hat{g}: \Delta^* \to D^* = \pi(\tilde{D})$ such that $\hat{g} \circ \pi = \pi \circ h$. In particular, \hat{g} satisfies

$$\forall z \in \Delta^* \qquad \qquad z\hat{g}'(z) = \frac{\lambda\,\hat{g}(z)}{f_0(z)}$$

where $\lambda = \mu^{-1}$.

Now set $g_0 = \hat{g} \circ \gamma_0$. Then g_0 satisfies

$$\forall z \in \Delta \setminus \{\tau\} \qquad \qquad g_0'(z) = -\frac{\lambda g_0(z)}{F(z)}.$$

Therefore for every $z_0 \in \Delta \setminus \{z\}$ we have

$$\frac{\partial}{\partial t} g_0 \big(\Phi_t(z_0) \big) = g'_0 \big(\Phi_t(z_0) \big) \cdot F \big(\Phi_t(z_0) \big) = -\lambda g_0 \big(\Phi_t(z_0) \big),$$

and so

$$g_0(\Phi_t(z_0)) = e^{-\lambda t} g_0(z_0). \tag{1.4.21}$$

Now, g_0 extends to a biholomorphism $g: \Delta \to D = D^* \cup \{w_0\} \subset \widehat{\mathbf{C}}$ such that $g(\tau) = w_0$ (Lemma 1.1.50 and Theorem 1.1.51). (1.4.21) then implies $w_0 = 0$ or $w_0 = \infty$; furthermore, D is λ -invariant, and g satisfies (1.4.20). It remains to show that we can assume $\operatorname{Re} \lambda \geq 0$ and $w_0 = 0$.

Assume first Re $\lambda > 0$. In this case, (1.4.21) shows that $g_0(\Phi_t(z_0)) \to 0$ as $t \to +\infty$ for any $z_0 \in \Delta \setminus \{\tau\}$, and this implies $w_0 = 0$; so in this case we are done.

If $\operatorname{Re} \lambda = 0$ and $w_0 = 0$, there is nothing to change. If $\operatorname{Re} \lambda = 0$ and $w_0 = \infty$, then it suffices to replace λ by $-\lambda$ and g by 1/g (note that $0 \notin D^*$).

Finally, if $\operatorname{Re} \lambda < 0$, (1.4.21) shows that $g_0(\Phi_t(z_0)) \to \infty$ as $t \to +\infty$ for any $z_0 \in \Delta \setminus \{\tau\}$; hence $w_0 = \infty$, and replacing λ by $-\lambda$ and g by 1/g we are again done.

It remains to prove the last two assertions. Assume that $\mu \in \mathbb{C}^*$ and $g_1: \Delta \to D_1$ are such that

$$\forall z \in \Delta \ \forall t \ge 0 \qquad \qquad g^{-1} \big(e^{-\lambda t} g(z) \big) = g_1^{-1} \big(e^{-\mu t} g_1(z) \big).$$

Differentiating with respect to z at $z = \tau$ we immediately get $\mu = \lambda$. Differentiating with respect to t at t = 0 we get $gg'_1 - g_1g' = 0$, that is $g_1 = cg$ for some constant $c \in \mathbb{C}^*$. Conversely, it is easy to check that cg satisfies (1.4.20) for every $c \in \mathbb{C}^*$.

Finally, assume Φ is a one-parameter group. Then $\Phi_t(z_0)$ cannot converge as $t \to +\infty$ for any $z_0 \in \Delta \setminus \{\tau\}$; this implies, by (1.4.20), Re $\lambda = 0$. In particular, D is a simply connected domain invariant under rotations, that is a disk, **q.e.d.**

1.4.3 One-parameter semigroups on Riemann surfaces

In the latter section we thoroughly investigated one-parameter semigroups on Δ ; in this section we shall do the same on other Riemann surfaces. Our task is made possible by

Proposition 1.4.24: Let $\Phi: \mathbb{R}^+ \to \operatorname{Hol}(X, X)$ be a one-parameter semigroup on a Riemann surface X with non-abelian fundamental group. Then Φ is trivial.

