
Chapter 1.4
One-parameter semigroups

Let’s now look at iteration theory from another point of view. Let X be a Riemann sur-
face; then Hol(X,X), endowed, as usual, with the compact-open topology, is a topological
semigroup with identity, that is the composition product (f, g) 7→ f ◦g is continuous, asso-
ciative and has an identity. Consider now a semigroup homomorphism Φ:N→ Hol(X,X).
Then Φ is the same thing as the sequence of iterates of the single function Φ(1); in other
words, in the previous chapter we have actually studied semigroup homomorphisms of N
into Hol(X,X).

It is now evident that a natural generalization of the sequence of iterates is a one-
parameter semigroup, i.e., a continuous semigroup homomorphism Φ:R+ → Hol(X,X).
In this chapter we shall thoroughly study these objects, aiming toward a complete classifi-
cation. This will be possible because on Riemann surfaces with non-abelian fundamental
group every one-parameter semigroup Φ is trivial, i.e., Φt = idX for all t ≥ 0. Furthermore,
the one-parameter semigroups on other Riemann surfaces (but the disk) are easily classi-
fied (section 1.4.3); so the main problem is the description of one-parameter semigroups
on ∆.

We shall actually provide three different descriptions on ∆, answering three different
kinds of problems. We shall show how to replace ∆ by another simply connected domain (in
essentially a unique way) so to express a generic one-parameter semigroup in a particularly
simple form. We shall show how to relate one-parameter semigroups to Cauchy problems
and ordinary differential equations, proving that a semigroup is completely determined
by a holomorphic function F :∆ → C, its infinitesimal generator. Finally, we shall give
both a differential characterization and a completely explicit description of infinitesimal
generators.

A last word of advice: we shall freely use standard facts about ordinary differential
equations (collected for easy reference in Theorem 1.4.9). Proofs can be found, e.g., in
Narasimhan [1968] or Hörmander [1973].

1.4.1 The infinitesimal generator

In this section we collect some general facts regarding one-parameter semigroups: uni-
valence, fixed points and the like. Our principal aim will be the construction of the
infinitesimal generator of a one-parameter semigroup, thus relating our theory to ordinary
differential equations.

We begin recalling some (well known) general lemmas about homomorphic images
of R+:
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Lemma 1.4.1: Let G be a group. Then:
(i) every semigroup homomorphism Φ:R+ → G can be extended in a unique way to a

group homomorphism of R into G;
(ii) if G is finite, every semigroup homomorphism Φ:R+ → G is trivial.

Proof: (i) The (unique) extension is obviously given by Φ(t) = [Φ(−t)]−1 for t < 0.
(ii) Extend Φ to a group homomorphism Φ:R→ G, and let K be the kernel of Φ. If

n is the order of G, we have nt ∈ K for all t ∈ R. Hence R = nR ⊂ K ⊂ R, that is Φ is
trivial, q.e.d.

Lemma 1.4.2: Let Φ:R+ → (C,+) be a continuous semigroup homomorphism. Then
Φ(t) = at for some a ∈ C.

Proof: Fix t0 > 0. Then Φ(nt0) = nΦ(t0) for all n ∈ N. Hence for any p ∈ N∗ we have

Φ(1) = Φ(p/p) = pΦ(1/p),

and Φ(1/p) = Φ(1)/p. Therefore Φ(r) = rΦ(1) for all r ∈ Q+ and, by continuity, for
all r ∈ R+. The assertion follows setting a = Φ(1), q.e.d.

Lemma 1.4.3: Let Φ:R+ → (R+, ·) be a continuous semigroup homomorphism. Then
Φ(t) = eat for some a ∈ R.

Proof: Since Φ takes values in R+, log Φ is a continuous semigroup homomorphism from
R+ to (R,+). By Lemma 1.4.2, log Φ(t) = at for some a ∈ R, and the assertion follows,
q.e.d.

Lemma 1.4.4: Let Φ:R+ → (S1, ·) be a continuous semigroup homomorphism. Then
Φ(t) = eibt for some b ∈ R.

Proof: Let π:R → S1 be the covering map π(x) = eix; note that π is a group homo-
morphism from (R,+) to (S1, ·). Then Φ lifts to a continuous semigroup homomorphism
eΦ:R+ → (R,+) such that Φ = π◦ eΦ. Then the assertion follows from Lemma 1.4.2, q.e.d.

Lemma 1.4.5: Let Φ:R+ → (C∗, ·) be a continuous semigroup homomorphism. Then
Φ(t) = e∏t for some ∏ ∈ C.

Proof: Starting from Φ we can construct two new homomorphisms: |Φ|:R+ → (R+, ·)
and Φ/|Φ|:R+ → (S1, ·). Then Lemmas 1.4.3 and 1.4.4 imply Φ(t) = e(a+ib)t for suitable
a, b ∈ R, q.e.d.

Now we may begin a systematic study of one-parameter semigroups on Riemann
surfaces. The first result shows that not every function can be imbedded in a one-parameter
semigroup:
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Proposition 1.4.6: Let Φ:R+ → Hol(X,X) be a one-parameter semigroup on a Riemann
surface X. Then Φt is injective for all t ≥ 0.

Proof: First of all note that, since Φ0t → 1 as t → 0, for t small enough every Φt is locally
injective.

Assume, by contradiction, that Φt0(z1) = Φt0(z2) for some t0 > 0 and z1, z2 ∈ X,
with z1 6= z2. Then if t > t0 we have Φt(z1) = Φt−t0

°
Φt0(z1)

¢
= Φt−t0

°
Φt0(z2)

¢
= Φt(z2).

In other words, the two curves t 7→ Φt(z1) and t 7→ Φt(z2) start at distinct points, meet
at t = t0 and coincide thereafter. Let t0 > 0 be the least t > 0 such that Φt(z1) = Φt(z2),
and set z0 = Φt0(z1) = Φt0(z2). Then no Φt can be injective in a neighbourhood of z0,
and this is a contradiction, q.e.d.

In particular, it may happen that Φt ∈ Aut(X) for all t ≥ 0. In this case Φ extends
to a group homomorphism eΦ:R → Aut(X), by Lemma 1.4.1, and we say that Φ is a
one-parameter group. Actually, Φ is a one-parameter group iff Φt0 is an automorphism for
some t0 > 0:

Proposition 1.4.7: Let Φ:R+ → Hol(X,X) be a one-parameter semigroup on a hy-
perbolic Riemann surface X. Assume Φt0 ∈ Aut(X) for some t0 > 0; then Φ is a one-
parameter group.

