
Chapter 1.3
Iteration theory

In this chapter we begin to deal with the main argument of this book: iteration theory.
As anticipated in the introduction, we shall mainly discuss hyperbolic Riemann surfaces,
where the whole strength of Montel’s theorem is available. The idea is that if X is a
hyperbolic Riemann surface and f ∈ Hol(X,X), then the sequence of iterates of f is a
normal family, and so its behavior cannot be chaotic. Indeed, it will turn out that if f is
not an automorphism then {fk} is either compactly divergent or converges, uniformly on
compact sets, to a constant.

This is clearly the best result of this kind for a generic hyperbolic Riemann sur-
face. But if D ⊂ bX is a hyperbolic domain, then we can say something more. In this
case, in fact, Hol(D,D) is contained in Hol(D, bX), a space without compactly divergent
sequences; therefore, the sequence of iterates of a function f ∈ Hol(D,D) is relatively
compact in Hol(D, bX), and so it always has converging subsequences, converging possibly
to a point of @D.

This observation (already anticipated in Proposition 1.1.46) leads to the core of this
chapter: Heins’ theorem, showing that if D ⊂ bX is a hyperbolic domain of regular type
and f ∈ Hol(D,D) is not an automorphism, then the sequence of iterates of f converges,
uniformly on compact sets, to a constant τ ∈ D. The proof of Heins’ theorem is divided
in three parts. In the first section, we shall study in detail the sequence of iterates of a
holomorphic function with a fixed point, using still another generalization of Schwarz’s
lemma (Theorem 1.3.4). In the second section we shall prove the Wolff-Denjoy theorem
(that is Heins’ theorem in ∆), which has been the model along which the whole theory
has developed (for instance, this book is the conclusion of our efforts to extend the Wolff-
Denjoy theorem to several variables). Finally, in the third section we shall show how to
generalize the tools used to prove the Wolff-Denjoy theorem — namely, the horocycles — to
get Heins’ theorem in its full strength.

Iteration theory is the most important but not the only argument discussed in this
chapter. We shall complete the study of the relationship between commuting functions
and fixed points, showing that two commuting functions in Hol(∆,∆) have a common
fixed point (even if they have no fixed points. . . see Theorem 1.3.24), and in the meantime
we shall also present Lindelöf’s theorem, which will become quite important in the second
part of this book.

1.3.1 The fixed point case

The aim of this first section is the study of the sequence of iterates of a function with a fixed
point; our main tool will be another generalization of Schwarz’s lemma. If f ∈ Hol(∆,∆)
is such that f(z0) = z0 for some z0 ∈ ∆, then Corollary 1.1.4 yields |f 0(z0)| ≤ 1, with
equality iff f ∈ Aut(∆). Well: this is true for any hyperbolic Riemann surface, and it will
be of the greatest importance for us.

Our investigation begins with a characterization of the limit points of {fk}. We need:
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Lemma 1.3.1: Let X be a Riemann surface, and f ∈ Hol(X,X). Then idX can be a
limit point of {fk} only if f ∈ Aut(X).

Proof: Obviously, f is one-to-one. Take z0 ∈ X: by Corollary 1.1.36, z0 ∈ fk∫ (X) ⊂ f(X)
for all ∫ large enough, and so f is onto, q.e.d.

A non-periodic automorphism f of a Riemann surface X such that idX is a limit point
of {fk} will be called pseudoperiodic. Now we may prove:

Theorem 1.3.2: Let X be a hyperbolic Riemann surface, and f ∈ Hol(X,X). Let
h ∈ Hol(X,X) be a limit point of the sequence {fk}. Then either
(i) h is a constant z0 ∈ X, or
(ii) h is an automorphism of X. In this case, f ∈ Aut(X) too.

Proof: Write h = lim
∫→1

fk∫ , and set m∫ = k∫+1 − k∫ . By Montel’s Theorem 1.1.43, up
to a subsequence we can assume that {fm∫} either converges to a holomorphic map g or
is compactly divergent. Suppose h is not constant; then h(X) is open in X. Now, for
any z ∈ X we have

lim
∫→1

fm∫
°
fk∫ (z)

¢
= lim

∫→1
fk∫+1(z) = h(z);

therefore {fm∫} cannot be compactly divergent, and g is the identity on the open sub-
set h(X) of X. Hence g = idX ; by Lemma 1.3.1, f is an automorphism. It remains to
show that h itself is an automorphism. But this follows immediately from Corollary 1.1.47,
q.e.d.

For hyperbolic domains we can be slightly more precise:

Corollary 1.3.3: Let D ⊂ bX be a hyperbolic domain, and f ∈ Hol(D,D). Let h:D → bX
be a limit point in Hol(D, bX) of the sequence {fk}. Then either
(i) h is a constant z0 ∈ D, or
(ii) h is an automorphism of D. In this case, f ∈ Aut(D) too.

Proof: It suffices to notice that if h is not constant then it is contained in Hol(D,D), and
then apply Theorem 1.3.2, q.e.d.

To state the generalization of Schwarz’s lemma we mentioned before, we ought to
define what we mean by derivative at a fixed point of a function defined on a Riemann
surface. Let X be a Riemann surface, and let f ∈ Hol(X,X) admit a fixed point z0 ∈ X.
Then the differential dfz0 sends the complex tangent space Tz0X at X in z0 into itself;
hence dfz0 acts on Tz0X by multiplication by a complex number, that we shall denote
by f 0(z0). f 0(z0) is sometimes called the multiplier of f at the fixed point z0. Clearly, if
X actually is a plane domain, f 0(z0) is the usual derivative of f at z0.

And now we can prove:
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Theorem 1.3.4: Let X be a hyperbolic Riemann surface, f ∈ Hol(X,X) and z0 ∈ X a
fixed point of f . Then
(i) |f 0(z0)| ≤ 1;
(ii) f 0(z0) = 1 iff f = idX ;
(iii) |f 0(z0)| = 1 iff f ∈ Aut(X).

Proof: Let π:∆ → X be the universal covering map of X. Since π is a local isometry
for the Poincaré distances, there is an open ball B for ωX centered about z0 which is
biholomorphic to ∆. Since, by Theorem 1.1.40, f(B) ⊂ B, the Schwarz-Pick lemma
immediately yields (i) and (ii). In particular, if f ∈ Aut(X) then (i) applied to f and f−1

yields |f 0(z0)| = 1.
Finally, assume |f 0(z0)| = 1. By Theorem 1.1.43, the sequence {fk} has a subsequence

{fk∫} converging to a holomorphic function h. Obviously, |h0(z0)| = 1; hence h is not
constant and, by Theorem 1.3.2, f is an automorphism, q.e.d.

On the unit disk ∆ we can find functions f ∈ Hol(∆,∆) with f(0) = 0 which are
not automorphisms and with |f 0(0)| arbitrarily close to 1. Surprisingly, this is not true in
multiply connected hyperbolic Riemann surfaces, as shown in the Aumann-Carathéodory
Starrheitssatz:

Corollary 1.3.5: Let X be a multiply connected hyperbolic Riemann surface. Then for
every z0 ∈ X we have

sup
©
|f 0(z0)|

ØØ f ∈ Hol(X,X), f /∈ Aut(X) and f(z0) = z0

™
< 1. (1.3.1)

Proof: If X = ∆∗, then every f ∈ Hol(∆∗,∆∗) is the restriction of a holomorphic func-
tion f̃ ∈ Hol(∆,∆) such that f̃(∆∗) ⊂ ∆∗. In particular, f̃−1(0) is either empty or {0}.
Assume there exist a sequence {f∫} ⊂ Hol(∆∗,∆∗) \ Aut(∆∗) and a point z0 ∈ ∆∗ such
that f∫(z0) = z0 and |f 0∫(z0)| → 1. We may assume that f∫ → g ∈ Hol(∆∗,∆∗). Ob-
viously, g(z0) = z0 and |g0(z0)| = 1. By Theorem 1.3.4, g ∈ Aut(∆∗); then g̃ ∈ Aut(∆)
fixes 0 and z0, and thus g̃ = id∆. So we have constructed a sequence f̃∫ → id∆ such
that f̃∫(z0) = z0 and f̃∫(∆∗) ⊂ ∆∗ for all ∫ ∈ N. By Corollary 1.1.36, f̃∫(0) = 0 for all
sufficiently large ∫, and this implies f̃∫ = id∆ eventually, contradiction.