Proof: By Theorem 1.2.19 we should have $\Phi_t = id_X$ for small t, and hence for all t, **q.e.d.**

So we are left with just a few cases to investigate.

Proposition 1.4.25: Let $\Phi: \mathbb{R}^+ \to \operatorname{Hol}(\widehat{\mathbb{C}}, \widehat{\mathbb{C}})$ be a one-parameter semigroup on the extended complex plane $\widehat{\mathbb{C}}$. Then Φ is a one-parameter group, and there is $\gamma \in \operatorname{Aut}(\widehat{\mathbb{C}})$ such that either

(i) $\gamma^{-1} \circ \Phi_t \circ \gamma(z) = z + at$ for some $a \in \mathbf{C}$, or (ii) $\gamma^{-1} \circ \Phi_t \circ \gamma(z) = e^{bt}z$ for some $b \in \mathbf{C}$.

Proof: By Proposition 1.4.6, Φ is a one-parameter group, for $\widehat{\mathbf{C}}$ is compact. Looking at the description of the automorphisms of $\widehat{\mathbf{C}}$ given in Proposition 1.1.22, we see that Φ_1 admits either two distinct fixed points or one (double) fixed point. In the latter case, there is $\gamma_0 \in \operatorname{Aut}(\widehat{\mathbf{C}})$ such that we can write $\gamma^{-1} \circ \Phi_1 \circ \gamma(z) = z + a$ for a suitable $a \in \mathbf{C}$. Since Φ_t for $t \neq 1$ is an automorphism of $\widehat{\mathbf{C}}$ commuting with Φ_1 , (1.1.22) shows that we should have $\gamma^{-1} \circ \Phi_t \circ \gamma(z) = z + \alpha(t)$, where $\alpha: \mathbf{R}^+ \to (\mathbf{C}, +)$ is a continuous semigroup homomorphism with $\alpha(1) = a$. Then Lemma 1.4.2 yields $\alpha(t) = at$, and we are in case (i).

If Φ_1 has two distinct fixed points, there is again $\gamma \in \operatorname{Aut}(\widehat{\mathbf{C}})$ so that we can write $\gamma^{-1} \circ \Phi_1 \circ \gamma(z) = e^b z$, for a suitable $b \in \mathbf{C}$. Using again (1.1.22) we see that an automorphism ϕ of $\widehat{\mathbf{C}}$ commuting with Φ_1 should be of the form $\gamma^{-1} \circ \phi \circ \gamma(z) = \lambda z^{\varepsilon(\phi)}$, where $\lambda \in \mathbf{C}^*$, and $\varepsilon(\phi) = \pm 1$.

The map $\varepsilon: \mathbf{R}^+ \to \mathbf{Z}_2$ given by $\varepsilon(t) = \varepsilon(\Phi_t)$ is a semigroup homomorphism; by Lemma 1.4.1, $\varepsilon \equiv 1$. Hence $\gamma^{-1} \circ \Phi_t \circ \gamma(z) = \lambda(t)z$ for all $t \ge 0$, where $\lambda: \mathbf{R}^+ \to (\mathbf{C}^*, \cdot)$ is a continuous semigroup homomorphism with $\lambda(1) = e^b$. By Lemma 1.4.5, $\lambda(t) = e^{bt}$, and we are in case (ii), **q.e.d.**

We consider now the complex plane:

Proposition 1.4.26: Let $\Phi: \mathbb{R}^+ \to \operatorname{Hol}(\mathbb{C}, \mathbb{C})$ be a non-trivial one-parameter semigroup on \mathbb{C} . Then either

(i) $\Phi_t(z) = z + bt$ for some $b \in \mathbf{C}^*$, or

(ii) $\Phi_t(z) = e^{at}z - b(e^{at} - 1)$ for some $a \in \mathbf{C}^*$ and $b \in \mathbf{C}$.

In case (i), the infinitesimal generator is $F \equiv b$, and Φ has no fixed points. In case (ii), the infinitesimal generator is F(z) = a(z - b), and b is the fixed point of Φ with spectral value a.