Proof: Since (Φt0/n)n = Φt0 ∈ Aut(X) for all n ∈ N∗, we clearly have Φrt0 ∈ Aut(X)
for all r ∈ Q+. By continuity, Φrt0 ∈ Aut(X) for all r ∈ R+ (for Aut(X) is closed
in Hol(X,X), by Corollary 1.1.47), q.e.d.

As usual, a main role in our theory will be played by the fixed points. The definition
is completely natural: a point z0 ∈ X is a fixed point of the semigroup Φ if Φt(z0) = z0 for
all t ≥ 0. When we studied iteration theory, we saw that not necessarily a fixed point of
an iterate of a function f is fixed by f itself. In the present context, the situation is much
simpler:

Proposition 1.4.8: Let Φ:R+ → Hol(X,X) be a one-parameter semigroup on a Riemann
surface X. Assume that Φt0 6= idX has a fixed point z0 ∈ X for some t0 > 0. Then z0 is a
fixed point of Φ.

Proof: For any t > 0 we have

Φt0

°
Φt(z0)

¢
= Φt

°
Φt0(z0)

¢
= Φt(z0).

Therefore t 7→ Φt(z0) is a curve issuing from z0 contained in the fixed point set of Φt0 .
Since Φt0 6= idX , its fixed point set is discrete, and we infer Φt(z0) = z0 for all t ≥ 0,
q.e.d.

Let Φ:R+ → Hol(X,X) be a one-parameter semigroup on a Riemann surface X
with a fixed point z0 ∈ X. Then we can define a continuous semigroup homomor-
phism µ:R+ → C∗ setting µ(t) = Φ0t(z0) (note that µ(t) 6= 0 by Proposition 1.4.6).
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By Lemma 1.4.5, µ(t) = e∏t for some ∏ ∈ C; ∏ will be called the spectral value at z0 of
the semigroup Φ. Note that, by Theorem 1.3.4.(i), if X is hyperbolic then Re∏ ≤ 0, and
Re∏ = 0 iff Φ is a one-parameter group.

We shall see later on (Proposition 1.4.24) that the theory of one-parameter semigroups
on Riemann surfaces is interesting only for simply and doubly connected surfaces. For this
reason, in the rest of this section we shall limit ourselves to domains in C.

Our main goal is to relate one-parameter semigroups and ordinary differential equa-
tions, thus making our work easier calling in an already well-established (and quite pow-
erful) theory. We shall use the following basic existence theorem:

Theorem 1.4.9: Let ≠ be an open subset of Rn, and F : ≠ → Rn a real analytic map.
Then for any compact subset K of ≠ there are δ > 0, a neighbourhood U ⊂ ≠ of K and a
real analytic map u: (−δ, δ)× U → ≠ such that






@u

@t
(t, x) = F

°
u(t, x)

¢
,

u(0, x) = x.
(1.4.1)

Furthermore, the solution of (1.4.1) is unique in the sense that if there are δ0 > 0, another
neighbourhood U 0 ⊂ ≠ of K and another map u0: (−δ0, δ0) × U 0 → ≠ satisfying (1.4.1),
then u ≡ u0 on

°
(−δ, δ) × U

¢
∩

°
(−δ0, δ0) × U 0

¢
. Finally, if ≠ is actually a domain in Cn

and F : ≠ → Cn is holomorphic, then for every t ∈ (−δ, δ) the map u(t, ·):U → ≠ is
holomorphic.

As already mentioned, a proof can be found in Narasimhan [1968] or Hörmander [1973].
Using the uniqueness statement of the latter theorem, we can now introduce the link

between one-parameter semigroups and ordinary differential equations:

Corollary 1.4.10: Let ≠ be an open subset of Rn, F : ≠ → Rn a real analytic map, and
K a compact subset of ≠. Choose δ > 0 and a neighbourhood U ⊂ ≠ of K such that
there is a real analytic solution u: (−δ, δ) × U → ≠ of the Cauchy problem (1.4.1). Then
for every s, t ∈ (−δ, δ) and x ∈ K such that s + t ∈ (−δ, δ) and u(t, x) ∈ U we have

u
°
s, u(t, x)

¢
= u(s + t, x). (1.4.2)

Proof: Fix t0 ∈ (−δ, δ) and x0 ∈ K such that u(t0, x0) ∈ U , and take δ0 ≤ δ − |t0|. Now
define v1, v2: (−δ0, δ0) → ≠ setting v1(s) = u

°
s, u(t0, x0)

¢
and v2(s) = u(s + t0, x0). Then

v1 and v2 are two real-analytic solutions of






dv

ds
= F ◦ v,

v(0) = u(t0, x0).

Then, by uniqueness, v1 = v2, and (1.4.2) is proved, q.e.d.
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In other words, the solution of the Cauchy problem (1.4.1) is locally a one-parameter
group. In particular, if D is a domain in C and F ∈ Hol(D,C) is such that the Cauchy
problem 





@Φ
@t

= F ◦ Φ

Φ(0, z) = z
(1.4.3)

has a global solution Φ:R+×D → D, then Φ is automatically a one-parameter semigroup,
holomorphic in z and real analytic in t. In this case, F is called the infinitesimal generator
of Φ. Note that Φ is completely determined by its infinitesimal generator.

The main result of this section is that every one-parameter semigroup is obtained in
this way:

Theorem 1.4.11: Let Φ:R+ → Hol(D,D) be a one-parameter semigroup on a do-
main D ⊂ C. Then there is a holomorphic function F :D → C such that

@Φ
@t

= F ◦ Φ. (1.4.4)

Proof: Let K be a compact convex subset of D. We can choose α ∈ (0, 1) such that the
convex hull bK of Φ

°
[0, α]×K

¢
is still contained in D. Take δ ∈ (0, α] such that

sup
z∈bK

|Φ0t(z)− 1| ≤ 1/10,

for all t ≤ δ — the number 1/10 is cabalistic; what we really need is the last step in (1.4.6).
Hence for all t ∈ [0, δ] and z ∈ K

|Φ2t(z)− 2Φt(z) + z| =
ØØØØ

Φt(z)Z

z

d

d≥
[Φt(≥)− ≥] d≥

ØØØØ ≤
1
10 |Φt(z)− z|, (1.4.5)

where the integration path is the segment from z to Φt(z), and thus is contained in bK.
Therefore for all t ∈ [0, δ) and z ∈ K we have

|Φt(z)− z| ≤ 10
19 |Φ2t(z)− z| ≤ 2−2/3|Φ2t(z)− z|. (1.4.6)

Let k ∈ N be such that 2kδ ≥ 1, and put

M = 22k/3 sup
©
|Φt(z)− z|

ØØ z ∈ K, t ∈ [2−k, 1]
™
.