Finally, assume X not biholomorphic to ∆∗. Suppose, by contradiction, there is a se-
quence {f∫} ⊂ Hol(X,X)\Aut(X) such that f∫(z0) = z0 for all ∫ ∈ N and |f 0∫(z0)| → 1. By
Theorem 1.1.43, up to a subsequence we can assume that {f∫} tends toward a holomorphic
function g:X → X. Obviously, g(z0) = z0 and |g0(z0)| = 1; therefore, by Theorem 1.3.4,
g ∈ Aut(X). Hence we have constructed a sequence of non-automorphisms converging
toward an automorphism; by Corollary 1.2.24 this is impossible, q.e.d.

Using Theorem 1.3.4 we can completely describe the structure of the isotropy group
of a point in a hyperbolic Riemann surface:
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Corollary 1.3.6: Let X be a hyperbolic Riemann surface. Then either Autz0(X) is finite
cyclic for all z0 ∈ X (and X is multiply connected) or Autz0(X) is isomorphic to S1 for
all z0 ∈ X (and X is simply connected).

Proof: Fix z0 ∈ X, and define D: Autz0(X) → S1 by D(∞) = ∞0(z0). By Theorem 1.3.4,
D is a continuous injective homomorphism of Autz0(X) into S1; since (Corollary 1.1.47)
Autz0(X) is compact, D is an isomorphism of topological groups between Autz0(X) and
a closed subgroup of S1.

If X is simply connected, we already know that Autz0(X) is isomorphic to S1 for
all z0 ∈ X. If X is multiply connected with non-abelian fundamental group, Autz0(X) is
discrete for all z0 ∈ X (Theorem 1.2.19), and hence finite cyclic. Finally, if X is doubly
connected Proposition 1.1.32 shows that Autz0(X) is either cyclic of order 2 or trivial for
all z0 ∈ X, q.e.d.

Now we are ready to describe the behavior of the sequence of iterates of a function
with a fixed point:

Theorem 1.3.7: Let X be a hyperbolic Riemann surface. Let f ∈ Hol(X,X) admit a
fixed point z0 ∈ X. Then either
(i) |f 0(z0)| < 1 and the sequence {fk} converges to z0, or
(ii) f is a periodic automorphism, or
(iii) f is a pseudoperiodic automorphism. This latter possibility can occur only if X is
simply connected.

Proof: By Theorem 1.3.4, |f 0(z0)| ≤ 1. If |f 0(z0)| = 1, f is an automorphism, and the
assertion follows from Corollary 1.3.6. So assume |f 0(z0)| < 1. Since f has a fixed point,
{fk} cannot have compactly divergent subsequences. Let h1, h2 be two limit points of {fk}.
Since f /∈ Aut(X), by Theorem 1.3.2 both h1 and h2 are constant; but z0 should be a fixed
point for both h1 and h2, and so h1 ≡ h2 ≡ z0. In other words, z0 is the unique limit point
of {fk}, and fk → z0, q.e.d.

For obvious reasons, a point z0 ∈ X such that f(z0) = z0 and |f 0(z0)| < 1 is called an
attractive fixed point of f .

We end this section with a corollary we shall need later on:

Corollary 1.3.8: Let X be a hyperbolic Riemann surface, and assume there exists a
function f ∈ Hol(X,X), f not the identity, with two fixed points. Then X is multiply
connected and f is a periodic automorphism of X.

Proof: By Schwarz’s lemma, X must be multiply connected. If f were not an automor-
phism, the sequence {fk} would have to converge to each of the distinct fixed points (by
Theorem 1.3.7), impossible.

Now let π:∆ → X be the universal covering map of X, and denote by Γ ⊂ Aut(∆)
the automorphism group of the covering. Let z0, z1 ∈ X be the fixed points of f , and
choose z̃0, z̃1 ∈ ∆ so that π(z̃j) = zj for j = 0, 1. We can lift f to an automorphism f̃
of ∆ such that f̃(z̃0) = z̃0. Then there exists ∞1 ∈ Γ such that

f̃(z̃1) = ∞1(z̃1). (1.3.2)
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We claim that for every k ∈ N there is ∞k ∈ Γ such that f̃k(z̃1) = ∞k(z̃1). By induction
on k. For k = 1 it is (1.3.2); so assume there is ∞k−1 ∈ Γ such that f̃k−1(z̃1) = ∞k−1(z̃1).
Since f̃ is the lifting of a function in Hol(X,X), there is ∞̃ ∈ Γ such that f̃ ◦ ∞k−1 = ∞̃ ◦ f̃ .
Then

f̃k(z̃1) = f̃
°
∞k−1(z̃1)

¢
= ∞̃

°
f̃(z̃1)

¢
= (∞̃ ◦ ∞1)(z̃1),

and ∞k = ∞̃ ◦ ∞1 is as claimed.
Now, {f̃k(z̃1)} = {∞k(z̃1)} is contained in a compact subset of ∆, for f̃ has a fixed

point; hence it should be a finite set, for Γ acts properly discontinuously on ∆. It follows
that f̃k0(z̃1) = z̃1 for some k0 ∈ N, and so f̃ (and hence f) is periodic, q.e.d.

Functions satisfying the hypotheses of Corollary 1.3.8 do exists; take for instance the
doubly connected domain D = {z ∈ C | 1/2 < |z| < 2} and the function f(z) = 1/z.

Now we shall move on to fixed point free functions, the realm of Wolff’s lemma.

1.3.2 The Wolff-Denjoy theorem

In this short (but important) section we shall study iteration theory in ∆, proving the
fundamental Wolff-Denjoy theorem:

Theorem 1.3.9: Let f ∈ Hol(∆,∆), and assume f is neither an elliptic automorphism
nor the identity. Then the sequence of iterates {fk} converges, uniformly on compact sets,
to the Wolff point τ ∈ ∆ of f .

Proof: If f has a fixed point, the assertion follows from Theorem 1.3.7; so assume f has
no fixed points.

If f is a parabolic automorphism, then transfering everything on H+ it becomes clear
that fk → τ(f), the unique fixed point of f . If f is a hyperbolic automorphism, then,
moving again to H+, we can assume f(w) = ∏w for some ∏ ∈ R+, ∏ 6= 1. Then the Wolff
point of f is 0 or 1 according to ∏ < 1 or ∏ > 1, and thus fk → τ(f).

So assume now that f /∈ Aut(∆). If h = lim
∫→1

fk∫ is a limit point of {fk} in Hol(∆,C),

by Corollary 1.3.3 h is a constant τ ∈ ∆. If τ were an interior point of ∆, we would have

f(τ) = lim
∫→1

f
°
fk∫ (τ)

¢
= lim

∫→1
fk∫

°
f(τ)

¢
= τ,

impossible; therefore τ ∈ @∆.
We claim that τ = τ(f). In fact, by Wolff’s lemma for any R > 0 (and ∫ ∈ N) we

have
fk∫

°
E

°
τ(f), R

¢¢
⊂ E

°
τ(f), R

¢
;

hence
{τ} = h

°
E

°
τ(f), R

¢¢
⊂ E

°
τ(f), R

¢
∩ @∆ = {τ(f)},

that is our claim. But thus τ(f) is the unique limit point of {fk}, and we are done, q.e.d.
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Therefore, beside the trivial case of elliptic automorphisms, a sequence of iterates
always converges, and the limit is always a constant function. If f ∈ Hol(∆,∆) has a fixed
point z0 ∈ ∆, then the result could be expected, for by Schwarz’s lemma f contracts the
Poincaré disks centered at z0. If f has no fixed points, then again the result could be
expected when f has angular derivative strictly less than 1 at its Wolff point τ , for in this
case f contracts the horocycles centered at τ , by Wolff’s lemma. The remarkable fact is
that the theorem holds even if f has angular derivative 1 at τ(f), when the horocycles
are just turned around. Even more remarkable will be the generalization to hyperbolic
domains of regular type, but we defer it to the next section.

