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0. Introduction
The classification of simply connected Kähler manifolds of constant holomorphic curvature is a classical result.
According to the classification, up to biholomorphic isometry there are only three possibilities: Cn endowed
with the euclidean metric, Pn(C) endowed with (a suitable costant multiple of) the Fubini-Study metric, and
the unit ball Bn in Cn endowed with (a suitable costant multiple of) the hyperbolic metric. In recent years
questions coming from geometric function theory, and in particular the study of invariant metrics of complex
manifolds, suggested to investigate the geometry of complex Finsler (rather than Hermitian) metrics with
constant holomorphic curvature, satisfying some natural Kähler condition (agreeing with the usual one in the
case of Hermitian metrics) and whose curvature has symmetries enjoyed by the function theoretic examples.
In [AP1], and then in [AP2], among other results it was shown that these hypotheses are equivalent to the
existence of geodesic complex curves. Since complex Finsler metrics have been considered for quite some
time (we recall among other contributions [Ri] who possibly introduced them, [Ru], [K] who indicated the
right setting for their study, [Ro], [F], [P]) it is natural to ask whether, at least under natural geometric
assumptions, it is possible to obtain a satisfactory classification. Examples show that one should not expect
a short list of models. In fact the strongly convex domains in Cn with their Kobayashi metric provide an
infinite dimensional family of not equivalent (neither holomorphically nor isometrically) complex (weakly)
Kähler Finsler manifolds of constant negative holomorphic curvature. Furthermore it is easy to endow
Cn with infinite non isometric flat complex Kähler Finsler metrics (the strongly pseudoconvex Minkowski
metrics). On the other hand, no example is known of non Hermitian complex Kähler Finsler manifold of
positive constant holomorphic curvature.

The difference of availability of examples seems to hint that there is a different situation according to
the sign of the curvature, in striking contrast with the Hermitian situation. Indeed there are difficulties
which do not allow one to extend easily the techniques of the Hermitian case — and even in the real case
the classification of constant curvature Finsler manifolds is not clearly established. Finally, the relationship
between complex and real geometry is not as effective as in the Hermitian situation.

In this paper, using heavily the results of [AP2] and the previous work on the subject by the authors (in
particular [AP1]), we address the classification problem and we are able to clarify the situation completely
in the non-negative case and make some substantial progress in the negative one. Our work shows that
the examples gave the right feeling about the problem. Namely, up to biholomorphic isometries, if some
natural symmetry of the curvature is assumed the only complex Kähler Finsler manifold of positive constant
holomorphic curvature is Pn(C) endowed with (a suitable constant multiple of) the Fubini-Study metric, and
the only simply connected flat ones are Cn endowed with strongly pseudoconvex Minkowski metrics. For the
negative case we are able to give sufficient conditions ensuring the existence of a Monge-Ampère exhaustion
as in the case of strongly convex domains in Cn and to show that the metric is (a suitable multiple of) the
Kobayashi metric of M . We like to thank J. Bland for some very useful remarks and his interest in our work.

1. Preliminaries and statements of main results
In order to give precise statements we need to introduce some notations and add preliminaries which will be
used in the paper. We refer to [AP2] and to the literature quoted there for details.

Let M be a complex manifold. We shall denote by T 1,0M its holomorphic tangent bundle, and set
M̃ = T 1,0M \ {Zero section}. To local coordinates (z1, . . . , zn) for M are associated local coordinates
(z1, . . . , zn, v1, . . . , vn) on T 1,0M , and a local frame {∂1, . . . , ∂n, ∂̇1, . . . , ∂̇n} for T 1,0M̃ , where

∂α =
∂

∂zα
and ∂̇α =

∂

∂vα
.
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For φ of class C∞ on an open set of T 1,0M , we shall denote derivatives with indexes as in these examples:

φαβ̄ =
∂2φ

∂vα∂v̄β
, φ;µν =

∂2φ

∂zµ∂zν
, φα;ν̄ =

∂2φ

∂z̄ν∂vα
.

Now we can define Finsler metrics. A (smooth, complex) strongly pseudoconvex Finsler metric is an
upper semicontinuous function F :T 1,0M → R+ such that

G = F 2 ∈ C∞(M̃), (1.1)

F (p; v) > 0 ∀ (p; v) ∈ M̃, (1.2)

F (p; ζv) = |ζ|F (p; v) ∀ (p; v) ∈ T 1,0M, ∀ζ ∈ C, (1.3)(
Gαβ̄(p; v)

)
> 0 ∀ (p; v) ∈ M̃. (1.4)

Condition (1.4) holds iff all the indicatrices of F , defined by

IF (p) = {v ∈ T 1,0
p M | F (v) < 1},

are strongly pseudoconvex. Clearly G = F 2 is a Hermitian metric iff G ∈ C∞
(
T 1,0M

)
.

The simplest examples of such metrics are the so called complex Minkowski metrics which are defined
as follows. Let g̃:Pn−1(C) → R+ be a smooth function such that if g:Cn → R+ is any lift of g̃ then the
exhaustion of Cn defined by τ(z) = g(z)‖z‖2 is strictly plurisubharmonic on Cn \ {0}. Then a complex
Minkowski metric µ:Cn × Cn ∼= T 1,0(Cn)→ R+ is given by µ(z, v) =

√
τ(v).

Thanks to the results of [L], as mentioned before, the Kobayashi metric of strongly convex domains
in Cn provide a large class of nontrivial examples. In this case the indicatrices of the metrics are always
strongly convex.