Then (1.4.6) implies

∀t ∈ [0, 1] ∀z ∈ K |Φt(z)− z| ≤ Mt2/3. (1.4.7)
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Now repeat the same argument on a compact convex subset K1 of D containing properly bK,
coming up with a constant M1 > 0 such that

∀t ∈ [0, 1] ∀z ∈ K1 |Φt(z)− z| ≤ M1t
2/3.

Then the Cauchy inequalities produce a constant fM > 0 such that

∀t ∈ [0, 1] ∀z ∈ bK |Φ0t(z)− 1| ≤ fMt2/3. (1.4.8)

If we plug (1.4.7) and (1.4.8) in (1.4.5), we find that for all t ∈ [0, α] and z ∈ K

|Φ2t(z)− 2Φt(z) + z| ≤ fMt2/3|Φt(z)− z| ≤ M fMt4/3.

Thus ØØØØ
Φ2t(z)− z

2t
− Φt(z)− z

t

ØØØØ ≤
M fM

2
t1/3,

for z ∈ K and t ∈ (0, α]. Hence

lim
n→1

Φ(2−n, z)− z

2−n
= F (z)

exists uniformly on compact subsets of D, defining a holomorphic function F :D → C.
For z0 ∈ D and t0 > 0, Φ

°
[0, t0]×{z0}

¢
is a compact subset of D. Hence, as n → +1,

the function 2n[Φ(t+2−n, z0)−Φ(t, z0)] tends uniformly to F
°
Φ(t, z0)

¢
for t ∈ [0, t0]. This

implies

Φt(z) = z +
tZ

0

F
°
Φs(z)

¢
ds

for all z ∈ D and t ∈ R+, and (1.4.4) is proved, q.e.d.

So every one-parameter semigroup is the solution of a Cauchy problem, and there
is a one-to-one correspondance between infinitesimal generators and one-parameter semi-
groups. In particular, the classification of one-parameter semigroups is reduced to the
classification of their infinitesimal generators, which will be attained using the following
observation:

Corollary 1.4.12: Let D be a domain in C, and take F ∈ Hol(D,C). Then F is an
infinitesimal generator iff (1.4.3) has a global solution on R+ ×D.

Proof: This follows from Corollary 1.4.10 and Theorem 1.4.11, q.e.d.

As we shall see, this approach will eventually provide us with a complete classification
of one-parameter semigroups. For the moment, we end this section showing how to recover
fixed points and spectral values using infinitesimal generators:
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Proposition 1.4.13: Let Φ:R+ → Hol(D,D) be a one-parameter semigroup on a do-
main D ⊂ C, and let F :D → C be its infinitesimal generator. Then:
(i) z0 ∈ D is a fixed point of Φ iff F (z0) = 0;
(ii) if Φ has a fixed point z0, then its spectral value at z0 is F 0(z0).

Proof: If z0 ∈ D is a fixed point of Φ, then (1.4.4) immediately yields F (z0) = 0. Con-
versely, assume F (z0) = 0, and set ϕ(t) = Φ(t, z0). Then ϕ solves the Cauchy problem






d√

dt
= F ◦ √,

√(0) = z0.

Since F (z0) = 0, √ ≡ z0 is a solution and thus, by Theorem 1.4.9, it is the only solution.
Hence ϕ ≡ z0, and z0 is a fixed point of Φ.

Finally, assume z0 ∈ D is a fixed point of Φ. Hence, if ∏ is the spectral value of Φ
at z0, we have

F 0(z0)e∏t = F 0(z0)Φ0t(z0) =
@

@z
(F ◦ Φ)(t, z0) =

@2Φ
@z@t

(t, z0) =
@

@t
Φ0t(z0) = ∏e∏t,

and F 0(z0) = ∏, q.e.d.

1.4.2 One-parameter semigroups on the unit disk

This section is devoted to the description of one-parameter semigroups on ∆. We shall first
give a differential characterization of infinitesimal generators; next, after the description of
the asymptotic behavior modelled on the Wolff-Denjoy theorem, we shall present an explicit
classification of infinitesimal generators. Finally, we shall describe a concrete realization
of one-parameter semigroups by means of accurately chosen biholomorphisms of ∆ with
specific domains in C.

Without losing any more time, we immediately begin with the first characterization:

Theorem 1.4.14: A holomorphic function F :∆ → C is the infinitesimal generator of a
one-parameter semigroup on ∆ iff

∀z ∈ ∆ Re
£
2 z F (z) + (1− |z|2)F 0(z)

§
≤ 0. (1.4.9)

Proof: Assume first F is the infinitesimal generator of a one-parameter semigroup Φ on ∆.
Fix z0 ∈ ∆; then, by the Schwarz-Pick lemma, for every t2 > t1 > 0 we have

|Φ0t1(z0)|
1− |Φt1(z0)|2

≥
|Φ0t1(z0)| |Φ0t2−t1

°
Φt1(z0)

¢
|

1− |Φt2(z0)|2
=

|Φ0t2(z0)|
1− |Φt2(z0)|2

.