If f is an automorphism, we can say a bit more. If f is elliptic, we know that {fk} does
not converge. If f is parabolic, {fk} converges to the unique fixed point in the boundary.
If f is hyperbolic, {fk} still converges to a fixed point in the boundary, but which one?
The answer is

Proposition 1.3.10: Let f ∈ Aut(∆) be hyperbolic. Then {fk} converges to the fixed
point of f farthest from f−1(0).

Proof: Let a = f−1(0) 6= 0, and write

f(z) = eiθ z − a

1− az
,

for a suitable θ ∈ R. Let τ1, τ2 ∈ @∆ be the distinct fixed points of f , where τ1 is its Wolff
point and τ2 is the other one. Now

∀z ∈ ∆ f 0(z) = eiθ 1− |a|2
(1− az)2

.

We know that |f 0(τ1)| < 1 < |f 0(τ2)|, by Corollary 1.2.16 and Theorem 1.2.11; hence

|τ1 − a|2 > 1− |a|2 > |τ2 − a|2,

and the assertion follows from Theorem 1.3.9, q.e.d.

Due to the importance of the Wolff-Denjoy theorem in this book, we shall now describe
a second, totally independent proof.

Let f ∈ Hol(∆,∆). If f is an elliptic automorphism, then {fk} obviously does not
converge (and f is either periodic or pseudoperiodic). If f is a hyperbolic or parabolic au-
tomorphism, we can transfer everything on H+, and then it is evident that {fk} converges
to a fixed point of f in the boundary.

Assume now f /∈ Aut(∆). Take two distinct points z1, z2 ∈ ∆; then the sequence
{ω

°
fk(z1), fk(z2)

¢
} is either eventually zero or strictly decreasing.

Let h = lim
∫→1

fk∫ be a limit point of {fk}. Assume first that h ∈ Hol(∆,∆); we
claim that h is constant. Indeed, take z1, z2 ∈ ∆ such that h(z1) 6= h(z2), if possible.
Let δ be the limit (that we know to exist) of the sequence {ω

°
fk(z1), fk(z2)

¢
}; obviously,

δ = ω
°
h(z1), h(z2)

¢
> 0. But, since f /∈ Aut(∆), we have

ω
°
f
°
h(z1)

¢
, f

°
h(z2)

¢¢
< ω

°
h(z1), h(z2)

¢
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and

δ = ω
°
h(z1), h(z2)

¢
> ω

°
f
°
h(z1)

¢
, f

°
h(z2)

¢¢
= lim

∫→1
ω
°
fk∫+1(z1), fk∫+1(z2)

¢
= δ,

contradiction. So h is constant, say h ≡ τ . Now

ω
°
f(τ), τ) = lim

∫→1
ω
°
f
°
fk∫ (τ)

¢
, fk∫ (τ)

¢
= lim

∫→1
ω
°
fk∫

°
f(τ)

¢
, fk∫ (τ)

¢
= 0.

Therefore τ is the unique fixed point of f ; hence for all z ∈ ∆

lim
k→1

ω
°
τ, fk(z)

¢
= lim

k→1
ω
°
fk(τ), fk(z)

¢
= lim

∫→1
ω
°
fk∫ (τ), fk∫ (z)

¢
= 0,

for the sequence
©
ω
°
fk(τ), fk(z)

¢™
is decreasing, and thus fk → τ .

To end the proof, assume then that {fk} has no limit points in Hol(∆,∆); therefore
every limit point should be a constant in @∆. In particular, f cannot have fixed points.

We claim that for every z0 ∈ ∆ there is a subsequence {fk∫} such that

∀∫ ∈ N
ØØf

°
fk∫ (z0)

¢ØØ > |fk∫ (z0)|. (1.3.3)

Indeed, if this is not true, there should exist k1 ∈ N such that

∀k ≥ k1

ØØf
°
fk(z0)

¢ØØ ≤ |fk(z0)|.

Then

∀k > k1 |fk(z0)| =
ØØf

°
fk−1(z0)

¢ØØ ≤ |fk−1(z0)| ≤ . . . ≤ |fk1(z0)|,

and {fk} cannot have limit points in @∆.
So let {fk∫} be a subsequence satisfying (1.3.3) for a given z0 ∈ ∆; we may assume

that fk∫ → τ ∈ @∆. Let z∫ = fk∫ (z0); then

lim
∫→1

z∫ = τ = lim
∫→1

fk∫
°
f(z0)

¢
= lim

∫→1
f(z∫).

Hence we can apply Julia’s lemma with α ≤ 1; in other words, f contracts the horocycles
centered in τ . But then the argument already used at the beginning of the proof of Wolff’s
lemma shows that, since f has no fixed points, τ is univoquely determined. Hence τ is the
unique limit point of {fk}, that is fk → τ , and we are done.

1.3.3 Hyperbolic Riemann surfaces and multiply connected do-
mains

In this section we shall study the iterates of a function f defined on a multiply connected
hyperbolic domain or, more generally, on a hyperbolic Riemann surface. We begin with a
lemma about automorphisms without fixed points:
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Lemma 1.3.11: Let X be a hyperbolic Riemann surface, and let f ∈ Aut(X) be without
fixed points. Assume that {fk} is not compactly divergent. Then X is multiply connected
and either f is periodic or f is pseudoperiodic and the closure of {fk} is the connected
component at the identity of Aut(X), which is isomorphic to S1. Furthermore, the latter
possibility can occur only if X is doubly connected.

Proof: If X is simply connected, the sequence of iterates of f is compactly divergent, by
Theorem 1.3.9; hence X is multiply connected.

If X is not doubly connected, let {fk∫} be a converging subsequence, necessarily to
an element of Aut(X), by Corollary 1.1.47. Now, Aut(X) is discrete, by Theorem 1.2.19;
hence the sequence {fk∫} must contain only a finite number of distinct elements, and so
f is periodic.

Finally, if X is doubly connected we can realize it as an annulus A(r, 1) with 0 ≤ r < 1.
Hence f should be a rotation around the origin, and the assertion follows immediately,
q.e.d.

Then we have a Wolff-Denjoy theorem for hyperbolic Riemann surfaces:

Theorem 1.3.12: Let X be a hyperbolic Riemann surface, and let f ∈ Hol(X,X). Then
either:
(i) f has an attractive fixed point in X, or
(ii) f is a periodic automorphism, or
(iii) f is a pseudoperiodic automorphism, or
(iv) the sequence {fk} is compactly divergent.
Furthermore, the case (iii) can occur only if X is either simply connected (and f has a
fixed point) or doubly connected (and f has no fixed points).

Proof: If the sequence {fk} is compactly divergent there is nothing to prove. So assume
{fk} is not compactly divergent; in particular, there is a subsequence {fk∫} converging
to a holomorphic function h ∈ Hol(X,X). If f ∈ Aut(X), the assertion follows from
Theorem 1.3.7 and Lemma 1.3.11. If f is not an automorphism, by Theorem 1.3.2 h is
constant, h ≡ z0 ∈ X, say. But then z0 is a fixed point of f , and so the assertion follows
from Theorem 1.3.7, q.e.d.

If X is compact, Theorem 1.3.12 drastically simplifies, becoming:

Corollary 1.3.13: Let X be a compact hyperbolic Riemann surface. Then every function
f ∈ Hol(X,X) is either constant or a periodic automorphism.