The study of the differential geometry of complex Finsler metrics on M is reduced to the analysis of
a suitable Hermitian metric on M̃ . If π:T 1,0M → M is the projection and dπ:T 1,0M̃ → T 1,0M is its
differential, the vertical bundle V over M̃ of rank n = dimM is defined by restricting Ker dπ over M̃ . A
local frame for V is given by {∂̇1, . . . , ∂̇n} and a natural section ι: M̃ → V, the radial vertical field, is well
defined by

ι

(
vα

∂

∂zα

)
= vα∂̇α, (1.5)

where here and in the rest of the paper we are using the Einstein convention.
The Finsler metric F induces a Hermitian metric on V: if (p; v) ∈ M̃ e W,Z ∈ V(p;v) then one (well!)

defines
〈W,Z〉 = Gαβ̄(p; v)WαZ̄β . (1.6)

Since G(p; v) = Gαβ̄(p; v)vαv̄β = 〈ι(v), ι(v)〉, the radial vertical field ι: M̃ → V is an isometry. If ∇ is the
covariant derivative associated to the Chern connection of the metric defined by (1.6), let Λ:T 1,0M̃ → V be
defined by Λ(X) = ∇Xι. The horizontal bundle H over M̃ is then defined by H = Ker Λ, the subbundle
of T 1,0M̃ of vectors with respect to which ι is parallel. Then T 1,0M̃ = V ⊕ H and a natural local frame
{δ1, . . . , δn} for H is given by

δµ = ∂µ − Γα;µ∂̇α, (1.7)

where Γα;µ = Gτ̄αGτ̄ ;µ and (Gτ̄α) is the inverse matrix of (Gατ̄ ). The horizontal map Θ:V → H given locally
by Θ(∂̇i) = δi is well defined, and so we get a section

χ = Θ ◦ ι: M̃ → H, (1.8)

called radial horizontal field such that χ
(
vα ∂

∂zα

)
= vαδα. More generally, for any v ∈ T 1,0

p M we have a map
χv:T 1,0

p M → Hv given in local coordinates by

χv

(
wα

∂

∂zα

∣∣∣∣
p

)
= wαδα|v.
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This allows us to canonically lift vector fields over M to horizontal vector fields over M̃ : if ξ is a vector field
over M (i.e., a section of T 1,0M), then we set

ξH(v) = χv

(
ξ
(
π(v)

))
,

where π:T 1,0
p M →M is the canonical projection.

A Hermitian metric on T 1,0M̃ canonically associated to F is defined prescribing V⊥H and setting

〈H,K〉 = 〈Θ−1(H),Θ−1(K)〉
for all H,K ∈ Hv, so that Θ:V → H and χ: M̃ → H are isometries. The Chern connection of this Hermitian
structure is referred to as the Chern-Finsler connection of F . In local coordinates the corresponding covariant
derivative, for X = Xµδµ + Ẋγ ∂̇γ , is given by

∇XV =
{
Xµ

[
δµ(V α) + Γαβ;µV

β
]

+ Ẋγ
[
∂̇γ(V α) + ΓαβγV

β
]}

∂̇α,

∇XV =
{
Xµδµ̄(V α) +Xγ ∂̇γ̄(V α)

}
∂̇α.

where Γαβ;µ = ∂̇β(Γα;µ) and Γαβγ = Gτ̄αGβτ̄γ .
The notion of Kähler Finsler metric can now be introduced. The (2, 0)-torsion θ and the (1, 1)-torsion

τ of F are defined by
∇XY −∇YX = [X,Y ] + θ(X,Y ) (1.9)

and
∇X Ȳ −∇ȲX =

[
X, Ȳ

]
+ τ(X, Ȳ ) + τ̄(X, Ȳ ). (1.10)

The torsion τ of type (1, 1) is V-valued and it is related to curvature. The torsion θ of type (2, 0) is H-valued
and relates to Kählerianity. The decomposition T 1,0M̃ = V ⊕ H induces decompositions for the bundles of
forms. Define the horizontal part pHθ of θ as the composition of θ with the projection onto the horizontal
forms, the vertical part pV θ of θ as the composition of θ with the projection onto the vertical forms and
mixed part of θ as θ − pHθ − pV θ. Then (see [AP2, Proposition 2.3.9]) pV θ ≡ 0, the mixed part θ − pHθ
vanishes identically iff G = F 2 is a Hermitian metric and hence θ ≡ 0 iff G = F 2 is a Hermitian Kählerian
metric. With this in mind, we shall say that F is a Kähler Finsler metric iff for all H ∈ H one has

θ(H,χ) = 0. (1.11)

In local coordinates, this means that Γαβ;µv
µ = Γαµ;βv

µ.
This notion, which agrees with the usual one for Hermitian metrics, is weaker than the one proposed by

Rund [Ru] and it is slightly stronger of the one which is necessary and sufficient for the existence of totally
geodesic holomorphic curves through any point and direction and which holds for the Kobayashi metric of
strongly convex domains. We singled out this specific definition because it is the correct one to get the
second variation formula for complex Finsler metrics (see [AP2, Theorem 2.4.4]).

Finally following Kobayashi [K] let us define the curvature. The usual procedures of Hermitian geometry
yield the curvature operator Ω ∈ X (

∧2(T ∗CM̃)⊗
∧1,0

M̃ ⊗T 1,0M̃) associated to the Chern-Finsler connection
of F . If v ∈ M̃ , then the holomorphic curvature of F along v is given by

KF (v) =
2

[G(v)]2
〈Ω (χ(v), χ̄(v))χ(v), χ(v)〉. (1.12)

Since locally

KF (v) == − 2
G2

Gαδν̄(Γα;µ)vµvν ,

for Hermitian metrics this is the usual notion. Furthermore, exactly as for Hermitian metrics [W], it can be
shown (see [AP1], [AP2], [Ro]) that KF (v) = sup{K(φ∗G)(0)} for all p ∈M e v ∈ M̃p, where the supremum
is taken with respect to maps φ ∈ Hol(∆,M) with φ(0) = p and φ′(0) = λv for some λ ∈ C∗, and K(φ∗G)(0)
is the Gauss curvature in 0 of the metric defined on the unit disk ∆ by φ∗G.

Finally it is possible to develop a satisfactory theory of geodesics for complex Finsler metrics even under
weaker Kähler assumptions (see [AP2]) so that there is a natural notion of completeness of a Finsler metric
which in particular is equivalent to the completeness of the manifold as metric space with the distance
associated to the metric. With these notions we can state our main results:
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Theorem 1.1: Let F :T 1,0M → R+ be a strongly pseudoconvex complete Kähler Finsler metric on a
complex manifold M with constant positive holomorphic curvature 2c > 0 and satisfying

∀H ∈ H 〈Ω(H, χ̄)χ, χ〉 = 〈Ω(χ, χ̄)H,χ〉. (1.13)

Then (M,F ) is biholomorphically isometric to the projective space Pn(C) endowed with a suitable multiple
of the Fubini-Study metric.

Theorem 1.2: Let F :T 1,0M → R+ be a strongly pseudoconvex complete Kähler Finsler metric on a simply
connected complex manifold M with constant vanishing holomorphic curvature and satisfying (1.13). Then
(M,F ) is biholomorphically isometric to Cn endowed with a complex Minkowski metric.