In other words, for every z0 ∈ ∆ the function t 7→ |Φ0t(z0)|/(1−|Φt(z0)|2) is not increasing.
Therefore

0 ≥ @

@t

|Φ0t(z0)|
1− |Φt(z0)|2

ØØØØ
t=0

=
1

(1− |z0|2)2
Re

£
2 z0 F (z0) + (1− |z0|2)F 0(z0)

§
,
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and (1.4.9) is proved.
Conversely, assume F satisfies (1.4.9); we should show that (1.4.3) has a global solution

on R+×D (by Corollary 1.4.12). Fix z0 ∈ ∆, and let φ: [0, δ) → ∆ be a maximal solution
of the Cauchy problem 





dφ

dt
= F ◦ φ,

φ(0) = z0;
(1.4.10)

we have to show that δ = +1. Assume, by contradiction, δ < +1; we claim that
φ
°
[0, δ)

¢
is contained in a compact subset of ∆. Indeed, we have

d

dt

|φ̇(t)|2
(1− |φ(t)|2)2 =

2
ØØF (φ(t)

¢ØØ2

(1− |φ(t)|2)3 Re
£
2φ(t)F

°
φ(t)

¢
+ (1− |φ(t)|2)F 0

°
φ(t)

¢§
≤ 0,

by (1.4.9); thus the function t 7→ |φ̇(t)|/(1− |φ(t)|2) is not increasing. Fix t0 < δ, and let
σ: [0, t0] → ∆ be the curve σ(t) = φ(t); then

ω
°
z0, φ(t0)

¢
≤

Z

σ

d∑ =
t0Z

0

|φ̇(t)|
1− |φ(t)|2 dt ≤ t0

|F (z0)|
1− |z0|2

≤ δ
|F (z0)|
1− |z0|2

,

and so φ
°
[0, δ)

¢
is contained in a closed Poincaré disk K, as claimed. Let δ1 > 0 and

u: (−δ1, δ1)×K → ∆ be given by Theorem 1.4.9 applied to K, and choose t0 ∈ [0, δ) such
that δ− t0 < δ1. Then the uniqueness statement of Theorem 1.4.9 shows that the function
√: [0, δ1 + t0) → ∆ given by

√(t) =
Ω

φ(t) if t < δ,
u
°
t− t0, φ(t0)

¢
if t ≥ t0,

is still a solution of (1.4.10), against the maximality of δ, q.e.d.

So the infinitesimal generators are characterized by a sort of ordinary differential
inequality. A first consequence is:

Corollary 1.4.15: The set of all infinitesimal generators of one-parameter semigroups
on ∆ is a real convex cone in Hol(∆,C) with vertex at 0.

At this point, the knowledgeable reader may wonder whether the infinitesimal gen-
erators of one-parameter groups are maybe characterized by a differential equation; after
all, Aut(∆) is a Lie group, and so we can apply the third Lie theorem, and. . . Indeed, the
knowledgeable reader is right, and the differential equation is easily find:

Corollary 1.4.16: A holomorphic function F :∆ → C is the infinitesimal generator of a
one-parameter group on ∆ iff

∀z ∈ ∆ Re
£
2 z F (z) + (1− |z|2)F 0(z)

§
= 0. (1.4.11)
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Proof: Assume first F is the infinitesimal generator of a one-parameter group Φ on ∆.
For every t ≥ 0 set Φ+

t = Φt and Φ−t = Φ−t. Then Φ+ and Φ− are two one-parameter
semigroups, of infinitesimal generators F and −F respectively, and so Theorem 1.4.14
yields (1.4.11).

Conversely, assume (1.4.11) holds; then, by Theorem 1.4.14 and Corollary 1.4.12,
(1.4.3) has a global solution Φ on R ×D. Hence we can quote Corollary 1.4.10, showing
that Φ is a one-parameter group of infinitesimal generator F , q.e.d.

Our next aim is an explicit description of the infinitesimal generators; in other words,
we want to solve (1.4.9). We begin describing the asymptotic behavior of one-parameter
semigroups, generalizing the Wolff-Denjoy theorem.

Let Φ:R+ → Hol(∆,∆) be a non-trivial one-parameter semigroup. By Proposi-
tion 1.4.8, either Φ has a fixed point, or Fix(Φt) = /∞ for all t > 0; in this latter case, we
shall say that Φ is fixed point free.

If Φ has a fixed point z0 ∈ ∆, then the spectral value ∏ of Φ at z0 satisfies Re∏ ≤ 0,
and Re∏ = 0 iff Φ is a one-parameter group of elliptic automorphisms (Theorem 1.3.4 and
Proposition 1.4.7). Furthermore, in the latter case Φt has no limit in Hol(∆,C) as t → +1
(by Lemma 1.4.4). Looking at the Wolff-Denjoy theorem it is now clear what is going on:

Theorem 1.4.17: Let Φ:R+ → Hol(∆,∆) be a non-trivial one-parameter semigroup
on ∆. Assume Φ is not a one-parameter group of elliptic automorphisms. Then Φt con-
verges as t → +1 to a constant τ ∈ ∆, the Wolff point of Φ1.

Proof: By assumption, Φ either is fixed point free or has a fixed point with spectral value
having nonzero real part. By the Wolff-Denjoy theorem, the sequence {Φk} converges as
k → +1 to a point τ ∈ ∆, the Wolff point of Φ1.

Fix z0 ∈ ∆, and let K = Φ
°
[0, 1] × {z0}

¢
. K is a compact subset of ∆; hence for

every ε > 0 there is k0 ∈ N such that for any k ≥ k0 and z ∈ K we have |Φk(z)− τ | < ε.
Hence

∀r ∈ [0, 1] ∀k ≥ k0 |Φk+r(z0)− τ | < ε.

This means that lim
t→+1

Φt(z0) = τ . But z0 was arbitrary; hence, by Corollary 1.1.41,
Φt → τ as t → +1, q.e.d.

In particular we have (cf. Theorems 1.3.22 and 1.3.24):

Corollary 1.4.18: Let Φ:R+ → Hol(∆,∆) be a non-trivial one-parameter semigroup
on ∆. Then the Wolff point of Φt is independent from t.

Proof: If Φ has a fixed point z0 ∈ ∆, τ(Φt) = z0 for all t > 0. If Φ is fixed point free,

lim
t→+1

Φt = lim
k→+1

Φkt0 = τ(Φt0)

for any t0 > 0, and again τ(Φt0) does not depend on t0, q.e.d.
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Thus the Wolff point of a non-trivial one-parameter semigroup Φ:R+ → Hol(∆,∆) is
well-defined.