Proof: Assume f non constant. Then f(X) is open and closed in X, and thus f is surjec-
tive. But then the sequence {fk} can neither be compactly divergent (for X is compact)
nor converge uniformly to a point in X. Hence, by Theorem 1.3.12 and Corollary 1.2.22,
f is a periodic automorphism, q.e.d.

Another consequence is the generalization of Corollary 1.1.34, Ritt’s theorem:
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Proposition 1.3.14: Let X be a non-compact Riemann surface, and f ∈ Hol(X,X) such
that f(X) is relatively compact in X. Then f has an attractive fixed point z0 ∈ X.

Proof: Indeed, f is not an automorphism and {fk} is not compactly divergent, q.e.d.

For a generic hyperbolic Riemann surface Theorem 1.3.12 is the best statement we
can hope for; on the other hand, for a hyperbolic domain we can do something better.
Indeed, let D ⊂ bX be a hyperbolic domain, and take f ∈ Hol(D,D). If the sequence {fk}
is compactly divergent, by Corollary 1.3.3 every limit point of {fk} should be a constant
belonging to @D. In this case we shall say that {fk} converges to the boundary, and
Theorem 1.3.12 becomes:

Theorem 1.3.15: Let D ⊂ bX be a hyperbolic domain, and take f ∈ Hol(D,D). Then
either
(i) f has an attractive fixed point in D, or
(ii) the sequence {fk} converges to the boundary of D, and the set of limit points is closed
and connected, or
(iii) f is a periodic automorphism, or
(iv) f is a pseudoperiodic automorphism. This latter possibility can occur only if D is
either simply or doubly connected.

Proof: The only thing left to prove is that the set L of limit points of a function as in
case (ii) is connected. Choose a connected compact subset K of D such that f(K)∩K 6= /∞.
Then clearly fk+1(K) ∩ fk(K) 6= /∞ for all k ∈ N. It follows that both the set

L∫ =
1[

k=∫

fk(K)

and its closure are connected for all ∫ ∈ N. But now L =
1T

∫=1
L∫ , and so it is closed and

connected, q.e.d.

Now we want to show that if, roughly speaking, the boundary of D is not too wild,
the set L of limit points in case (ii) actually reduces to a point, and then the sequence of
iterates converges. A first case is when the boundary is totally disconnected:

Corollary 1.3.16: Let D ⊂ bX be a hyperbolic domain such that @D is totally discon-
nected. Let f ∈ Hol(D,D). Then either f is a periodic automorphism or the sequence of
iterates converges to a point of D.

Proof: Under these assumptions on the boundary, D cannot be either simply or doubly
connected. Hence the assertion follows from Theorem 1.3.15, q.e.d.

A second, quite more important case is when D is of regular type. To properly deal
with this situation we must somehow replace the horocycles.

First of all, we need a lemma on the Poincaré distance:
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Lemma 1.3.17: Let D ⊂ bX be a hyperbolic domain of regular type, π:∆ → D its
universal covering map, and Γ ⊂ Aut(∆) the automorphism group of the covering. Choose
τ0 contained in a Jordan component of @D and a neighbourhood U in ∆ of a point τ̃0 ∈ @∆
such that π extends to a homeomorphism between a neighbourhood (in ∆) of U and its
image such that π(τ̃0) = τ0. Then for every z0 ∈ ∆ there is a finite subset Γ0 of Γ such
that

∀w ∈ U ωD

°
π(z0), π(w)

¢
= min

∞∈Γ0
ω
°
∞(z0), w

¢
.

Proof: Since Γ acts properly discontinuously on ∆, for every w ∈ U∩∆ we can find ∞w ∈ Γ
so that ωD

°
π(z0), π(w)

¢
= ω

°
∞w(z0), w

¢
. Let Z = {∞w(z0) | w ∈ U ∩ ∆}; it suffices to

show that Z ∩ @∆ = /∞, again because Γ acts properly discontinuously on ∆. Assume, by
contradiction, there is a sequence {w∫} ⊂ U ∩∆ such that z∫ = ∞w∫ (z0) → σ0 ∈ @∆; up
to a subsequence we can assume w∫ → σ1 ∈ U .

First of all, since π is injective in a neighbourhood of U , σ0 cannot belong to U ; in
particular, σ0 6= σ1. Furthermore, since ω(z∫ , w∫) = ωD

°
π(z0), π(w∫)

¢
, σ1 must belong

to @∆. Now,

ω(z∫ , w∫)− ω(0, w∫) = 1
2 log

∑
|1− z̄∫w∫ |2
1− |z∫ |2

·
µ

1 + |∞z∫ (w∫)|
1 + |w∫ |

∂2∏
. (1.3.4)

Letting ∫ → +1, the right-hand side of (1.3.4) diverges; on the other hand, the left-hand
side is bounded by ωD

°
π(z0), π(0)

¢
, contradiction, q.e.d.

The idea is to define horocycles in hyperbolic domains of regular type using something
like Proposition 1.2.2. The main step is

Proposition 1.3.18: Let D ⊂ bX be a hyperbolic domain of regular type; fix z0 ∈ D.
Then for every τ0 ∈ @D contained in a Jordan component of @D and for every z ∈ X the
limit

lim
w→τ0

£
ωD(z, w)− ωD(z0, w)

§

exists and is finite.

Proof: Let π:∆→ D be the universal covering map of D, and denote by Γ ⊂ Aut(∆) the
automorphism group of the covering. Since τ0 belongs to a Jordan component of @D, we
can find (Theorem 1.1.57) a point τ̃0 ∈ @∆ and a neighbourhood U of τ̃0 in ∆ such that π ex-
tends to a homeomorphism of a neighbourhood of U with its image such that π(τ̃0) = τ0.

Choose z ∈ D, and fix z̃ ∈ π−1(z) and z̃0 ∈ π−1(z0). By Lemma 1.3.17, there are two
finite subsets Γz and Γ0 of Γ such that for every w̃ ∈ U we have

ωD

°
z, π(w̃)

¢
− ωD(z0, π(w̃)

¢
= min

∞∈Γz

max
∞0∈Γ0

©
ω
°
z̃, ∞(w̃)

¢
− ω

°
z̃0, ∞0(w̃)

¢™
. (1.3.5)

Now take ∞ ∈ Γz and ∞0 ∈ Γ0, and set a = ∞−1(0) and a0 = ∞−1
0 (0). Then

lim
w̃→τ̃0

£
ω
°
z̃, ∞(w̃)

¢
− ω

°
z̃0, ∞0(w̃)

¢§

= 1
2 log

∑
|a− τ̃0|2
1− |a|2 · 1− |a0|2

|a0 − τ̃0|2
· |z̃ − ∞(τ̃0)|2

1− |z̃|2 · 1− |z̃0|2
|z̃0 − ∞0(τ̃0)|2

∏
,

(1.3.6)

and so (1.3.5) and (1.3.6) yield the assertion, for w̃ → τ̃0 iff π(w̃)→ τ0, q.e.d.
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Let D ⊂ bX be a hyperbolic domain of regular type, and fix z0 ∈ D and a point τ0 ∈ @D
contained in a Jordan component of @D. Then the horocycle Ez0(τ0, R) of center τ0, pole z0

and radius R > 0 is given by

Ez0(τ0, R) =
©
z ∈ D

ØØ lim
w→τ0

£
ωD(z, w)− ωD(z0, w)

§
< 1

2 log R
™
;

note that, by Proposition 1.2.2, if we take D = ∆ and z0 = 0 we get the classical horocycles.
The proof of our main theorem requires only one feature of the horocycles:

Lemma 1.3.19: Let D ⊂ bX be a hyperbolic domain of regular type, fix z0 ∈ D and
choose τ0 ∈ @D contained in a Jordan component of @D. Then

∀R > 0 Ez0(τ0, R) ∩ @D = {τ0}.