We stress that condition (1.13) is a very natural (and mild) assumption on the curvature, because it
is necessary for the existence of totally geodesic holomorphic curves (which is something to be expected in
constant curvature manifolds).

For the negative curved case we are not yet able to provide a comparable result. As a step toward
classification of tame Finsler metrics, which are metrics not “too distant” from Hermitian metrics in a sense
which is made precise in Section 4, we can prove the following:

Theorem 1.3: Let F :T 1,0M → R+ be a strongly pseudoconvex tame Kähler Finsler metric on a simply
connected complex manifold M of dimension n with constant negative holomorphic curvature and satisfy-
ing (1.13). Then expp:T 1,0

p M → M is a Lipschitz homeomorphism diffeomorphic outside the origin for any
p ∈M . Furthermore, M is foliated by isometric totally geodesic holomorphic embeddings of the unit disk ∆
endowed with (a suitable multiple of) the Poincaré metric, and F is (a suitable multiple of) the Kobayashi
metric of M . If ρ is the distance from p relative to the metric F and σ = (tanh ρ)2, then σ is an exhaustion
of M with the following properties:

(i) σ ∈ C0
(
M
)
∩ C∞

(
M \ {p}

)
;

(ii) if π: M̌ →M is the blow-up at p, then σ ◦ π ∈ C∞
(
M̌
)
;

(iii) ddcσ > 0 on M \ {p};
(iv) ddc log σ ≥ 0 on M \ {p};
(v) (ddc log σ)n = 0 on M \ {p};
(vi) log σ(z) = log ‖z‖2 +O(1) with respect to any coordinate system centered in p.

In particular M is a Stein manifold.

In [AP2] Theorem 3.2.10 gives the same conclusion assuming a symmetry property of the curvature
stronger than (1.13) in order to simplify a technical point of the proof. Unfortunately, as it was pointed
out to us by J. Bland, the stronger curvature assumption, which is not verified in the nontrivial examples,
implies that the metric is Hermitian and hence that the result should have a much simpler proof! With a
bit more work we have been able to remove the technical assumption getting in this way a more interesting
result.

Besides the notation introduced in this section, we shall freely use the expressions in local coordinates
of curvature, covariant derivatives and torsions proved in [AP2] which we refer to for details.

2. Computation of the curvature
The starting point of our work is a careful estimate of the second variation of a geodesic. We recall that if F
is a Kähler Finsler metric (in fact weakly Kähler is enough [AP2]) on a complex manifold M then a regular
curve σ0: [a, b]→M with F (σ̇) ≡ c0 > 0 is a geodesic for F iff

∇
TH+TH

TH ≡ 0, (2.1)

where TH(v) = χv
(
σ̇(t)

)
∈ Hv for all v ∈ M̃σ(t). The equation (2.1) is obtained by taking the first variation of

the length of curves. In order to study the global behavior of geodesics one computes the second variation. We
recall here Theorem 2.4.4 of [AP2]. If the horizontal (1, 1)-torsion τH is defined by τH(X,Y ) = Θ

(
τ(X,Y )

)
then one has τH(X,Y ) = Ω(X,Y )χ. A symmetric product 〈〈 , 〉〉:H×H → C locally given by

∀H,K ∈ Hv 〈〈H,K〉〉v = Gαβ(v)HαKβ ,
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is clearly globally well-defined, and for all H ∈ H it satisfies 〈〈H,χ〉〉 = 0. Let σ0: [a, b]→M with F (σ̇0) ≡ 1
be a geodesic for a Kähler Finsler metric on a complex manifold M and Σ: (−ε, ε)× [a, b]→M be a regular
variation of σ0 with fixed extremes. If

T =
∂Σα

∂t

∂

∂zα
and U =

∂Σα

∂s

∂

∂zα

are respectively the vector field tangent to the geodesics and the transversal vector field of the variation,
assume further that Re〈UH , TH〉σ̇0 ≡ 0, where TH and UH are the horizontal lifts of T and U respectively.
Then the second variation formula for σ0 is given by

d2`Σ
ds2

(0) =
∫ b

a

{∥∥∇
TH+TH

UH
∥∥2

σ̇0

− Re
[
〈Ω(TH , UH)UH , TH〉σ̇0 − 〈Ω(UH , TH)UH , TH〉σ̇0

+ 〈〈τH(UH , TH), UH〉〉σ̇0
− 〈〈τH(TH , UH), UH〉〉σ̇0

]}
dt;

(2.2)

note that TH(σ̇0) = χ(σ̇0), because σ0 is a geodesic.
We shall compute the curvature term in (2.2) under the weakest possible hypotheses. We have the

following

Theorem 2.1: Let F :T 1,0M → R+ be a strongly pseudoconvex Kähler Finsler metric on a complex mani-
fold M with constant holomorphic curvature 2c ∈ R, that is

〈Ω(χ, χ̄)χ, χ〉 = cG2, (2.3)

and satisfying the symmetry condition

∀H ∈ H 〈Ω(H, χ̄)χ, χ〉 = 〈Ω(χ, χ̄)H,χ〉. (2.4)

Then for all H, K ∈ H

Re
[
〈Ω(χ,K)H,χ〉 − 〈Ω(H, χ̄)K,χ〉+ 〈〈τH(H, χ̄),K〉〉 − 〈〈τH(χ,K), H〉〉

]
=
c

2
Re
{
G
[
〈H,K〉 − 〈〈H,K〉〉

]
+ 〈H,χ〉

[
〈χ,K〉 − 2〈K,χ〉

]
−G〈θ̂V(χ,K), θ̂V(χ,H)〉

}
,

where θ̂V is the dual (1, 1)-torsion to be defined in (2.9).

We recall [AP2, Proposition 3.1.7] that (2.3) and (2.4) together are equivalent to

τH(χ, χ̄) = cGχ, (2.5)

the integrability condition for existence and uniqueness of complex geodesic curves.
The first step in evaluating the curvature term under the assumptions of the theorem was already carried

out in [AP2, Proposition 3.2.3]:

Proposition 2.2: If F :T 1,0M → R+ is a strongly pseudoconvex Finsler metric on a complex manifold M
with constant holomorphic curvature 2c ∈ R satisfying (2.4), then

〈Ω(H, χ̄)K,χ〉 = c
{
〈H,χ〉〈K,χ〉+G〈〈H,K〉〉

}
.