We are now able to solve explicitely (1.4.9). Denote by P the set of holomorphic
functions f :∆ → C such that f 6≡ 0 and Re f ≥ 0. Note that, by the minimum principle
for harmonic functions, either Re f > 0 on ∆ or f ≡ ib for some b ∈ R∗. Then

Theorem 1.4.19: Let Φ:R+ → Hol(∆,∆) be a non-trivial one-parameter semigroup
on ∆, and τ ∈ ∆ its Wolff point. Then the infinitesimal generator of Φ is of the form

F (z) = (τz − 1)(z − τ)f(z), (1.4.12)

for a suitable f ∈ P. In particular, Φ has a fixed point iff τ ∈ ∆, the fixed point is exactly τ
and the spectral value is (|τ |2 − 1)f(τ). Conversely, given f ∈ P and τ ∈ ∆, the function
F :∆ → C given by (1.4.12) is the infinitesimal generator of a one-parameter semigroup
on ∆ with Wolff point τ .

Proof: Let Φ:R+ → Hol(∆,∆) be a non-trivial one-parameter semigroup on ∆, with Wolff
point τ and infinitesimal generator F . Using Corollary 1.2.15, we see that the function

t 7→ |1− τΦt(z)|2
1− |Φt(z)|2

is non-increasing for any z ∈ ∆. Hence its derivative in 0 is non-positive, and we get

Re
°
(1− τz)(z − τ)F (z)

¢
≤ 0. (1.4.13)

Let f(z) = (τz − 1)−1(z − τ)−1F (z); f is well-defined, for if τ ∈ ∆ then F (τ) = 0 by
Proposition 1.4.13. Then (1.4.13) implies f ∈ P, and F is given by (1.4.12).

Conversely, let F ∈ Hol(∆,C) be given by (1.4.12); we should prove that F satisfies
(1.4.9). If f ≡ ib for some b ∈ R∗, then (1.4.9) is easily verified. Assume then Re f(z) > 0
for all z ∈ ∆. Then Theorem 1.1.40 applied to (f − 1)/(f + 1) yields

∀z ∈ ∆
|f 0(z)|

2Re f(z)
≤ 1

1− |z|2 . (1.4.14)

Now

2 z F + (1− |z|2)F 0 = (1− |z|2)(τz − 1)(z − τ)f 0 −
£
|τz − 1|2 + |z − τ |2

§
f ;

hence (1.4.14) yields

Re[2 z F + (1− |z|2)F 0] = (1− |z|2)Re
£
(τz − 1)(z − τ)f 0

§
−

£
|τz − 1|2 + |z − τ |2

§
Re f

≤ (1− |z|2)|τz − 1| |z − τ | |f 0| −
£
|τz − 1|2 + |z − τ |2

§
Re f

≤ −(|τz − 1| − |z − τ |)2 Re f ≤ 0,
(1.4.15)

and we are done, q.e.d.
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We now spend a couple of words about one-parameter groups on ∆. A one-parameter
group Φ:R → Aut(∆) clearly acts on ∆; therefore, by Proposition 1.1.13, the fixed point
set of Φt is independent from t > 0. In particular, every Φt is either elliptic (and Φ is an
elliptic one-parameter group), or parabolic (and Φ is a parabolic one-parameter group), or
hyperbolic (and Φ is a hyperbolic one-parameter group). Furthermore, since the group of
all elliptic — parabolic, hyperbolic — automorphisms with given fixed points is isomorphic
to (S1, ·) — (R,+), (R+, ·) —, the one-parameter groups on ∆ are essentially determined
by Lemmas 1.4.3, 1.4.4 and 1.4.5. For sake of completeness, in the next corollary we
explicitely describe the infinitesimal generators of one-parameter groups:

Corollary 1.4.20: Let Φ:R → Aut(∆) be a non-trivial one-parameter group on ∆, and
τ ∈ ∆ its Wolff point. Then the infinitesimal generator of Φ is of the form:
(i) if Φ is an elliptic one-parameter group

F (z) = (τz − 1)(z − τ)ia, (1.4.16)

for some a ∈ R∗, and the spectral value of Φ at τ is (|τ |2 − 1)ia;
(ii) if Φ is a parabolic one-parameter group

F (z) = (z − τ)2τia, (1.4.17)

for some a ∈ R∗;
(iii) if Φ is a hyperbolic one-parameter group

F (z) = (z2 − τ2)τa + ibτ(z − τ)2, (1.4.18)

for some a ∈ R∗ and b ∈ R, and the other fixed point is σ = τ(−a + ib)/(a + ib) ∈ @∆.
Conversely, every function of the form (1.4.16) — (1.4.17), (1.4.18) — is the infinitesimal
generator of an elliptic — parabolic, hyperbolic — one-parameter group of Wolff point τ .

Proof: Let F ∈ Hol(∆,C) be an infinitesimal generator of a non-trivial one-parameter
group Φ:R → Aut(∆); therefore F satisfies (1.4.11), and it is of the form (1.4.12) for
suitable f ∈ P and τ ∈ ∆.

If f ≡ ia for some a ∈ R∗, then F is given either by (1.4.16) — if τ ∈ ∆ — or by
(1.4.17) — if τ ∈ @∆. Assume then Re f(z) > 0 for all z ∈ ∆. Now (1.4.11) implies that all
the inequalities in (1.4.15) are actually equalities. The last one yields τ ∈ @∆, the second
one implies that (1.4.14) is an equality too, and the first one yields f 0(z) = 2aτ(z − τ)−2

for a suitable a ∈ R. It follows that f(z) = 2aτ(τ − z)−1 + c for some c ∈ C; moreover,
the equality in (1.4.14) forces Re c = −a, and so

f(z) = a
τ + z

τ − z
+ ib,

for some b ∈ R. In particular, since we assumed Re f > 0 everywhere, a 6= 0, and then,
by (1.4.12), F is of the form (1.4.18), as desired.

Finally, it is easy to check that every F of the form (1.4.16), (1.4.17) or (1.4.18)
satisfies (1.4.11); furthermore, since (1.4.16) has only one zero which is in ∆, (1.4.17) has
a unique zero which is in @∆, and (1.4.18) has two distinct zeroes on @∆, it is evident that
(1.4.16) characterizes elliptic, (1.4.17) parabolic and (1.4.18) hyperbolic one-parameter
groups, q.e.d.
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We end this section giving another, quite concrete, description of the action of one-
parameter semigroups on ∆, relying on two particular kind of domains.