Proof: First of all, τ0 ∈ Ez0(τ0, R). Indeed, let π:∆ → D be the universal covering map
of D. Since π is a local isometry, it is easy to check that if σ̃: [0, 1)→ ∆ is a geodesic for ω
then σ = π ◦ σ̃ is a geodesic for ωD, that is

∀s, t ∈ [0, 1) ωD

°
σ(s), σ(t)

¢
= ω(s, t).

Now, since τ0 is in a Jordan component, we can find a point τ̃0 ∈ @∆ such that π extends
continuously to a neighbourhood (in ∆) of τ̃0 with π(τ̃0) = τ0. Choose a point z̃0 ∈ π−1(z0),
and let σ̃0 be the geodesic in ∆ connecting z̃0 with τ̃0. Then σ0 = π ◦ σ̃0 is a geodesic
for ωD connecting z0 and τ0; in particular,

lim
w→τ0

£
ωD(z, w)− ωD(z0, w)

§
= lim

t→1

£
ωD

°
z, σ0(t)

¢
− ω(0, t)

§

for every z ∈ D. Now set z∫ = σ0(1− 1/∫). Then z∫ → τ0 and

lim
w→τ0

£
ωD(z∫ , w)− ωD(z0, w)

§
= −ω(0, 1− 1/∫) −→ −1

as ∫ → +1, showing that τ0 ∈ Ez0(τ0, R) for every R > 0.
Finally, let τ1 ∈ Ez0(τ0, R) ∩ @D; we have to prove that τ1 = τ0. Choose a sequence

{z∫} ⊂ Ez0(τ0, R) converging to τ1. Now, by Lemma 1.3.17 (and Theorem 1.1.57) there is
a δ < 1 such that for every ∫ ∈ N we can find a finite subset Z∫ of π−1(z∫) so that

∀t ∈ (δ, 1) ωX

°
z∫ , σ0(t)

¢
= min

z̃∈Z∫

ω
°
z̃, σ̃0(t)

¢
.

In particular, by (1.3.6) used with ∞ = ∞0 = id∆

min
z̃∈Z∫

1
2 log

µ
|z̃ − τ̃0|2
1− |z̃|2 · 1− |z̃0|2

|z̃0 − τ̃0|2

∂
= min

z̃∈Z∫

lim
t→1

£
ω
°
z̃, σ̃0(t)

¢
− ω(0, t)

§

= lim
t→1

£
ωD

°
z∫ , σ0(t)

¢
− ω(0, t)

§
≤ 1

2 log R.
(1.3.7)

Now for every ∫ ∈ N choose z̃∫ ∈ Z∫ realizing the minimum of the left-hand side of (1.3.7).
Since z∫ → τ1 ∈ @D, up to a subsequence we can assume z̃∫ → τ̃1 ∈ @∆. But then
(1.3.7) forces τ̃1 = τ̃0, and so τ1 = τ0, q.e.d.
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We do not dwell anymore on the properties of horocycles (we shall thoroughly study
them in the second part of this book), because we are finally ready to prove the main
theorem of one-variable iteration theory, Heins’ theorem:

Theorem 1.3.20: Let D ⊂ bX be a hyperbolic domain of regular type, and take a function
f ∈ Hol(D,D). Then either
(i) the sequence {fk} converges to a point z0 ∈ D, and, if D is not simply connected,

f is not an automorphism, or
(ii) f is a periodic automorphism, or
(iii) f is a pseudoperiodic automorphism. This latter possibility can occur only if D is
either simply or doubly connected.

Proof: If D is simply connected, it is bounded by a Jordan curve and the universal covering
map of bX gives a biholomorphism of D with a simply connected plane domain bounded
by a Jordan curve, and this biholomorphism is continuous up to the boundary; therefore,
quoting Theorem 1.1.28, we can apply the Wolff-Denjoy theorem. Hence we can assume
D multiply connected.

If D is not doubly connected, by Theorem 1.2.25 Aut(D) is finite, and thus every
f ∈ Aut(D) is periodic. If D is doubly connected, we know by Proposition 1.1.32 that
every f ∈ Aut(D) is either periodic or pseudoperiodic. In conclusion, by Theorem 1.3.15 it
suffices to show that if {fk} converges to the boundary, then the limit point set L contains
just one point.

If @D has no Jordan components, then @D is totally disconnected, and so we can
apply Corollary 1.3.16. Assume then @D has at least one Jordan component. Then, by
the Big Picard Theorem 1.1.51, every f ∈ Hol(D,D) extends holomorphically across the
point components of @D. This extension cannot be an automorphism, for f is not; hence,
by Theorem 1.3.15, either it has an attractive fixed point (which is necessarily a point
component of @D), or its sequence of iterates is still compactly divergent. In the former
case, {fk} converges to a point component of @D; therefore to finish the proof we can also
assume that D is bounded by a finite number of disjoint Jordan curves.

Fix z0 ∈ D; since {fk} is compactly divergent, ωD

°
fk(z0), z0

¢
→ +1 as k → +1.

Now, we can find a subsequence {fk∫} such that

∀∫ ∈ N ωD

°
fk∫ (z0), z0

¢
< ωD

°
fk∫+1(z0), z0

¢
. (1.3.8)

Indeed, let k∫ denote the largest integer k satisfying ωD

°
fk(z0), z0

¢
≤ ∫. Then

∀∫ ∈ N ωD

°
fk∫ (z0), z0

¢
≤ ∫ < ωD

°
fk∫+1(z0), z0

¢
,

as claimed.
Up to a subsequence, we can assume that fk∫ (z0) → τ0 ∈ @D. Now for every z ∈ D

we have
ωD

°
fk∫+1(z0), f(z)

¢
≤ ωD

°
fk∫ (z0), z

¢
.

Therefore, by (1.3.8),

ωD

°
f(z), fk∫+1(z0)

¢
− ωD(z0, f

k∫+1(z0)
¢
≤ ωD

°
z, fk∫ (z0)

¢
− ωD

°
z0, f

k∫ (z0)
¢
. (1.3.9)
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Clearly, we have ωD

°
fk+1(z0), fk(z0)

¢
≤ ωD

°
f(z0), z0

¢
for all k ∈ N; so Proposition 1.1.59

implies that fk∫+1(z0)→ τ0 as ∫ → +1. Then we can take the limit as ∫ → +1 in (1.3.9)
obtaining, by Proposition 1.3.18,

∀R > 0 f
°
Ez0(τ0, R)

¢
⊂ Ez0(τ0, R).

It follows that the limit point set L of {fk} is contained in Ez0(τ0, R) ∩ @D = {τ0}, by
Lemma 1.3.19, and the theorem is proved, q.e.d.

We have reached the highest peak of one-variable iteration theory. We have earned a
bit of relax; so we end the section with an easy corollary, generalizing Proposition 1.2.23:

Corollary 1.3.21: Let D ⊂ bX be a multiply connected hyperbolic domain of regular type
without point components, and realize its fundamental group as a subgroup Γ of Aut(∆).
Take f ∈ Hol(D,D). Then the following statements are equivalent:
(i) f /∈ Aut(D);
(ii) f∗:π1(D)→ π1(D) is nilpotent;
(iii) the iterates f̃k of any lifting f̃ of f are automorphic under Γ for all sufficiently large k.

Proof: We already know (Proposition 1.1.21) that (ii)⇐⇒ (iii). If f ∈ Aut(D), f∗ cannot
be nilpotent; hence (ii) =⇒ (i). Finally, assume f /∈ Aut(D). Then, by Theorem 1.3.20,
the sequence of iterates of f converges to a point of D. In particular, if K is a compact
subset of D, there is a large enough k ∈ N such that fk(K) is contained in a contractible
subset of D.

Now take an element [σ] of π1(D). By the previous observation, there is a sufficiently
large k ∈ N such that (f∗)k[σ] = [fk ◦ σ] is trivial. Since π1(D) is finitely generated (by
Lemma 1.1.53), this implies that (f∗)k is trivial for a sufficiently large k ∈ N, q.e.d.