The computation of the other (2, 0)-addend requires some preliminary results.
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Lemma 2.3: Let F :T 1,0M → R+ be a strongly pseudoconvex Finsler metric on a complex manifold M .
Then for all V ∈ V and H, K ∈ H we have

(∇V Ω)(H,K)χ = τH
(
H, τ(K,V )

)
− τH

(
θ(V,H),K

)
.

Proof : Clearly it suffices to consider ΩH = Ωαβ ⊗ dzβ ⊗ δα; in particular,

∇V ΩH = (∇V Ωαβ)⊗ dzβ ⊗ δα − Ωαγ ⊗ ωγβ(V )dzβ ⊗ δα + Ωγβ ⊗ dzβ ⊗ ωαγ (V )δα.

Let us compute. Using [AP2, Lemma 2.3.3], Γαβσv
β = 0 and Γαβ;µv

β = Γα;µ, we have:

(∇V Ωαβ)(H,K)vβ =
[
V (Rαβ;µν̄)−Rαβ;ρν̄ω

ρ
µ(V )

]
HµKνvβ

= −
[
∂̇λδν̄(Γαβ;µ) + ∂̇λ

(
Γαβσδν̄(Γσ;µ)

)
− δν̄(Γαβ;ρ)Γ

ρ
µλ − Γαβσδν̄(Γσ;ρ)Γ

ρ
µλ

]
V λHµKνvβ

= −
[
δν̄ ∂̇λ(Γαβ;µ)− Γτ̄λ;ν̄ ∂̇τ̄ (Γαβ;µ) + ∂̇λ(Γαβσ)δν̄(Γσ;µ) + Γαβσ∂̇λδν̄(Γσ;µ)− δν̄(Γαβ;ρ)Γ

ρ
µλ

]
V λHµKνvβ

= −
[
δν̄
(
vβ ∂̇λ(Γαβ;µ)

)
− Γτ̄λ;ν̄Γατ̄ ;µ + vβ ∂̇λ(Γαβσ)δν̄(Γσ;µ)− δν̄(Γα;ρ)Γ

ρ
µλ

]
V λHµKν

= −
[
−Γτ̄λ;ν̄Γατ̄ ;µ − Γαλσδν̄(Γσ;µ)− δν̄(Γα;ρ)Γ

ρ
µλ

]
V λHµKν .

Furthermore,
Ωαγ (H,K)ωγβ(V )vβ = −

[
δν̄(Γαγ;µ) + Γαγσδν̄(Γσ;µ)

]
ΓγβλV

λHµKνvβ = 0,

ωαγ (V )Ωγβ(H,K)vβ = −Γαγλ
[
δν̄(Γγβ;µ) + Γγβσδν̄(Γσ;µ)

]
V λHµKνvβ

= −Γαγλδν̄(Γγ;µ)V λHµKν ;

hence
(∇V Ω)(H,K)χ =

[
Γατ̄ ;µΓτ̄λ;ν̄ + δν̄(Γα;ρ)Γ

ρ
µλ

]
V λHµKνδα

= τH
(
H, τ(K,V )

)
− τH

(
θ(V,H),K

)
.

¤
Lemma 2.4: Let F :T 1,0M → R+ be a strongly pseudoconvex Finsler metric on a complex manifold M
with constant holomorphic curvature 2c and satisfying (2.4). Then for all H ∈ H

τH(H, χ̄) = c
[
〈H,χ〉χ+GH

]
− Ω(χ, χ̄)H − τH

(
χ, τ

(
χ,Θ−1(H)

))
.

Proof : Let V = Θ−1(H). Then
∇V (cGχ) = c

[
〈H,χ〉χ+GH

]
,

∇V
(
τH(χ, χ̄)

)
= ∇V

(
Ω(χ, χ̄)χ

)
= (∇V Ω)(χ, χ̄)χ+ Ω(H, χ̄)χ+ Ω(χ, χ̄)H

= τH
(
χ, τ

(
χ, V

))
+ τH(H, χ̄) + Ω(χ, χ̄)H,

by [AP2, Lemma 2.3.8] and Lemma 2.3, because θ(V, χ) = 0. Hence the assertion follows from (2.5). ¤
Lemma 2.5: Let F :T 1,0M → R+ be a strongly pseudoconvex Kähler Finsler metric on a complex mani-
fold M with constant holomorphic curvature 2c and satisfying (2.4). Then for all H ∈ H

Ω(χ, χ̄)H = τH(H, χ̄) = Ω(H, χ̄)χ.

Proof : Indeed
Ω(χ, χ̄)H = −

[
δν̄(Γαβ;µ) + Γαβσδν̄(Γσ;µ)

]
vµvνHβδα

= −
[
δν̄(Γαβ;µv

µ) + Γαβσδν̄(Γσ;µ)vµ
]
vνHβδα

= −
[
δν̄(Γα;β)vν + Γαβσδν̄(Γσ;µ)vµvν

]
Hβδα

= −
[
δν̄(Γα;β)vν − cGΓαβσv

σ
]
Hβδα

= −δν̄(Γα;β)vνHβδα = τH(H, χ̄),

where we used the Kähler condition, Γαβσv
σ = 0 and (2.5). ¤
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Proposition 2.6: Let F :T 1,0M → R+ be a strongly pseudoconvex Kähler Finsler metric on a complex
manifold M with constant holomorphic curvature 2c and satisfying (2.4). Then for any H, K ∈ H

τH(H, χ̄) =
c

2
[
〈H,χ〉χ+GH

]
− 1

2
τH
(
χ, τ

(
χ,Θ−1(H)

))
, (2.6)

〈τH(H, χ̄),K〉 =
c

2
[
〈H,χ〉〈χ,K〉+G〈H,K〉

]
− 1

2
〈τ
(
χ,Θ−1(K)

)
, τ
(
χ,Θ−1(H)

)
〉 (2.7)

and

〈〈τH(H, χ̄),K〉〉 =
c

2
G〈〈H,K〉〉. (2.8)

Proof : (2.6) follows from Lemmas 2.4 and 2.5. (2.7) follows from (2.6) and [AP2, Proposition 2.6.7.(i)].
Furthermore, [AP2, Proposition 2.6.7.(ii)] says that

〈〈τH
(
χ, τ

(
χ,Θ−1(H)