We start with fixed point free one-parameter semigroups. A domain D ⊂ C such
that z + it ∈ D for every z ∈ D and t ≥ 0 is called vertically invariant. Let D be a
simply connected vertically invariant domain (different from C), and take a biholomor-
phism g:∆ → D. Then define Φ:R+ → Hol(∆,∆) by

Φt(z) = g−1
°
g(z) + it

¢
.

Φ is clearly a one-parameter semigroup without fixed points, of infinitesimal generator
F (z) = i/g0(z). Then the idea is that every fixed point free one-parameter semigroup
on ∆ is obtained in this way.

To prove this assertion we need a preliminary lemma:

Lemma 1.4.21: Let f :H+ → C be a holomorphic function such that Re f 0 ≥ 0. Then
f is either constant or injective.

Proof: If there is z0 ∈ H+ so that Re f 0(z0) = 0, then f(z) = a + ibz for some a, b ∈ R,
and f is either constant or injective. We henceforth suppose Re f 0 > 0.

Assume, by contradiction, that f(z1) = f(z2) for two distinct points z1, z2 ∈ H+.
Integrating along the segment σ from z1 to z2 we obtain

0 = f(z2)− f(z1) =
Z

σ

f 0(≥) d≥ = (z2 − z1)
1Z

0

f 0
°
z1 + t(z2 − z1)

¢
dt.

Hence z1 6= z2 implies

0 = Re
1Z

0

f 0
°
z1 + t(z2 − z1)

¢
dt =

1Z

0

Re f 0
°
z1 + t(z2 − z1)

¢
dt > 0,

contradiction, q.e.d.

Then we have

Theorem 1.4.22: Every fixed point free one-parameter semigroup Φ:R+ → Hol(∆,∆)
is of the form

Φt(z) = g−1
°
g(z) + it

¢
, (1.4.19)

where g is a biholomorphism between ∆ and a domain D ⊂ C vertically invariant; g is
uniquely determined up to an additive constant. Furthermore, Φ is a one-parameter group
iff D is either a vertical strip or a vertical half-plane.

Proof: Let Φ be a fixed point free one-parameter semigroup with infinitesimal generator F .
We know that F (z) = τ(z−τ)2f(z) for a suitable τ ∈ @∆ and f ∈ P. Since we are assuming
Φ without fixed points, f(z) 6= 0 for all z ∈ ∆.
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Let µ:∆ → H+ be given by

µ(z) =
i

2
τ + z

τ − z
.

Then µ is a biholomorphism between ∆ and H+ such that µ0(z) = iτ(z − τ)−2. Let
h ∈ Hol(H+,C) be such that h0(z) = 1/f

°
µ−1(z)

¢
; by Lemma 1.4.21, h is injective.

Therefore g = h ◦ µ:∆ → C is injective too, and furthermore

g0(z) =
i

F (z)
.

Now fix z0 ∈ ∆. Then

@

@t
g ◦ Φt(z0) = g0

°
Φt(z0)

¢
· F

°
Φt(z0)

¢
≡ i;

therefore
g
°
Φt(z)

¢
= g(z) + it.

This means that D = g(∆) is vertically invariant, and Φ is given by (1.4.19).
For the uniqueness, let g1:∆ → D1 be another biholomorphism between ∆ and a

vertically invariant domain D1 such that (1.4.19) holds. Differentiating

g−1
°
g(z) + it

¢
= g−1

1

°
g1(z) + it

¢

with respect to t at t = 0 we get g0(z) = g01(z) for all z ∈ ∆, and then g − g1 is constant.
Conversely, it is easy to check that g + c satisfies (1.4.19) for every c ∈ C.

Finally, Φ is a one-parameter group iff for every t ∈ R the function z 7→ z + it is an
automorphism of D, that is iff D is either a vertical strip or a vertical half-plane, q.e.d.

An analogous theorem holds for one-parameter groups with a fixed point. Again, let’s
first describe the example. Fix ∏ ∈ C∗; a domain D ⊂ C is ∏-invariant if e−∏tz ∈ D
for all t ≥ 0 and z ∈ D. Let D ⊂ C be a simply connected ∏-invariant domain (different
from C), with Re∏ ≥ 0 and 0 ∈ D. Let g:∆ → D be a biholomorphism such that g(0) = 0.
Then Φ:R+ → Hol(∆,∆) given by

Φt(z) = g−1
°
e−∏tg(z)

¢

is a one-parameter semigroup on ∆ with fixed point 0 and spectral value −∏ at 0. That’s
all:

Theorem 1.4.23: Every non-trivial one-parameter semigroup Φ:R+ → Hol(∆,∆) with
fixed point τ ∈ ∆ is of the form

Φt(z) = g−1
°
e−∏tg(z)

¢
(1.4.20)
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where ∏ ∈ C∗ with Re∏ ≥ 0, and g is a biholomorphism between ∆ and a ∏-invariant
domain D ⊂ C so that g(τ) = 0; ∏ is uniquely determined, and g is uniquely determined
up to a multiplicative constant. Furthermore, Φ is a one-parameter group iff Re∏ = 0 and
D is a disk.

Proof: By (1.4.12), the infinitesimal generator of Φ is given by F (z) = −(1−τz)(z−τ)f(z)
for a suitable f ∈ P; note that 0 /∈ f(∆) for Φ is non-trivial. Let ∞0 ∈ Aut(∆) be given by
∞0(z) = (z − τ)/(1− τz), and set f0 = (1− |τ |2)f ◦ ∞−1

0 and f̃ = f0 ◦ π:H+ → C, where
π:H+ → ∆∗ is the universal covering map π(w) = e2πiw. Choose a holomorphic function
h̃:H+ → C such that h̃0 = 1/f̃ . Now, f̃(w + 1) = f̃(w) for all w ∈ H+; hence there is
µ ∈ C such that h̃(w +1) = h̃(w)+µ for all w ∈ H+. Since h̃ is injective (Lemma 1.4.21),
µ 6= 0; set h = µ−1h̃. h is a biholomorphism between H+ and eD = h(H+); moreover,
h0 = µ−1/f̃ and h(w + 1) = h(w) + 1 for all w ∈ H+. This implies that h factorizes
through π, defining a biholomorphism ĝ:∆∗ → D∗ = π( eD) such that ĝ ◦ π = π ◦ h. In
particular, ĝ satisfies

∀z ∈ ∆∗ zĝ0(z) =
∏ ĝ(z)
f0(z)

,

where ∏ = µ−1.
Now set g0 = ĝ ◦ ∞0. Then g0 satisfies

∀z ∈ ∆ \ {τ} g00(z) = −∏ g0(z)
F (z)

.