This is not true for generic domains of regular type: take for instance D = ∆∗ and
f(z) = z/2. Then f /∈ Aut(∆∗) but f∗ = id.

Corollary 1.3.21 reveals an interesting fact: roughly speaking, holomorphic functions
do not like topological complications. Besides the automorphisms (which are finite in
number), every other f ∈ Hol(D,D) gets rid of topological obstructions in a finite number
of steps. This may be another reason for the predominance of simply connected domains
in function theory of one complex variable.

1.3.4 Common fixed points

In this section we shall bring to its natural conclusion the ménage à trois between iteration
theory, commuting functions and common fixed points. We already saw in two different
occasions (Proposition 1.1.13 and Theorem 1.2.18) that particular kinds of commuting
functions must have a common fixed point, and we used these facts to prove several results
eventually leading to Heins’ theorem. Now we shall close the circle proving, by means of
iteration theory, Shields’ theorem:
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Theorem 1.3.22: Let D ⊂ bX be a hyperbolic domain of regular type, and F a family
of continuous self-maps of D which are holomorphic in D and commute with each other
under composition. Assume either
(i) D is simply connected, or
(ii) D is multiply connected and F is not contained in Aut(D).
Then F has a fixed point, that is there exists τ ∈ D such that f(τ) = τ for all f ∈ F .

Proof: We may obviously assume that idD /∈ F . If F contains a constant function, then
this constant is fixed by every element of F , due to the commutativity. Hence we may
also assume that F contains no constant functions. By the open map theorem, then, every
f ∈ F sends D into itself.

Now take f ∈ F , assuming, in case (ii), that f is not an automorphism. If f has
a fixed point z0 ∈ D, then z0 is unique (for f 6= idD in case (i), and because f is not
an automorphism in case (ii); see Corollary 1.3.8). If g is another element of F , we have
f
°
g(z0)

¢
= g

°
f(z0)

¢
= g(z0); hence g(z0) = z0 and z0 is a fixed point of F .

Finally, if f has no fixed points in D, by Heins’ theorem the sequence of iterates of f
converges to a point τ ∈ @D. Hence, if g ∈ F we have

g(τ) = lim
k→1

g ◦ fk = lim
k→1

fk ◦ g = τ,

and τ is a fixed point of F , q.e.d.

If D is multiply connected and F is contained in Aut(D), F can have no fixed points.
For instance, take D = A(r, 1) with r ∈ (0, 1), f(z) = r/z, g(z) = −z and F = {f , g}.

In Theorem 1.3.22 the continuity at the boundary is necessary just to take care of
functions without fixed points in D. In the unit disk ∆ we have developed a lot of material
about boundary behavior of functions without fixed points; using it, we can remove the
hypothesis of boundary continuity, with just a bit more effort.

We start with a digression. In section 1.2.1 we often saw that the existence of a non-
tangential limit was forced by some kind of weak assumptions about radial behavior. This
is a general fact, as shown in Lindelöf’s theorem:

Theorem 1.3.23: Let ∞: [0, 1) → ∆ be a continuous curve such that ∞(t) → σ ∈ @∆
as t→ 1. If f ∈ Hol(∆,∆) is such that

lim
t→1

f
°
∞(t)

¢
= τ ∈ ∆

exists, then f has non-tangential limit τ at σ.

Proof: Without loss of generality we can suppose σ = 1 and, up to replacing f by (f−τ)/2,
we can also assume τ = 0.

We begin transfering everything to H+, via the Cayley transform. Then we have
f ∈ Hol(H+,∆) and a curve ∞: [0, 1) → H+ such that ∞(t) → 1 and f

°
∞(t)

¢
→ 0

as t → 1, and we claim that f(w) → 0 as w → 1 within Kε = {w ∈ H+ | Imw > ε|w|}



1.3.4 Common fixed points 75

for all ε ∈ (0, 1). However, it will be convenient to change the stage once again: let
Σ = {z ∈ C | |Re z| < 1} be an infinite strip, and define Φ:H+ → Σ by

Φ(w) =
i

π
log w +

1
2
,

where log denotes the principal branch of the logarithm. Then Φ is a biholomorphism
of H+ with Σ such that Φ(i) = 0, ImΦ(w) → +1 as w → 1 and ImΦ(w) → −1
as w → 0. Furthermore,

Φ(Kε) =
Ω

z ∈ C
ØØØØ |Re z| <

1
2
− 1

π
arctan

ε√
1− ε2

æ
.

Therefore we have F ∈ Hol(Σ,∆) and a curve ∞̃: [0, 1) → Σ such that Im ∞̃(t) → +1
and F

°
∞̃(t)

¢
→ 0 as t → 1, and we claim that F (z) → 0 as Im z → +1, uniformly

in |Re z| ≤ 1− δ.
Fix ε ∈ (0, 1), and take y0 > Im ∞̃(0) so large that

ØØF
°
∞̃(t)

¢ØØ < ε when Im ∞̃(t) ≥ y0.
We claim that if Im z ≥ y0 then

|F (z)| ≤ ε(1−| Re z|)/4, (1.3.10)

and the theorem will obviously follows from (1.3.10).
Fix z0 ∈ Σ with Im z0 ≥ y0, and choose t0 < 1 so that Im ∞̃(t0) = Im z0 and

Im ∞̃(t) > Im z0 for all t ∈ (t0, 1). Let E be the image of [t0, 1) under ∞̃, and let E
be the reflection of E with respect to the axis {Im z = Im z0}. In particular, E ∪ E
intersects this axis only in ∞̃(t0).

If z0 ∈ E ∪ E, (1.3.10) is clear. So assume z0 /∈ E ∪ E; thus there exists a connected
component Σ0 of Σ \ (E ∪ E) containing z0, with @Σ0 ⊂ @Σ ∪ (E ∪ E). Furthermore,
@Σ0 cannot intersect both {Re z = 1} and {Re z = −1}.

Assume for the moment Re z0 > Re ∞̃(t0), and for every η > 0 define Gη: Σ→ C by

Gη(z) =
F (z)F (z + 2i Im z0)ε(1+z)/2

1 + η(1 + z)
. (1.3.11)

Clearly, |Gη(z)| ≤ 1 for all z ∈ Σ. Moreover, |F (z)| < ε on E, and |F (z + 2i Im z0)| < ε
on E; hence |Gη(z)| < ε on E∪E. If Re z is sufficiently close to 1, or if | Im z| is sufficiently
large, then again |Gη(z)| < ε. Then we can apply the maximum modulus principle to infer
that |Gη(z)| ≤ ε on Σ0, and in particular in z0. Letting η → 0 we get therefore

|F (z0)|2 ≤ ε · ε−(1+Re z)/2 = ε(1−Re z)/2,

and thus (1.3.10) is proved if Re z0 > Re ∞̃(t0). If Re z0 < Re ∞̃(t0), replacing 1+z by 1−z
in (1.3.11) we are led to the same conclusion, and the proof is finished, q.e.d.

Using Theorem 1.3.23 we can prove the following extension of Theorem 1.3.22 for
functions without fixed points:
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Theorem 1.3.24: Let f , g ∈ Hol(∆,∆) be such that f ◦ g = g ◦ f . Assume that f has
no fixed points, and g 6= id∆. Let τ = τ(f) be the Wolff point of f . Then g also has no
fixed points, and

K-lim
z→τ

g(z) = τ = K-lim
z→τ

f(z).

Proof: If g would have a fixed point z0 ∈ ∆, then, as usual, z0 would be a fixed point for f ,
impossible. By Corollary 1.2.16, it remains to show that g has non-tangential limit τ
at τ . It will suffice, by Theorem 1.3.23, to construct a continuous curve ∞: [0, 1) → ∆
with ∞(t)→ τ as t→ 1 such that g

°
∞(t)

¢
→ τ as t→ 1.