Proof: By Proposition 1.4.6, every Φ_t is an injective entire function, that is a linear polynomial. Write $\Phi_t(z) = \alpha(t)z + \beta(t)$, where $\alpha: \mathbf{R}^+ \to \mathbf{C}^*$ and $\beta: \mathbf{R}^+ \to \mathbf{C}$ are continuous and satisfy

$$\alpha(s+t) = \alpha(s)\alpha(t),$$

$$\beta(s+t) = \alpha(s)\beta(t) + \beta(s).$$
(1.4.22)

The first one, by Lemma 1.4.5, implies $\alpha(t) = e^{at}$ for some $a \in \mathbb{C}$. If a = 0, the second one implies $\beta(t) = bt$ for some $b \in \mathbb{C}^*$, by Lemma 1.4.2, and we are in case (i).

If $a \neq 0$, fix $t_0 > 0$ such that $e^{at_0} \neq 1$. Then, setting first $t = t_0$ and next $s = t_0$ in the second equation (1.4.22) and subtracting the results, we get

$$\beta(t) = \frac{\beta(t_0)}{1 - e^{at_0}} (e^{at} - 1),$$

and we are in case (ii). The last part of the assertion is just a computation, q.e.d.

The next case is \mathbf{C}^* :

Proposition 1.4.27: Let $\Phi: \mathbb{R}^+ \to \operatorname{Hol}(\mathbb{C}^*, \mathbb{C}^*)$ be a non-trivial one-parameter semigroup on \mathbb{C}^* . Then $\Phi_t(z) = e^{at}z$ for some $a \in \mathbb{C}^*$. The infinitesimal generator is F(z) = az, and Φ has no fixed points.

Proof: By Proposition 1.4.6 every Φ_t is injective, and thus the restriction of a homogeneous linear polynomial. Hence $\Phi_t(z) = \alpha(t)z^{\varepsilon(t)}$, where $\alpha: \mathbf{R}^+ \to \mathbf{C}^*$ and $\varepsilon: \mathbf{R}^+ \to \mathbf{Z}_2$ are continuous semigroup homomorphisms. Then the assertion follows from Lemmas 1.4.1 and 1.4.5, **q.e.d.**

The next example is the torus. The connected component at the identity of the automorphism group of a torus X is isomorphic to $\mathbf{R}^2/\mathbf{Z}^2$, by Proposition 1.1.32. Now, since X is compact, Proposition 1.4.6 implies that every one-parameter semigroup Φ on X is a one-parameter group; in particular, it can be thought of as a continuous semigroup homomorphism $\Phi: \mathbf{R}^+ \to \mathbf{R}^2/\mathbf{Z}^2$. Then Φ lifts to a continuous semigroup homomorphism $\widetilde{\Phi}: \mathbf{R}^+ \to \mathbf{C}$; Lemma 1.4.2 completely determines this kind of homomorphism, and we have proved

Proposition 1.4.28: Let X be a torus, and $\Phi: \mathbb{R}^+ \to \operatorname{Hol}(X, X)$ a one-parameter semigroup on X. Then Φ is a one-parameter group, and the lifting $\widetilde{\Phi}: \mathbb{R}^+ \to \operatorname{Hol}(\mathbb{C}, \mathbb{C})$ is given by $\widetilde{\Phi}_t(z) = z + at$ for a suitable $a \in \mathbb{C}$.

Finally we are left with the doubly connected domains, that is Δ^* and the annuli $A(r, 1) = \{z \in \mathbb{C} \mid r < |z| < 1\}$ for 0 < r < 1. We begin with A(r, 1):

Proposition 1.4.29: Let $\Phi: \mathbb{R}^+ \to \operatorname{Hol}(A(r,1), A(r,1))$ be a non-trivial one-parameter semigroup on an annulus A(r,1) with 0 < r < 1. Then $\Phi_t(z) = e^{iat}z$ for some $a \in \mathbb{R}^*$. The infinitesimal generator is F(z) = iaz and Φ has no fixed points.