Therefore for every z0 ∈ ∆ \ {z} we have

@

@t
g0

°
Φt(z0)

¢
= g00

°
Φt(z0)

¢
· F

°
Φt(z0)

¢
= −∏ g0

°
Φt(z0)

¢
,

and so
g0

°
Φt(z0)

¢
= e−∏tg0(z0). (1.4.21)

Now, g0 extends to a biholomorphism g:∆ → D = D∗ ∪ {w0} ⊂ bC such that g(τ) = w0

(Lemma 1.1.50 and Theorem 1.1.51). (1.4.21) then implies w0 = 0 or w0 = 1; furthermore,
D is ∏-invariant, and g satisfies (1.4.20). It remains to show that we can assume Re∏ ≥ 0
and w0 = 0.

Assume first Re∏ > 0. In this case, (1.4.21) shows that g0

°
Φt(z0)

¢
→ 0 as t → +1

for any z0 ∈ ∆ \ {τ}, and this implies w0 = 0; so in this case we are done.
If Re∏ = 0 and w0 = 0, there is nothing to change. If Re∏ = 0 and w0 = 1, then it

suffices to replace ∏ by −∏ and g by 1/g (note that 0 /∈ D∗).
Finally, if Re∏ < 0, (1.4.21) shows that g0

°
Φt(z0)

¢
→ 1 as t → +1 for any

z0 ∈ ∆ \ {τ}; hence w0 = 1, and replacing ∏ by −∏ and g by 1/g we are again done.
It remains to prove the last two assertions. Assume that µ ∈ C∗ and g1:∆ → D1 are

such that

∀z ∈ ∆ ∀t ≥ 0 g−1
°
e−∏tg(z)

¢
= g−1

1

°
e−µtg1(z)

¢
.
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Differentiating with respect to z at z = τ we immediately get µ = ∏. Differentiating with
respect to t at t = 0 we get gg01 − g1g0 = 0, that is g1 = cg for some constant c ∈ C∗.
Conversely, it is easy to check that cg satisfies (1.4.20) for every c ∈ C∗.

Finally, assume Φ is a one-parameter group. Then Φt(z0) cannot converge as t → +1
for any z0 ∈ ∆ \ {τ}; this implies, by (1.4.20), Re∏ = 0. In particular, D is a simply
connected domain invariant under rotations, that is a disk, q.e.d.

1.4.3 One-parameter semigroups on Riemann surfaces

In the latter section we thoroughly investigated one-parameter semigroups on ∆; in this
section we shall do the same on other Riemann surfaces. Our task is made possible by

Proposition 1.4.24: Let Φ:R+ → Hol(X,X) be a one-parameter semigroup on a Rie-
mann surface X with non-abelian fundamental group. Then Φ is trivial.

Proof: By Theorem 1.2.19 we should have Φt = idX for small t, and hence for all t, q.e.d.

So we are left with just a few cases to investigate.

Proposition 1.4.25: Let Φ:R+ → Hol(bC, bC) be a one-parameter semigroup on the ex-
tended complex plane bC. Then Φ is a one-parameter group, and there is ∞ ∈ Aut(bC) such
that either
(i) ∞−1 ◦ Φt ◦ ∞(z) = z + at for some a ∈ C, or
(ii) ∞−1 ◦ Φt ◦ ∞(z) = ebtz for some b ∈ C.

Proof: By Proposition 1.4.6, Φ is a one-parameter group, for bC is compact. Looking
at the description of the automorphisms of bC given in Proposition 1.1.22, we see that
Φ1 admits either two distinct fixed points or one (double) fixed point. In the latter case,
there is ∞0 ∈ Aut(bC) such that we can write ∞−1 ◦ Φ1 ◦ ∞(z) = z + a for a suitable a ∈ C.
Since Φt for t 6= 1 is an automorphism of bC commuting with Φ1, (1.1.22) shows that we
should have ∞−1 ◦ Φt ◦ ∞(z) = z + α(t), where α:R+ → (C,+) is a continuous semigroup
homomorphism with α(1) = a. Then Lemma 1.4.2 yields α(t) = at, and we are in case (i).

If Φ1 has two distinct fixed points, there is again ∞ ∈ Aut(bC) so that we can write
∞−1 ◦ Φ1 ◦ ∞(z) = ebz, for a suitable b ∈ C. Using again (1.1.22) we see that an au-
tomorphism φ of bC commuting with Φ1 should be of the form ∞−1 ◦ φ ◦ ∞(z) = ∏zε(φ),
where ∏ ∈ C∗, and ε(φ) = ±1.

The map ε:R+ → Z2 given by ε(t) = ε(Φt) is a semigroup homomorphism; by
Lemma 1.4.1, ε ≡ 1. Hence ∞−1 ◦ Φt ◦ ∞(z) = ∏(t)z for all t ≥ 0, where ∏:R+ → (C∗, ·) is
a continuous semigroup homomorphism with ∏(1) = eb. By Lemma 1.4.5, ∏(t) = ebt, and
we are in case (ii), q.e.d.

We consider now the complex plane:
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Proposition 1.4.26: Let Φ:R+ → Hol(C,C) be a non-trivial one-parameter semigroup
on C. Then either
(i) Φt(z) = z + bt for some b ∈ C∗, or
(ii) Φt(z) = eatz − b(eat − 1) for some a ∈ C∗ and b ∈ C.
In case (i), the infinitesimal generator is F ≡ b, and Φ has no fixed points. In case (ii),
the infinitesimal generator is F (z) = a(z − b), and b is the fixed point of Φ with spectral
value a.

Proof: By Proposition 1.4.6, every Φt is an injective entire function, that is a linear poly-
nomial. Write Φt(z) = α(t)z + β(t), where α:R+ → C∗ and β:R+ → C are continuous
and satisfy

α(s + t) = α(s)α(t),
β(s + t) = α(s)β(t) + β(s).