For 0 ≤ t < 1 let k(t) be the greatest integer less than or equal to − log2(1 − t).
Let z0 = f(0), and for t ∈ [0, 1) define

∞(t) = fk(t)
°
2[1− 2k(t)(1− t)]z0

¢
. (1.3.12)

Since ∞
°
[1 − 2−k, 1 − 2−k−1]

¢
is the image by fk of the segment S from 0 to f(0), it is

easily checked that ∞ is continuous. Moreover, ∞(t) → τ as t → 1, for fk → τ uniformly
on S.

But now fk → τ uniformly on g(S); since g
°
fk(S)

¢
= fk

°
g(S)

¢
, this implies that

g
°
∞(t)

¢
→ τ as t→ 1, q.e.d.

Theorem 1.3.24 raises a natural question: if f , g ∈ Hol(∆,∆) are without fixed point
and commute, do they have the same Wolff point? If it is so, this can be an ultimate
generalization of Theorem 1.3.22.

In general, unfortunately, the answer is negative: if ∞ is a hyperbolic automorphism
of ∆, then ∞ and ∞−1 commute but τ(f) 6= τ(f−1). Then our aim will be to show that
this is the only exception.

We begin recalling some facts and notations discussed in chapter 1.2. If f ∈ Hol(∆,∆)
admits non-tangential limit τ ∈ @∆ at σ ∈ @∆, we shall write f(σ) = τ . Moreover, we shall
denote by f 0(σ) the non-tangential limit at σ of

°
f(z) − τ

¢
/
°
z − σ

¢
. By Theorem 1.2.7,

|f 0(σ)| ∈ (0,+1] and, if it is finite, f 0(σ) coincides with the non-tangential limit of f 0

at σ; f 0(σ) is expressed in terms of the boundary dilatation coefficient βf (σ) of f at σ
by f 0(σ) = τσβf (σ). Furthermore, σ = τ and f 0(σ) ≤ 1 iff τ is the Wolff point of f
(Corollary 1.2.16).

The usual chain rule holds for angular derivatives too:

Lemma 1.3.25: Let f , g ∈ Hol(∆,∆) be both different from id∆. Choose σ ∈ @∆ so that
f(σ) = τ ∈ @∆ and g(τ) = η ∈ @∆. Then

K-lim
z→σ

g
°
f(z)

¢
− η

z − σ
= g0(τ)f 0(σ).

Proof: First of all, assume βf (σ) and βg(τ) finite. We claim that the curve ρ(t) = f(tσ)
goes to τ non-tangentially as t→ 1. Indeed, ρ̇(1) is tangent to @∆ in τ iff Re

°
ρ̇(1)τ

¢
= 0;

but
Re

°
ρ̇(1)τ

¢
= Re

°
f 0(σ)στ

¢
= βf (σ) > 0
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by Theorem 1.2.7, and the claim is proved.
In particular, then, we get g ◦ f(z) → η as z → σ non-tangentially, and the usual

chain rule gives

K-lim
z→σ

(g ◦ f)0(z) =
£
K-lim

z→σ
g0

°
f(z)

¢§
·
£
K-lim

z→σ
f 0(σ)

§
= g0(τ)f 0(σ);

therefore the assertion follows from Theorem 1.2.7 and Proposition 1.2.8.
Now assume either g0(τ) or f 0(σ) infinite. Since

1−
ØØg

°
f(z)

¢ØØ

1− |z| =
1−

ØØg
°
f(z)

¢ØØ

1− |f(z)| · 1− |f(z)|
1− |z|

and both factors in the right-hand side have strictly positive infimum (by Lemma 1.2.4),
if one of them goes to infinity the product does. Hence

lim inf
z→σ

1−
ØØg

°
f(z)

¢ØØ

1− |z| = +1,

and the assertion follows from Proposition 1.2.6, q.e.d.

We shall also need an arithmetic lemma:

Lemma 1.3.26: Let a, b, c, d ∈ (−1,+1] be such that

a + b > 0, c + d ≥ 0, a ≤ 0, b > 0, c > 0 and d ≤ 0.

Then there are positive integers h, k ∈ N such that ha + kc > 0 and hb + kd > 0.

Proof: If b (or c) is equal to +1 we take h = 1 and k large (k = 1 and h large). If d (or a)
is zero, we again take h = 1 and k large (k = 1 and h large). So assume a, b, c and d finite
and not zero. From a + c|a/c| = 0 we infer

0 < (a + b) + (c + d)|a/c| = b + d|a/c|.

Hence |a/c| < |b/d|. Then h, k ∈ N such that |a/c| < k/h < |b/d| are exactly as we need,
q.e.d.

And now:

Theorem 1.3.27: Let f , g ∈ Hol(∆,∆) \ {id∆} be such that f ◦ g = g ◦ f . Then:
(i) if f is not a hyperbolic automorphism of ∆, then τ(f) = τ(g);
(ii) otherwise, g also is a hyperbolic automorphism of ∆, with the same fixed point set
as f , and either τ(f) = τ(g) or τ(f−1) = τ(g).

Proof: If f is a hyperbolic automorphism of ∆, the assertion follows by Theorem 1.2.18.
So, we can assume f and g without fixed points in ∆ (for otherwise it is obvious), and
f not a hyperbolic automorphism. Let σ = τ(f) and τ = τ(g); hence, by Theorem 1.3.24
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f(σ) = g(σ) = σ and f(τ) = g(τ) = τ . In particular, by Theorem 1.2.7, f 0(σ), f 0(τ), g0(σ)
and g0(τ) are real (possibly equal to +1).

Assume, by contradiction, τ 6= σ. Since f is not a hyperbolic automorphism of ∆,
neither g is (by Theorem 1.2.18) and Theorem 1.2.11 implies

f 0(τ)f 0(σ) > 1 and g0(τ)g0(σ) > 1.

Moreover, f 0(σ) ≤ 1, f 0(τ) > 1, g0(σ) > 1 and g0(τ) ≤ 1. If we apply Lemma 1.3.26 with
a = log f 0(σ), b = log f 0(τ), c = log g0(σ) and d = log g0(τ), we come up with two positive
integers h and k such that

(fh ◦ gk)0(σ) > 1 and (fh ◦ gk)0(τ) > 1,

where we used Lemma 1.3.25. In particular, the Wolff point η ∈ @∆ of fh ◦ gk is nei-
ther σ nor τ . Since both f and g commute with fh ◦ gk, Theorem 1.3.24 shows that
f(η) = g(η) = η. Hence we should have f 0(η) > 1 and g0(η) > 1; in particular, using
Lemma 1.3.25 we find

(fh ◦ gk)0(η) = (f 0)h(η) · (g0)k(η) > 1,

contradiction, q.e.d.

We end this chapter with another application of iteration theory to the construction
of fixed points of particular families of holomorphic functions.

By Theorem 1.2.25 and Proposition 1.1.32 the automorphism group of a multiply
connected domain of regular type is always compact. On the other hand, we know that
Aut(∆) is not compact, though the isotropy group of one point is. Our last result is that a
subgroup of Aut(∆) is relatively compact iff it has a fixed point. For the sake of generality,
we shall prove something more:

Theorem 1.3.28: Let G ⊂ Hol(∆,∆) be a group under composition. Then G has a fixed
point in ∆ iff G is relatively compact in Hol(∆,∆). Moreover, in this case G is either a
single constant function, finite cyclic or the isotropy group of its fixed point. In any case,
G is abelian.

Proof: Let e ∈ G be the identity of G. If e is constant, then for all f ∈ G we have
f = e ◦ f = e, and thus G = {e}.