))
,K〉〉 = 〈θ(K,χ), τH

(
χ,Θ−1(H)

)
〉 = 0,

because F is Kähler, and (2.8) follows from 〈〈χ,K〉〉 = 0. ¤

For the evaluation of the (1, 1)-addends we need a new object. Define a T 1,0M̃ -valued (1, 1)-form
θ̂ ∈ X (

∧1,1
M̃ ⊗ T 1,0M̃) by the formula

〈θ(X,Y ), Z〉 = 〈X, θ̂(Z, Y )〉 (2.9)

for all X, Y , Z ∈ T 1,0M̃ ; the form θ̂ is the dual (1, 1)-torsion. In local coordinates, θ̂ is given by

θ̂ = θ̂H + θ̂V = θ̂σ ⊗ δσ + ˙̂
θα ⊗ ∂̇α,

where
θ̂σ = Gτ̄σGµρ̄(Γ

ρ̄
ν̄;τ̄ − Γρ̄τ̄ ;ν̄) dzµ ∧ dz̄ν −Gτ̄σGτ̄µγ̄ dzµ ∧ ψγ ,

˙̂
θα = Gτ̄αGτ̄µν̄ dz

µ ∧ dz̄ν .

Since θ̂V(H, χ̄) ≡ 0, we immediately see that F is Kähler iff θ̂(H, χ̄) ≡ 0. On the other hand,

θ̂V(χ,K) = Gτ̄αGτ̄ ν̄Kν ∂̇α

vanishes for all K ∈ H iff Gτν ≡ 0; recalling [AP2, Proposition 2.3.9.(i)] we have proved the

Lemma 2.7: Let F :T 1,0M → R+ be a strongly pseudoconvex Finsler metric on a complex manifold M .
Then F comes from a Hermitian metric iff

∀K ∈ H θ̂V(χ,K) = 0.

The form θ̂V(χ,K) in a way transforms the Hermitian product into the symmetric product and con-
versely. In fact it is easy to check that

〈θ̂V(χ,K),Θ−1(H)〉 = 〈〈H,K〉〉 (2.10)

and
〈〈θ̂V(χ,K),Θ−1(H)〉〉 = 〈θ̂V(χ,K), θ̂V(χ,H)〉 (2.11)

for all H, K ∈ H.
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Proposition 2.8: Let F :T 1,0M → R+ be a strongly pseudoconvex Finsler metric on a complex manifold M
with constant holomorphic curvature 2c ∈ R and satisfying (2.4). Then

〈τH(χ,K), H〉 = c
[
〈χ,H〉〈χ,K〉+G〈〈H,K〉〉

]
, (2.12)

τ(χ,K) = c
[
〈χ,K〉ι+G θ̂V(χ,K)

]
(2.13)

and
〈〈τH(χ,K), H〉〉 = cG〈θ̂V(χ,K), θ̂V(χ,H)〉 (2.14)

for all H, K ∈ H.

Proof : By [AP2, (2.5.2) and Lemma 2.3.8] we know that

〈τH(χ,K), H〉 = 〈Ω(χ,K)χ,H〉 = 〈Ω(K, χ̄)H,χ〉,

and (2.12) follows from [AP2, Proposition 3.2.3]. (2.10) then yields (2.13), and (2.14) follows from 〈〈χ,H〉〉 = 0
and (2.11). ¤
Proposition 2.9: Let F :T 1,0M → R+ be a strongly pseudoconvex weakly Kähler (i.e., such that

〈θ(H,χ), χ〉 = 0

for all H ∈ H) Finsler metric on a complex manifold M with constant holomorphic curvature 2c ∈ R and
satisfying (2.4). Then

〈Ω(χ,K)H,χ〉 =
c

2

[
〈H,χ〉〈χ,K〉+G〈H,K〉+G〈θ̂V(χ,K), θ̂V(χ,H)〉

]
for all H, K ∈ H.

Proof : [AP2, Proposition 3.2.2] yields

〈Ω(χ,K)H,χ〉+ 〈Ω(H,K)χ, χ〉 = c
[
〈H,χ〉〈χ,K〉+G〈H,K〉

]
.

Furthermore, the proof of [AP2, Proposition 3.2.5] yields

〈Ω(χ,K)H,χ〉 − 〈Ω(H,K)χ, χ〉 = 〈〈τH(χ,K), H〉〉 (2.15)

for all H, K ∈ H. The assertion then follows from Proposition 2.8. ¤
Summing up, Theorem 2.1 follows from Propositions 2.2, 2.6, 2.8 and 2.9.

3. The positive curvature case
We are almost ready to characterize the constant positive curvature complex Finsler manifolds. We still
need one lemma.

Lemma 3.1: Let F :T 1,0M → R+ be a strongly pseudoconvex Kähler Finsler metric on a complex mani-
fold M with constant holomorphic curvature 2c ∈ R and satisfying (2.4). Then

〈Ω(χ,K)H,χ〉 − 〈Ω(H,K)χ, χ〉 = −〈τ
(
χ,Θ−1(K)

)
, τ
(
χ,Θ−1(H)

)
〉

for all H, K ∈ H.

Proof : Let W = Θ−1(K). Then

W 〈Ω(H, χ̄)χ, χ〉 = 〈(∇WΩ)(H, χ̄)χ, χ〉+ 〈Ω(∇WH, χ̄)χ, χ〉
+ 〈Ω(H,K)χ, χ〉+ 〈Ω(H, χ̄)χ,K〉,

W 〈Ω(χ, χ̄)H,χ〉 = 〈(∇WΩ)(χ, χ̄)H,χ〉+ 〈Ω(χ,K)H,χ〉
+ 〈Ω(χ, χ̄)(∇WH), χ〉+ 〈Ω(χ, χ̄)H,K〉.
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Recalling (2.4), Lemma 2.5 and [AP2, Lemma 3.1.5], we then obtain

〈Ω(χ,K)H,χ〉 − 〈Ω(H,K)χ, χ〉 = −〈(∇WΩ)(χ, χ̄)H,χ〉. (3.1)

The proof of [AP2, Lemma 3.1.5] shows that

〈(∇WΩ)(χ, χ̄)H,χ〉
= −

[
−δν̄(GβσΓσγ̄;µ) +Gβσδν̄(Γσγ̄;µ)− δρ̄(GαΓαβ;µ)Γρ̄ν̄γ̄ −Gβσδρ̄(Γσ;µ)Γρ̄ν̄γ̄

]
vµvνHβW γ

= −
[
−Γσγ̄;µδν̄(Gβσ)