(1.4.22)

The first one, by Lemma 1.4.5, implies α(t) = eat for some a ∈ C. If a = 0, the second
one implies β(t) = bt for some b ∈ C∗, by Lemma 1.4.2, and we are in case (i).

If a 6= 0, fix t0 > 0 such that eat0 6= 1. Then, setting first t = t0 and next s = t0 in
the second equation (1.4.22) and subtracting the results, we get

β(t) =
β(t0)

1− eat0
(eat − 1),

and we are in case (ii). The last part of the assertion is just a computation, q.e.d.

The next case is C∗:

Proposition 1.4.27: Let Φ:R+ → Hol(C∗,C∗) be a non-trivial one-parameter semigroup
on C∗. Then Φt(z) = eatz for some a ∈ C∗. The infinitesimal generator is F (z) = az, and
Φ has no fixed points.

Proof: By Proposition 1.4.6 every Φt is injective, and thus the restriction of a homogeneous
linear polynomial. Hence Φt(z) = α(t)zε(t), where α:R+ → C∗ and ε:R+ → Z2 are
continuous semigroup homomorphisms. Then the assertion follows from Lemmas 1.4.1
and 1.4.5, q.e.d.

The next example is the torus. The connected component at the identity of the
automorphism group of a torus X is isomorphic to R2/Z2, by Proposition 1.1.32. Now,
since X is compact, Proposition 1.4.6 implies that every one-parameter semigroup Φ on X
is a one-parameter group; in particular, it can be thought of as a continuous semigroup
homomorphism Φ:R+ → R2/Z2. Then Φ lifts to a continuous semigroup homomorphism
eΦ:R+ → C; Lemma 1.4.2 completely determines this kind of homomorphism, and we have
proved

Proposition 1.4.28: Let X be a torus, and Φ:R+ → Hol(X,X) a one-parameter semi-
group on X. Then Φ is a one-parameter group, and the lifting eΦ:R+ → Hol(C,C) is given
by eΦt(z) = z + at for a suitable a ∈ C.

Finally we are left with the doubly connected domains, that is ∆∗ and the annuli
A(r, 1) = {z ∈ C | r < |z| < 1} for 0 < r < 1. We begin with A(r, 1):



Notes 99

Proposition 1.4.29: Let Φ:R+ → Hol
°
A(r, 1), A(r, 1)

¢
be a non-trivial one-parameter

semigroup on an annulus A(r, 1) with 0 < r < 1. Then Φt(z) = eiatz for some a ∈ R∗.
The infinitesimal generator is F (z) = iaz and Φ has no fixed points.

Proof: By Corollary 1.2.24, Φ is a semigroup of automorphisms; hence

Φt(z) = α(t) r(1−ε(t))/2zε(t),

where a:R+ → C∗ and ε:R+ → Z2 are continuous semigroup homomorphisms. Then the
assertion follows from Lemmas 1.4.1 and 1.4.5, q.e.d.

We end the section with ∆∗:

Proposition 1.4.30: Let Φ:R+ → Hol(∆∗,∆∗) be a non-trivial one-parameter semi-
group on ∆∗. Then there is a one-parameter semigroup eΦ on ∆ with fixed point 0 such
that Φt = eΦt|∆∗ for all t ≥ 0. In particular, Φ has no fixed points and its infinitesimal
generator is of the form F (z) = −zf(z), where f ∈ P.

Proof: Every Φt has a removable singularity in 0, and hence is the restriction of a function
eΦt ∈ Hol(∆,∆). Obviously, eΦ:R+ → Hol(∆,∆) is a one-parameter semigroup on ∆; it
remains to show that eΦt(0) = 0 for all t > 0, for then the last assertion follows from
Theorem 1.4.19.

Assume, by contradiction, that eΦt0(0) 6= 0 for some t0 > 0. Since eΦt0 sends ∆∗ into
itself, eΦt0 has no zeroes in ∆. The same argument works for any eΦt0/n (where n ≥ 1),
because eΦt0/n(0) = 0 implies eΦt0(0) = (eΦt0/n)n(0) = 0. But eΦt0/n → id∆ as n → +1,
and Hurwitz’s theorem provides a contradiction, q.e.d.

Notes

It is difficult to date precisely the birth of the concept of one-parameter semigroups of
holomorphic functions. At the beginning of this century Tricomi (see for instance Tri-
comi [1917]) was dealing with problems somehow regarding the asymptotic behavior of
one-parameter semigroups; however, only later Wolff [1938] recognized the relevance of
equations like (1.4.4). The typical approach used to be via the problem of fractional itera-
tion; loosely stated, given f ∈ Hol(X,X) they looked for a reasonable way of defining the
r-th iterate of f for any r positive real. One standard request was that two fractional iter-
ates of the same function must commute; from here trying to imbed f in a one-parameter
semigroup is a very short step. We saw (Proposition 1.4.6) that there are non trivial ob-
structions to this approach, and indeed a great amount of work has been spent on this
question; a recent paper in this field with a good bibliography is Cowen [1981].

Anyway, a consequence of this state of affairs is that the results described in this
chapter are quite recent, coming mainly from Berkson and Porta [1978] and Heins [1981].

Theorem 1.4.11 is the main result of Berkson and Porta [1978]. It should be remarked
that an infinitesimal generator actually is a holomorphic vector field on the domain; hence
it could be possible, using this interpretation, to extend Theorem 1.4.11 to any Riemann
surface, but Proposition 1.4.24 made such a generalization useless.
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Theorem 1.4.14 has been proved for the upper half-plane by Berkson and Porta [1978],
as well as Theorems 1.4.17 and 1.4.19 in the disk, using different arguments. Our proof of
Theorem 1.4.17 is due to Vesentini.

Lemma 1.4.21 is due to Wolff [1934], Noshiro [1935] and Warschawski [1935]; it is also
the first step in the characterization, due to Grunsky [1971], of the domains convex in
the vertical direction, that is such that the intersection with any vertical line is connected
(possibly empty).

Theorems 1.4.22 and 1.4.23 are in Heins [1981]. They are an indication of strong rela-
tionships between one-parameter semigroups and the theory of conformal representations;
a work in this direction is Goryăınov [1987].

Finally, the whole section 1.4.3 comes from Heins [1981], where also the case of dis-
continuous one-parameter semigroups is considered.