If e is not constant, then e(∆) is open in ∆, and from e = e ◦ e we infer that e = id∆

on the open set e(∆), and hence everywhere. This implies that G is a subgroup of Aut(∆).
If G has a fixed point, then it is relatively compact by Corollary 1.1.47. Conversely,

assume that G ⊂ Hol(∆,∆) is compact. Take f ∈ G. By the Wolff-Denjoy theorem,
f must have a fixed point in ∆. Up to conjugation, we can assume f(0) = 0, and thus
f(z) = eiθz for some 0 < θ < 2π. Replacing f by f−1 if necessary, we can assume
0 < θ ≤ π.

By compactness, there is g0 ∈ G maximizing |g(0)|. Write

g0(z) = eiφ z + a

1 + az
,
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with |a| = |g0(0)|. Let k ∈ Z be such that Re(ei(kθ+φ)) ≥ 0. Then, letting τ = ei(kθ+φ),
we have

|1 + τ |a|2|2 < |1 + τ |2.

Now (fk ◦ g0)2 ∈ G; since fk ◦ g0(0) = τa, we obtain

(fk ◦ g0)2(0) = τa
1 + τ

1 + τ |a|2 .

Hence we should have a = 0 since otherwise |(fk ◦ g0)2| > |g0(0)| would contradict the
maximality of |g0(0)|. It follows that G is contained in the isotropy group of 0, and the
rest of the assertion is now evident, q.e.d.

An important consequence of Theorem 1.3.28 is that a compact group acting holo-
morphically on ∆ has a fixed point. This is a feature of the holomorphic structure: there
are examples of compact Lie groups acting on cells without fixed points (see Oliver [1979]).

Finally,

Corollary 1.3.29: Let G ⊂ Hol(∆,∆) be a group under composition. If there exists a
compact set K ⊂ ∆ invariant under G, then G has a fixed point in ∆.

Proof: In fact, G is clearly relatively compact in Hol(∆,∆), q.e.d.

Notes

The first work on iteration theory seems to be Schröder [1870]. He studied the local
situation near a fixed point, essentially obtaining Theorem 1.3.7.(i); another proof is in
Kœnigs [1883]. Theorem 1.3.2 is proved, in a slightly different form, in Tricomi [1916].

Theorem 1.3.4 is due to Radó [1924], but some special cases were known before.
For instance, Bieberbach [1913] proved that the unique automorphism f of a hyperbolic
domain D with a fixed point z0 ∈ D such that f 0(z0) > 0 is the identity. This is important
in uniformization theory of multiply connected domains.

Corollary 1.3.5 was originally proved by Aumann and Carathéodory [1934]; our proof
is taken from Heins [1941b]. Hervé [1951] computed the supremum in (1.3.1) and described
the functions attaining it in doubly connected domains and, partially, in multiply connected
domains.

The first papers explicitely devoted to iteration theory on ∆ are Fatou [1919, 1920a, b].
He studied the iteration of rational functions sending both ∆ and @∆ into themselves and,
more generally, of functions of the form

f(z) = eiθ
1Y

∫=0

z − a∫

1− a∫z
,

where a∫ ∈ ∆ for all ∫ ∈ N and
1P

∫=0
(1− |a∫ |) < +1. These functions are known as Fatou

functions, infinite Blaschke products or even as inner functions; see also Valiron [1954].
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The history of the Wolff-Denjoy Theorem 1.3.9 is quite interesting. On Decem-
ber 21, 1925, Wolff [1926a] presented a first proof, assuming continuity at the boundary.
Few weeks later, on January 18, 1926, Wolff [1926b] suceeded in removing the extra hy-
pothesis, with a brute force approach. But just a few days later, on January 25, 1926, Den-
joy [1926] published a completely new proof, based on Fatou’s theorem on boundary values
of bounded holomorphic functions. Finally, after a couple of months, on April 7, 1926,
inspired by Denjoy’s proof, Wolff [1926c] discovered Wolff’s lemma, and the elegant proof
we presented. The second proof we described is due to Vesentini [1983]. Wolff [1929]
and Valiron [1931] have studied the asymptotic behavior of arg(fk) as k → +1, where
f ∈ Hol(∆,∆) has no fixed points.

Using Theorem 1.1.28, the Wolff-Denjoy theorem can be transferred to simply con-
nected domains bounded by a Jordan curve. In simply connected domains with bad bound-
ary the situation is not so agreeable: see Ferrand [1941].

There is a whole branch of one-variable iteration theory we did not mention: functional
equations. Given f ∈ Hol(X,X), the idea is to find a function g:X → X solving the
equation

g ◦ f = φ ◦ g, (1.3.13)

where φ ∈ Hol(X,X) is a fixed function, usually an automorphism, and g is often required
to be a local homeomorphism, and if possible holomorphic. Then the investigation of the
behavior of {fk} is somehow reduced to the description of the (known) behavior of {φk}.
This approach is particularly useful in iteration theory of rational and entire functions,
where it is particularly studied (1.3.13) for X ⊂ bC, φ(z) = ∏z and f with a fixed point
at 0 of multiplier ∏; in this case (1.3.13) is called Schröder equation, and a solution g is a
Kœnigs function.

We quote only one result in this area due to Pommerenke [1979] (but cf. also Baker
and Pommerenke [1979] and Cowen [1981]), just to give the flavor of the subject. Take
f ∈ Hol(H+,H+) with Wolff point at infinity, and define zk = fk(i),

qk =
ØØØØ
zk+1 − zk

zk+1 − zk

ØØØØ,

and gk = (fk − Re zk)/ Im zk. Then {gk} converges to a function g ∈ Hol(H+,H+) such
that g(i) = i and g◦f = φ◦g, where φ ∈ Aut(H+) fixes the point at infinity. Furthermore,
if the angular derivative β of f at 1 is greater than one, then φ is hyperbolic; if β = 1
and qk → δ > 0 as k → +1, then φ is parabolic; if β = 1 and qk → 0 as k → +1, then
φ = idH+ and g ≡ i. Therefore, but for the last case, f behaves as either a hyperbolic or
a parabolic automorphism near infinity, according to β > 1 or β = 1, exactly as discussed
in section 1.3.2.

Section 1.3.3 is inspired by Heins [1941a, 1988]. In Heins [1941a] Theorem 1.3.20 was
proved for hyperbolic plane domains bounded by a finite number of Jordan curves, by a
clever (and complicated) argument making use of the Julia-Wolff-Carathéodory theorem.
The complete statement is in Heins [1988], where it is proved using a different (though
essentially equivalent) approach involving Green functions. We preferred to stress the role
played by the horocycles, in view of what we shall do in the second part of this book.
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Proposition 1.3.14 was stated by Farkas [1884], but the first complete proof is due to
Ritt [1920]. Corollary 1.3.21 is taken from H. Cartan [1932].

Theorem 1.3.22 is due to Shields [1964]. This result is a typical feature of the holomor-
phic structure: there are examples of commuting continuous functions mapping the closed
unit interval into itself without common fixed points (see Boyce [1969] and Huneke [1969]).

Theorem 1.3.23 was originally proved by Montel [1912] using normal family tech-
niques, and assuming ∞ to be radial. The general statement (and the idea of using maxi-
mum modulus arguments) is due to Lindelöf [1915]; our proof is taken from Rudin [1980].
Scattered in Burckel [1979] there are several other results of this kind; for instance, if
D ⊂ bC is a hyperbolic domain and f ∈ Hol(∆,D) is bounded along a curve ending
at σ ∈ @∆, then f is bounded in every Stolz region at σ (Lindelöf [1909]). Finally, Lehto
and Vitahren [1957] have proved that Theorem 1.3.23 holds for normal functions, i.e., for
functions f ∈ Hol(∆, bC) such that {f ◦ ∞ | ∞ ∈ Aut(∆)} is a normal family.

Theorems 1.3.24 and 1.3.27 are taken from Behan [1973]. Cowen [1984] has given an
almost complete characterization of functions in Hol(∆,∆) commuting with a given one.

Finally, Theorem 1.3.28 was first proved by Mitchell [1979], with quite different argu-
ments involving elementary facts of semigroup theory. Our proof is due to Burckel [1981].