]
vµvνHβW γ = Gβτ̄Γτ̄σ;ν̄Γσγ̄;µv

µvνHβW γ

= 〈H, τH
(
χ, τ(χ,W )

)
〉 = 〈τ(χ,W ), τ

(
χ,Θ−1(H)

)
〉,

where we used respectively [AP2, (2.6.18)] and [AP2, Proposition 2.6.7.(i)], and we are done. ¤
We are now in condition of proving Theorem 1.1:

Proof of Theorem 1.1 It suffices to prove that under these hypotheses F comes from a Hermitian metric,
and then invoke the analogous result for Kähler Hermitian manifolds. But indeed Lemma 3.1, (2.15) and
Proposition 2.8 yield

cG〈θ̂V(χ,K), θ̂V(χ,K)〉 = −〈τ
(
χ,Θ−1(K)

)
, τ
(
χ,Θ−1(K)

)
〉

for all K ∈ H. Being c > 0 this forces θ̂V(χ,K) ≡ 0, and the assertion follows from Lemma 2.7. ¤

4. Existence of Monge-Ampère potentials
While there exists a unique complex manifold and a unique complete Kähler Finsler metric with constant
positive holomorphic curvature satisfying (2.4), the situation for manifolds with nonpositive constant holo-
morphic curvature is quite different. As first step in this case we show that it is possible to construct
exhaustions satisfying the complex Monge-Ampère equation. Before stating the main result of this section
(which includes Theorem 1.3), we need a further definition.

We say that a strongly pseudoconvex Finsler metric F is tame if it satisfies

Re
[
〈H,H〉+ 〈〈H,H〉〉] ≥ 〈θ̂V(χ,H), θ̂V(χ,H)〉

for all H ∈ H such that 〈H,χ〉 = 0 (and then for all H ∈ H). Note that this is only a punctual requirement
on F (i.e., it depends on the derivatives of F along the v directions only, and not on derivatives along the z
directions). We shall discuss briefly the meaning of this notion at the end of this section.

Suppose that F is a strongly pseudoconvex Kähler Finsler with constant positive holomorphic curvature
2c ≤ 0 and satisfying (2.4). Assume furthermore that if c < 0 then F is tame. Then Theorem 2.1 implies that
the curvature term in the second variation either vanishes or is positive. Therefore, exactly how it is done in
[AP2] one may reconstruct the global geometry of M . In particular the possibility of controlling the second
variation is the key to get in this setting the analogue of Cartan-Hadamard Theorem ([AP2, Theorem 3.2.7])
under our weaker assumption. Once this result is obtained, as only Kählerianity and constant curvature are
needed in the proofs, one may recover also Theorem 3.2.10 of [AP2] with exactly the same proof. We can
therefore invoke the proofs of Theorem 3.2.7 and of Theorem 3.2.10 of [AP2] to conclude

Theorem 4.1: Let F :T 1,0M → R+ be a complete strongly pseudoconvex Kähler Finsler metric on a simply
connected complex manifold M with nonpositive constant holomorphic curvature 2c ≤ 0 and satisfying (2.4).
Assume furthermore that if c < 0 then F is tame. Then expp:T 1,0

p → M is a Lipschitz homeomorphism
diffeomorphic outside the origin for any p ∈ M . The manifold M is foliated by isometric totally geodesic
holomorphic embeddings of the unit disk ∆ endowed with a suitable multiple of the Poincaré metric if c < 0,
or by isometric totally geodesic holomorphic embeddings of C endowed with the euclidean metric if c = 0.
In particular, if c = −2 then F is the Kobayashi metric of M , and if c = 0 then the Kobayashi metric
of M vanishes identically. Furthermore if ρ is the distance from p relative to the metric F , and setting
σc = (tanh ρ)2 when c < 0 and σ0 = ρ2 otherwise, then
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(i) σc ∈ C0
(
M
)
∩ C∞

(
M \ {p}

)
;

(ii) if π: M̌ →M is the blow-up at p, then σc ◦ π ∈ C∞
(
M̌
)
;

(iii) ddcσc > 0 on M \ {p};
(iv) ddc log σc ≥ 0 on M \ {p};
(v) (ddc log σc)n = 0 on M \ {p};

(vi) log σc(z) = log ‖z‖2 +O(1) with respect to any coordinate system centered in p.

In particular M is a Stein manifold.

A remark concerning [AP2] is in order. Let F :T 1,0M → R+ be a strongly pseudoconvex complete
Kähler Finsler metric on a complex manifold M with constant negative holomorphic curvature 2c < 0 and
satisfying (2.4). Then Lemma 2.7, (2.15) and Proposition 2.8 imply that

〈Ω(H,K)χ, χ〉 = 〈Ω(χ,K)H,χ〉 (4.1)

for all H, K ∈ H iff F comes from a Hermitian metric (we thank J. Bland for pointing this out to us).
In particular, this means that the hypotheses of [AP2, Theorem 3.2.7] holds for c < 0 iff F comes from a
Hermitian metric, disposing of most of the interest of the theorem. But a consequence of Theorem 2.1 is
that assuming only (2.4) instead of (4.1) we can recover the same results up to assuming that the metric F
is tame.

We end this section with a couple of remarks about tame metrics. It is easy to check that the indicatrices
of a strongly pseudoconvex Finsler metric F are strongly convex iff

Re
[
〈H,H〉+ 〈〈H,H〉〉

]
> 0

for all H ∈ H, with H 6= 0. So the indicatrices of a tame metric are somewhat more than strongly convex.
Concerning the existence (and not existence) of tame (1, 1)-homogeneous functions we state the following

two results, whose elementary proofs are left to the reader.

Proposition 4.2: Let g:Cn → R+ be a Hermitian norm, f :Cn → R+ any (1, 1)-homogeneous function and
ε << 1. Then G = g + εf is a tame (1, 1)-homogeneous function.

Proposition 4.3: Let G:C2 → R+ be a strongly convex (1, 1)-homogeneous function such that

G(v) =
(
a+ bRe

v1

v2

)[
|v1|2 + |v2|2

]
(4.2)

(with a, b ∈ R+) in a conical neighborhood of the diagonal {v1 = v2}. Assume also that

1
5
≤ b

a
<

1
2
√

2
(4.3)

(e.g., a = 5 and b = 1). Then G is not tame.