Proof: By Corollary 1.2.24, Φ is a semigroup of automorphisms; hence

$$\Phi_t(z) = \alpha(t) r^{(1-\varepsilon(t))/2} z^{\varepsilon(t)},$$

where $a: \mathbf{R}^+ \to \mathbf{C}^*$ and $\varepsilon: \mathbf{R}^+ \to \mathbf{Z}_2$ are continuous semigroup homomorphisms. Then the assertion follows from Lemmas 1.4.1 and 1.4.5, **q.e.d.**

We end the section with Δ^* :

Proposition 1.4.30: Let $\Phi: \mathbb{R}^+ \to \operatorname{Hol}(\Delta^*, \Delta^*)$ be a non-trivial one-parameter semigroup on Δ^* . Then there is a one-parameter semigroup $\widetilde{\Phi}$ on Δ with fixed point 0 such that $\Phi_t = \widetilde{\Phi}_t|_{\Delta^*}$ for all $t \geq 0$. In particular, Φ has no fixed points and its infinitesimal generator is of the form F(z) = -zf(z), where $f \in \mathcal{P}$.

Proof: Every Φ_t has a removable singularity in 0, and hence is the restriction of a function $\widetilde{\Phi}_t \in \operatorname{Hol}(\Delta, \Delta)$. Obviously, $\widetilde{\Phi}: \mathbb{R}^+ \to \operatorname{Hol}(\Delta, \Delta)$ is a one-parameter semigroup on Δ ; it remains to show that $\widetilde{\Phi}_t(0) = 0$ for all t > 0, for then the last assertion follows from Theorem 1.4.19.

Assume, by contradiction, that $\widetilde{\Phi}_{t_0}(0) \neq 0$ for some $t_0 > 0$. Since $\widetilde{\Phi}_{t_0}$ sends Δ^* into itself, $\widetilde{\Phi}_{t_0}$ has no zeroes in Δ . The same argument works for any $\widetilde{\Phi}_{t_0/n}$ (where $n \geq 1$), because $\widetilde{\Phi}_{t_0/n}(0) = 0$ implies $\widetilde{\Phi}_{t_0}(0) = (\widetilde{\Phi}_{t_0/n})^n(0) = 0$. But $\widetilde{\Phi}_{t_0/n} \to \mathrm{id}_{\Delta}$ as $n \to +\infty$, and Hurwitz's theorem provides a contradiction, **q.e.d.**

Notes

It is difficult to date precisely the birth of the concept of one-parameter semigroups of holomorphic functions. At the beginning of this century Tricomi (see for instance Tricomi [1917]) was dealing with problems somehow regarding the asymptotic behavior of one-parameter semigroups; however, only later Wolff [1938] recognized the relevance of equations like (1.4.4). The typical approach used to be via the problem of fractional iteration; loosely stated, given $f \in Hol(X, X)$ they looked for a reasonable way of defining the r-th iterate of f for any r positive real. One standard request was that two fractional iterates of the same function must commute; from here trying to imbed f in a one-parameter semigroup is a very short step. We saw (Proposition 1.4.6) that there are non trivial obstructions to this approach, and indeed a great amount of work has been spent on this question; a recent paper in this field with a good bibliography is Cowen [1981].

Anyway, a consequence of this state of affairs is that the results described in this chapter are quite recent, coming mainly from Berkson and Porta [1978] and Heins [1981].

Theorem 1.4.11 is the main result of Berkson and Porta [1978]. It should be remarked that an infinitesimal generator actually is a holomorphic vector field on the domain; hence it could be possible, using this interpretation, to extend Theorem 1.4.11 to any Riemann surface, but Proposition 1.4.24 made such a generalization useless.

Theorem 1.4.14 has been proved for the upper half-plane by Berkson and Porta [1978], as well as Theorems 1.4.17 and 1.4.19 in the disk, using different arguments. Our proof of Theorem 1.4.17 is due to Vesentini.

Lemma 1.4.21 is due to Wolff [1934], Noshiro [1935] and Warschawski [1935]; it is also the first step in the characterization, due to Grunsky [1971], of the domains convex in the vertical direction, that is such that the intersection with any vertical line is connected (possibly empty).

Theorems 1.4.22 and 1.4.23 are in Heins [1981]. They are an indication of strong relationships between one-parameter semigroups and the theory of conformal representations; a work in this direction is Goryaĭnov [1987].

Finally, the whole section 1.4.3 comes from Heins [1981], where also the case of discontinuous one-parameter semigroups is considered.