Thus we may conclude that although strongly convex complex Finsler metrics need not to be tame, at
least an “open” neighborhood of the Hermitian metrics is made of tame complex Finsler metrics. We add
that while this assumption is essential for our proof of Theorem 4.1 (proof based on the estimate of the
second variation) to work, the same conclusions hold for the Kobayashi metric of strongly convex domains
which need not to be tame. As a matter of fact to estimate the second variation it would suffice to have a
tame metric on a large enough set. This may very well be the case for the Kobayashi metric.

5. The zero curvature case
We start with a consequence of Theorem 4.1:

Theorem 5.1: Let F :T 1,0M → R+ be a simply connected strongly pseudoconvex complete Kähler Finsler
metric on a complex manifold M with vanishing holomorphic curvature and satisfying (2.4). Then the
exponential map expp:T 1,0

p M ∼= Cn →M is a biholomorphism for every p ∈M .

Proof : The proof is a very easy corollary of the geometric theory of complex Monge-Ampère equation (see
[B] and [Pa] for example). Since by construction the leaves of the Monge-Ampère foliation associated to σ0

are all parabolic, then the foliation is holomorphic and hence expp must be biholomorphic. ¤
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From now on, we shall assume that M is simply connected and that F is a strongly pseudoconvex
complete Kähler Finsler metric of vanishing holomorphic curvature and satisfying (2.4); in particular, M is
biholomorphic to Cn, and Proposition 2.8, (2.15), Lemma 3.1, and Proposition 2.6 yield

τ(H, χ̄) = τ(χ,K) = 0 (5.1)

and
τ(χ,W ) = 0 (5.2)

for all H, K ∈ H and W ∈ V.
To classify the metrics which may occur under these assumptions we need some technical facts.

Lemma 5.2: Let F :T 1,0M → R+ be a strongly pseudoconvex Kähler Finsler metric on a complex mani-
fold M with constant vanishing holomorphic curvature and satisfying (2.4). Then for all H, K ∈ H,

Ω(χ,K)H = τH(H,K) = 0,

and for all H ∈ H and W ∈ V
Ω(χ,W )H = τH(H,W ) = 0.

Proof : First of all, for H, K ∈ H

Ω(χ,K)H = −
[
δν̄(Γαβ;µ) + Γαβσδν̄(Γσ;µ)

]
vµKνHβδα

= −
[
δν̄(Γαβ;µv

µ) + Γαβσδν̄(Γσ;µ)vµ
]
KνHβδα

= −
[
δν̄(Γα;β)Kν + Γαβσδν̄(Γσ;µ)vµKν

]
Hβδα

= −δν̄(Γα;β)KνHβδα = τH(H,K),

(5.3)

which follows from the Kähler condition and from τ(χ,K) = 0.
Next, put V = Θ−1(H) and apply ∇V to the second equation in (5.1). We get

0 = ∇V
(
Ω(χ,K)χ

)
= (∇V Ω)(χ,K)χ+ Ω(H,K)χ+ Ω(χ,∇VK)χ+ Ω(χ,K)H

= τH
(
χ, τ(K,V )

)
+ τH(H,K) + Ω(χ,K)H = 2τH(H,K),

by Lemma 2.3, θ(V, χ) = 0, (5.2) and (5.3).
On the other hand, for H ∈ H and W ∈ V,

Ω(χ,W )H = −[∂̇γ̄(Γαβ;µ) + ΓαβσΓσγ̄;µ]vµW γHβδα = −Γαγ̄;βW
γHβδα = τH(H,W ),

by the Kähler condition and (5.2). Next, if V ∈ V, again using the Kähler condition, (5.2), Γτβλv
β = 0 and

vµ∂̇β(Γαγ̄;µ) = vµ∂̇γ̄(Γαβ;µ) = Γαγ̄;β , we have

(∇V Ω)(χ,W )χ = −
[
∂̇λ∂̇γ̄ ∂̇β(Γα;µ) + ∂̇λ(ΓαβσΓσγ̄;µ)− [∂̇γ̄(Γαβ;ρ) + ΓαβσΓσγ̄;ρ]Γ

ρ
µλ

]
vµW γvβV λδα

+ [∂̇λ∂̇τ (Γα;µ) + ΓατσΓσγ̄;µ]Γτβλv
µW γvβV λδα

− [∂̇γ̄(Γτβ;µ) + ΓτβσΓσγ̄;µ]Γατλv
µW γvβV λδα

= −[∂̇λ∂̇β(Γαγ̄;µ) + ∂̇λ(Γαβσ)Γσγ̄;µ]vµW γvβV λδα

= −∂̇λ∂̇β(Γαγ̄;µ)vµvβW γV λδα

= −[∂̇λ(vµ∂̇β(Γαγ̄;µ))− ∂̇β(Γαγ̄;λ)]vβW γV λδα

= −[∂̇λ(Γαγ̄;β)− ∂̇γ̄(Γαβ;λ)]vβW γV λδα

= −[Γαγ̄;λ − Γαγ̄;λ]W γV λ = 0

.

Hence if V = Θ−1(H) we have

0 = ∇V
(
Ω(χ,W )χ

)
= (∇V Ω)(χ,W )χ+ τH(H,W ) + Ω(χ,W )H = 2τH(H,W ).

¤
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Proposition 5.3: Let F :T 1,0M → R+ be a strongly pseudoconvex Kähler Finsler metric on a complex
manifold M with constant vanishing holomorphic curvature and satisfying (2.4). Then:

(i) τ ≡ 0;

(ii) Ω(H,K)L = 0 = Ω(H,W )L for all H, K, L ∈ H and W ∈ V;

(iii) F is strongly Kähler, i.e., θ(H,K) = 0 for all H, K ∈ H

Proof : (i) is the content of Lemma 5.2. It follows from [AP2, Corollary 2.2.1] that the frames {δα} are
holomorphic; in particular, then, the Γα;µ are holomorphic functions of (z; v). Thus also the Γαβ;µ = ∂̇β(Γα;µ)
are holomorphic; being homogeneous of degree zero in v and using the Kähler condition, we obtain

Γαβ;µ(z; v) ≡ aαβ;µ(z),

where the aαβ;µ are holomorphic functions of z satisfying aαβ;µ = aαµ;β , and (iii) follows. Finally (ii) is a
consequence of the holomorphicity of Γαβ;µ and Γα;µ. ¤

Of course, Minkowski metrics on Cn satisfy such requirements; it turns out that they are the only ones.
In fact we have this precise restatement of Theorem 1.2:

Theorem 5.4: Let F :T 1,0M → R+ be a strongly pseudoconvex complete Kähler Finsler metric on a simply
connected complex manifold M with constant vanishing holomorphic curvature and satisfying (2.4). Fix
p ∈M , and denote by F̂ the Minkowski metric induced by F (p; ·) on T 1,0

p M ∼= Cn. Then expp:T 1,0
p M →M

is a biholomorphic isometry from (T 1,0
p M, F̂ ) to (M,F ). In particular, (M,F ) is biholomorphically isometric

to a Minkowski space.

Proof : We already know that expp is a biholomorphism (Theorem 5.1); it remains to prove that it is an
isometry. The idea is to recast in our terms the similar step for the proof of Cartan-Ambrose-Hicks theorem
as provided in Lemma 1.35 of [CE]. Unfortunately to this end it is necessary to formulate the appropriate
theory of Jacobi fields which are essential for the proof. Here we shall just outline the basic ideas as it is
a simple adaptation of the ideas developed in the real case in [AP2, Section 1.7.1]. As usual a Jacobi field
is defined as a vector field J along a geodesic σ tangent to a geodesic variation. Under our hypotheses it is
rather easy to recover the equation for Jacobi fields. If JH is the horizontal lift of J , we have the following

Lemma 5.5: Let F :T 1,0M → R+ be a strongly pseudoconvex Kähler Finsler metric on a simply connected
complex manifold M with constant vanishing holomorphic curvature and satisfying (2.4). If J is a Jacobi
field along a geodesic of M with unit tangent field T then

∇
TH+TH

∇
TH+TH

(JH + JH) ≡ 0.

Let us postpone the proof of the Lemma and, before proceeding with our argument, remark that as a
consequence of the Lemma it follows that a Jacobi field is uniquely determined assigning initial conditions.
Now let v ∈ (T 1,0

p M) \ {0} and let σ: [0, t∗] → T 1,0
p M be the normalized geodesic from 0 to v in T 1,0

p M

relative to the metric F̂ (which has as image the segment from 0 to v) and let σ̄ = expp ◦σ: [0, t∗] → M
be the corresponding geodesic on M from p to expp(v). If we denote by Aσ the parallel transport along
a geodesic σ, then we set Iσ = Aσ̄ ◦ (d expp)0 ◦ A−σ. For any W ∈ T 1,0

v (T 1,0
p M) let J be the Jacobi field

along σ such that J(0) = 0 and J(v) = W . If J̄ is the vector field along σ̄ defined by Iσ ◦ J , then, as
parallel transport and d(expp)0 are isometries, J̄ is a Jacobi field and F̂ (J(t)) = F (J̄(t)). On the other hand
J̄ = d(expp)σ(t)

(
J(t)

)
since Jacobi fields on normal geodesic starting from a point p and vanishing at p can

be expressed as the push forward via the exponential map at p of Jacobi fields on (T 1,0
p M, F̂ ) exactly as it

is done in the real case (cf. [AP2, Proposition 1.7.2]). But then we have our conclusion because

F̂ (W ) = F̂
(
J(t∗)

)
= F

(
J̄(t∗)

)
= F

(
d(expp)σ(t∗)(J(t∗))

)
= F

(
d(expp)v(W )

)
.

¤
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We end by giving the proof of the Lemma:

Proof of Lemma 5.5: Let Σ: (−ε, ε)× [0, a]→M be a geodesic variation of a geodesic σ0: [0, a]→M , i.e., a
regular variation of σ0 such that σs = Σ(s, ·) is a geodesic for any s ∈ (−ε, ε). Let T be the vector field tangent
to the geodesics and J be the transversal vector field of the variation Σ. Then we have ∇

TH+TH
TH ≡ 0 and

∇
TH+TH

TH ≡ 0. Using the fact that under the assumptions the metric is strongly Kähler, τ ≡ 0 and the
horizontal curvature vanishes identically, we can compute:

0 = ∇
JH+JH

∇
TH+TH

(TH + TH)

= ∇JH∇THTH +∇JH∇THT
H +∇JH∇THTH +∇JH∇THTH

+∇
JH
∇THTH +∇

JH
∇
TH
TH +∇

JH
∇THTH +∇

JH
∇
TH
TH

= ∇TH∇JHTH +∇[JH ,TH ]T
H

+∇
TH
∇JHTH +∇

[JH ,TH ]
TH + Ω(JH , TH)TH

+∇TH∇JHTH +∇[JH ,TH ]TH

+∇
TH
∇JHTH +∇

[JH ,TH ]
TH + Ω(JH , TH)TH

+∇TH∇JHT
H −∇

[TH ,JH ]
TH − Ω(TH , JH)TH

+∇
TH
∇
JH
TH +∇

[TH ,JH ]
TH

+∇TH∇JHTH −∇[TH ,JH ]
TH − Ω(TH , JH)TH

+∇
TH
∇
JH
TH +∇

[TH ,JH ]
TH

= ∇
TH+TH

(∇JHTH +∇JHTH +∇
JH
TH +∇

JH
TH)

+∇
[JH ,TH ]+[JH ,TH ]+[JH ,TH ]+[JH ,TH ]

(TH + TH).

On the other hand

∇JHTH +∇JHTH +∇
JH
TH +∇

JH
TH

= ∇THJH + [JH , TH ] + θ(JH , TH)

+∇
TH
JH + [JH , TH ] + τ(JH , TH) + τ(JH , TH)

+∇THJH + [JH , TH ]− τ(TH , JH)− τ(TH , JH)

+∇
TH
JH + [JH , TH ]

= ∇
TH+TH

(JH + JH)

+ [JH , TH ] + [JH , TH ] + [JH , TH ] + [JH , TH ].

Finally as in [AP2, proof of Theorem 2.4.4], we have

[JH , TH ] + [JH , TH ] + [JH , TH ] + [JH , TH ]

= τ(TH , JH)− τ(JH , TH) + τ(TH , JH)− τ(JH , TH) = 0,

and hence
0 = ∇

JH+JH
∇
TH+TH

(TH + TH) = ∇
TH+TH

∇
TH+TH

(JH + JH).

¤
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